Variabilidad de la frecuencia cardiaca, Lactatemia e IL-6 y su relación con el umbral de potencia funcional en ciclistas de competición
Heart rate variability, Lactate and IL-6 and their relationship to functional threshold power in competitive cyclists
dc.contributor | Duque Vera, Iván Leonardo | |
dc.contributor | Bioimpedancia eléctrica (Categoría A) | |
dc.creator | Porras Alvarez, Javier | |
dc.date | 2022-11-23T12:57:15Z | |
dc.date | 2022-11-23T12:57:15Z | |
dc.date | 2022-11-22 | |
dc.date.accessioned | 2023-09-06T18:29:26Z | |
dc.date.available | 2023-09-06T18:29:26Z | |
dc.identifier | https://repositorio.ucaldas.edu.co/handle/ucaldas/18185 | |
dc.identifier | Universidad de Caldas | |
dc.identifier | Repositorio Institucional Universidad de Caldas | |
dc.identifier | https://repositorio.ucaldas.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8698171 | |
dc.description | Ilustraciones, fotos | |
dc.description | spa:Objetivo. Establecer la relación entre la Variabilidad de la Frecuencia Cardiaca, lactatemia e IL-6 con el rendimiento físico obtenido en el Umbral de Potencia Funcional en ciclistas de nivel competitivo. Materiales y Métodos. Participaron 29 ciclistas hombres de nivel competitivo con valores promedio de edad de 22.2 ± 3.7 años, peso corporal de 60.0 ± 5.9 kg, estatura de 1.7 ± 0.5 m, experiencia en ciclismo de 6.5 ± 3.7 años. Todos pasaron con éxito un examen médico-deportivo para establecer el estado de salud previo a la prueba y firmaron el consentimiento informado. El test para determinar el umbral de potencia funcional (UPF) se realizó mediante una prueba contrarreloj de 20 minutos (P20), utilizando el ergómetro Tacx Vortex® y la bicicleta de propiedad de cada ciclista. Interleucinas: Se evaluaron TNF-α e IL-6, para lo cual se obtuvo una muestra de sangre de 5mL antes y 15 minutos post-P20. Las muestras de plasma fueron conservadas a una temperatura de -70 °C hasta su análisis y luego se descongelaron para el procesamiento mediante citometría de flujo (xMAP, Luminex corporation, US). Lactatemia: La evaluación del lactato se realizó antes, inmediatamente finalizó P20 y tres minutos después de P20 utilizando el lactímetro Lactate Scout®. Variabilidad de la frecuencia cardiaca: Esta se evaluó en reposo, reactividad parasimpática y recuperación post-P20. El registro de datos se realizó latido a latido cardiaco, analizado en parámetros lineales y no lineales. Análisis Estadístico: Inicialmente se realizó prueba de normalidad (Kolmogorov-Smirnov). La significancia se estableció mediante test t (de Student) o U de Mann-Withney, según correspondió. Para determinar la existencia de relación entre lactatemia, IL-6 y variabilidad de la frecuencia cardiaca con el rendimiento físico del umbral de potencia funcional se utilizó prueba estadística de regresión lineal. Las diferencias se consideraron significativas cuando p < 0.05. Resultados. El rendimiento físico determinado por el perfil de potencia o potencia media máxima relativa UPF20.95%W.kg-1, fue de 4.3± 0.4, correspondiente a la categoría de clasificación “muy buena”. El valor de la concentración de TNF-α e IL-6 no presentó diferencia significativa entre los momentos pre-P20 y 15 minutos post-P20. No existió relación entre IL-6 y el rendimiento físico del UPF20.95%W.kg-1 o la respuesta autonómica cardiovascular. El valor promedio de lactatemia pre-P20 fue 2.2±0.7 mmol/L-1. Post-P20 fue de 11.9±2.8 mmol/L-1, tres minutos post-P20 fue 11.8±2.8 mmol/L-1 y la remoción de lactato fue de 0.86±2.44. Existió relación significativa positiva entre la concentración de lactato post-P20 con el rendimiento físico UPF20.95%W.kg-1. No existió relación significativa entre remoción de lactato post-P20 con rendimiento físico, p < 0.05. Se demostró una relación positiva en reposo entre la actividad parasimpática en los parámetros: SDNN (ms), LRMSSD (ms), SD1 (ms), PNS index, HF (ms2) FFT, Total power (ms2) FFT, HF (ms2) AR, HF (%) AR, HF (n.u.) AR y Total power (ms2) AR con el UPF20W.kg-1, todos p < 0.000. Por su parte, la actividad simpática (SNS index) en reposo mostró una relación negativa con el perfil de potencia UPF2095%W.kg-1. Conclusiones. Los ciclistas con mayor AcPa en reposo presentaron tanto mayor UPF20.95%W como UPF20.95%W.kg-1. Lo cual, muestra que AcPa es un parámetro para predecir el rendimiento físico de acuerdo con el UPF en ciclistas de nivel competitivo. Adicionalmente, el índice AcPa plantea un escenario para una posible identificación de predisposición genética a los deportes de resistencia de larga duración, porque un alto tono vagal cardiaco es importante para conferir mayor tolerancia a la intensidad del entrenamiento, esencial para lograr un superior rendimiento fisco. Los ciclistas con mayor UPF20.95%W y UPF20.95%W.kg-1 presentaron tanto una mayor reactividad parasimpática como una mayor recuperación de AcPa, así como una relación significativa negativa con el índice AcSi. Los índices AcPa y AcSi se convierten en una alternativa a la capacidad cardiorrespiratoria máxima y lactatemia para identificar la adaptación a la intensidad del entrenamiento, presencia de fatiga post- entrenamiento o post-competición y monitorear el rendimiento físico en ciclistas de nivel competitivo. Además, el índice AcPa es mejor indicador que el LRMSSD o las HF ya sea por la FFT o AR en reactividad parasimpática y recuperación de forma activa. P20 es una prueba alternativa a P60, su realización involucra principalmente el metabolismo glucolítico, no induce la producción significativa de IL-6, tampoco induce la producción significativa de TNF-α 15 minutos post-P20, indicando que es una prueba que se puede realizar indistintamente en cualquier periodo de entrenamiento, dentro de la preparación anual de un ciclista de ruta. | |
dc.description | eng:Objective: To establish the relationship between Heart Rate Variability (HRV), lactatemia and IL-6 with the physical performance obtained in the Functional Threshold Power (FTP) in competitive level cyclists. Methods:In this study 29 male cyclists competitive level participated. The data are presented in mean and standard deviation, with an age of 22.2±3.7 years, body weight of 60±5.9 kg, height of 1.7±0.5 m and old experience in cycling training 6.5±3.7 years. All successfully passed a sports-medical examination to establish their health status prior to the test and signed the informed consent. Protocols and procedures. The test to determine the FTP was carried out using a 20-min time trial (P20), using a Tacx Vortex® cycle ergometer and a bicycle owned by each cyclist. 20-min time trial Interleukin. TNF-α and IL-6 were evaluated, for which a 5mL blood sample was obtained before and 15 min post-P20. The blood plasma samples were stored at a temperature of -70 °C until analysis and then thawed for processing by flow cytometry (xMAP, Luminex corporation, US). Lactate. Evaluation was carried before, immediately ended P20 and 3 minutes after P20, using lactate scout. HRV. It was evaluated before, parasympathetic reactivity and recuperation with spontaneous breathing after P20. The data was recorded from beat to beat, analyzed in the time domain, frequency and non-linear parameters. Statistical analysis. Initially, the Kolmogorov-Smirnov normality test was performed. Significance was established using the Student's t test when the data were distributed in a normal way, otherwise the nonparametric Mann-Withney U test was used. To determine the existence of a relationship between HRV, lactatemia, cytokines and physical performance at the FTP, the linear regression statistical test was used. Differences were considered significant when p value <0.05. Results. The physical performance in the FTP20.95%W.kg-1 was 4.3±0.4, to the "very good" classification category corresponds. Interleukin. The value of the TNF-α and IL-6 did not present a significant difference between the pre-P20 and post-P20 moments. There is no relationship between IL-6 and FTP20.95%W.kg-1 physical performance or the HRV. Lactate. The pre-P20 concentration was 2.2±0.7 mmol/L-1, immediately ended P20 was 11.9±2.8 mmol/L-1, at 3-minute post-P20 it was 11.8±2.8 mmol/L-1 and lactate turnover pos-P20 was 0.86 ± 0.44 mmol/L-1. There was a significant positive relationship between post-P20 lactate concentration with FTP20.95%W.kg-1 physical performance. There was no significant relationship between Lactate removal-P20 with physical performance, p < 0.05. HRV. There was a positive relationship at rest with spontaneous respiration between parasympathetic activity (SDNN (ms), LRMSSD (ms), SD1 (ms), PNS index, HF (ms2) FFT, Total power (ms2) FFT, HF (ms2) AR, HF (%) AR, HF (nu) AR, Total power (ms2) AR), with the physical performance obtained in UPF20.95%W.kg-1, all p, <0.000. On the other hand, the sympathetic activity (SNS index) showed a negative relationship with FTP20.95%W.kg-1 physical performance. Conclusions. Cyclists with higher resting PNS index presented higher FTP20.95%W and FTP20.95%W.kg-1. This shows that PNS index is a parameter to predict physical performance according to UPF in competitive cyclists. Additionally, the PNS index poses a scenario for a possible identification of genetic predisposition to long endurance sports, because a high cardiac vagal tone is important to confer greater tolerance to training intensity, essential to achieve superior physical performance. Cyclists with higher FTP20.95%W and FTP20.95%W.kg-1 presented both higher parasympathetic reactivity and higher PNS index recovery, as well as a significant negative relationship with the SNS index. PNS and SNS index become an alternative to maximal cardiorespiratory capacity and lactate to identify adaptation to training intensity, presence of post-training or post-competition fatigue and monitor physical performance in competitive level cyclists. In addition, PNS index is a better indicator than LRMSSD or HF by either FFT or AR. P20 is an alternative test to P60, its performance involves mainly glycolysis metabolism, it does not induce significant IL-6 production, nor does it induce significant TNF-α production 15 minutes post-P20, indicating that it is a test that can be performed indistinctly in any training period, within the annual preparation of a road cyclist. | |
dc.description | Introducción / 1.1. Descripción del Problema / 1.2. Formulación del Problema / 1.3. Objetivos de la Investigación / 1.3.1. Objetivo General / 1.3.2. Objetivos Específicos / 1.4. Hipótesis de la investigación / 2. Capítulo II: Marco Teórico y de Referencia / 2.1. Rendimiento Físico y Rendimiento Deportivo / 2.2. Potencia Media Máxima (PMmax) / 2.2.1. Contrarreloj de 20 minutos (P20) / 2.2.2. Umbral de Potencia Funcional (UPF) / 2.2.4. UPF20.95%W.kg-1 / 2.3. Interleucinas (IL) / 2.3.1. TNF-α / 2.3.2. IL-6 / 2.4. Lactatemia / 2.5. Variabilidad de la Frecuencia Cardiaca (VFC ) / 2.5.1. VFC en Reposo y Durante el Ejercicio / 2.5.2. VFC en la Reactividad Parasimpática y Recuperación / 2.5.3. Evaluación de VFC / 2.5.3.1. Método Dominio Tiempo / 2.5.3.2. Índice AcPa (PNS index) / 2.5.3.3. Índice AcSi (SNS index) / . 2.5.3.4. Método Dominio Frecuencia / 2.5.3.5. Método no Lineal / . 7 3. Capítulo III. Marco Metodológico / 3.1. Enfoque o Paradigma de Investigación / 3.1.1. Tipo de Estudio / 3.2. Población Universo / 3.2.1. Muestra / 3.3. Aspectos Éticos de la Investigación / 3.4. Protocolos y Procedimientos / 3.5. Umbral de Potencia Funcional (UPF) / 3.6. Determinación y Cuantificación de Interleucinas / 3.7. Lactatemia / 3.8. Evaluación de la Variabilidad de la Frecuencia Cardíaca / 3.9. Análisis Estadístico / 3.9.1. Regresión Lineal Simple / 4. Capítulo IV. Resultados / 4.1. Valores del Umbral de Potencia Funcional / 4.2. Valores de Interleucinas Antes y Después de P20 / 4.3. Valores de Lactato / 4.4. VFC en Reposo, Reactividad Parasimpática y Recuperación / 4.5. Relación Interleucinas con UPF20.95%W.kg-1 y VFC / 4.6. Relación Lactatemia con UPF20.95%W y UPF20.95%W.kg-1 / 4.6.1. Relación Remoción Lactato-3min y Reactividad Parasimpática-3min / 4.7. Relación AcPa en reposo con UPF20.95%W y UPF20.95%W.kg-1 / 4.8. Relación AcSi en reposo con UPF20.95%W y UPF20.95%W.kg-1 / UPF20.95%W.kg-1 / 4.8.1. Índice AcPa y UPF20.95%W.kg-1 / 4.8.2. Índice AcSi y UPF20.95%W.kg-1 / 8 4.8.3. Relación Reactividad Parasimpática y Recuperación AcPa y AcSi con el UPF20.95%W.kg-1 / 5. Capítulo V. Discusión y Conclusión / 5.1. Umbral de Potencia Funcional / 5.2. Relación IL-6 con el UPF20.95%W.kg-1 / 5.3. Relación Lactatemia con UPF20.95%W.kg-1 y con AcPa / 5.3.1. AcPa en Reposo y Relación con el UPF20.95%W.kg-1 / 5.3.2. Relación Reactividad Parasimpática y AcPa en la Recuperación con el UPF20.95%W.kg-1 / 5.4. Conclusiones / 6. Perspectivas, Recomendaciones y Limitaciones / Referencias / Anexos | |
dc.description | Doctorado | |
dc.description | Doctor(a) en Ciencias Biomédicas | |
dc.description | ACCIÓN FÍSICA HUMANA: MEDICINA, FISIOLOGÍA Y ENTRENAMIENTO DEL DEPORTE | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.language | spa | |
dc.publisher | Facultad de Ciencias para la Salud | |
dc.publisher | Manizales | |
dc.publisher | Doctorado en Ciencias Biomédicas | |
dc.relation | Federación Colombiana de Ciclismo. Federación Colombiana de Ciclismo [Internet]. Noticias. 2020 [cited 2021 Aug 7]. Available from: http://www.federacioncolombianadeciclismo.com/historia/ | |
dc.relation | Allen H, Coggan A. Entrenar y correr con potenciómetro. 4th ed. España; 2018. 443 p. | |
dc.relation | Beneke R. Methodological aspects of maximal lactate steady state—implications for performance testing. Eur J Appl Physiol [Internet]. 2003 [cited 2020 Oct 4];89(1):95–9. Available from: https://link.springer.com/content/pdf/10.1007/s00421-002-0783-1.pdf | |
dc.relation | Dong JG. The role of heart rate variability in sports physiology (Review). Exp Ther Med [Internet]. 2016 May 1 [cited 2020 Nov 2];11(5):1531–6. Available from: http://www.spandidos-publications.com/10.3892/etm.2016.3104/abstract | |
dc.relation | Guyton AC, Hall JE. Tratado de Fisiología Médica [Internet]. 11th ed. Elsevier Science Health Science Division; 2006 [cited 2020 Oct 5]. Available from: https://books.google.com.co/books?id=_A7sQgAACAAJ&dq=tratado+de+fisiolog ia+medica&hl=es&sa=X&ved=2ahUKEwiPrsOAvJ3sAhUFzlkKHSUZCsIQ6AEw AnoECAMQAg | |
dc.relation | Boron WF, Boulpaep EL. Medical Physiology : A Cellular and Molecular approach. second edition. Philadelphia: Saunders Elsevier; 2009. | |
dc.relation | Javaloyes A, Sarabia JM, Lamberts RP, Plews D, Moya-Ramon M. Training Prescription Guided by Heart Rate Variability Vs. Block Periodization in WellTrained Cyclists. J Strength Cond Res [Internet]. 2020 Jun 1 [cited 2020 Nov 15];34(6):1511–8. Available from: http://journals.lww.com/10.1519/JSC.0000000000003337 | |
dc.relation | Gleeson M. Effects of exercise on immune function. Sport Sci Exch [Internet]. 2015 [cited 2020 Jun 28];28:1–6. Available from: https://www.gssiweb.org/en/sports-science-exchange/Article/sse-151-effects-ofexercise-on-immune-function | |
dc.relation | Tossige-Gomes R, Costa KB, Ottone V de O, Magalhães F de C, Amorim FT, Rocha-Vieira E. Lymphocyte Redox Imbalance and Reduced Proliferation after a Single Session of High Intensity Interval Exercise. Zissel G, editor. PLoS One [Internet]. 2016 Apr 20 [cited 2020 Nov 2];11(4):e0153647. Available from: https://dx.plos.org/10.1371/journal.pone.0153647 | |
dc.relation | De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research [Internet]. Vol. 8, International Journal of Sports Physiology and Performance. Human Kinetics Publishers Inc.; 2013 [cited 2020 Nov 10]. p. 111–22. Available from: https://pubmed.ncbi.nlm.nih.gov/23428482/ | |
dc.relation | Faria EW, Parker DL, Faria IE. The science of cycling: Physiology and training - Part 1. Sport Med. 2005;35(4):285–312. | |
dc.relation | Ebert T, Martin D, Stephens B. Power output during a professional men’s road- cycling tour. Int J Sports Physiol Perform [Internet]. 2006 [cited 2020 Jun 27];1(4):324–35. Available from: https://journals.humankinetics.com/view/journals/ijspp/1/4/article-p324.xml | |
dc.relation | Passfield L, Hopker J, Jobson S, Friel D, Zabala M. Knowledge is power: Issues of measuring training and performance in cycling. J Sports Sci [Internet]. 2017 Jul 18 [cited 2020 Jul 20];35(14):1426–34. Available from: https://www.tandfonline.com/doi/abs/10.1080/02640414.2016.1215504 | |
dc.relation | Pinot J, Grappe F. The record power profile to assess performance in elite cyclists. Int J Sport [Internet]. 2011 [cited 2020 Jun 26];32(11):839–44. Available from: http://dx.doi.org/ | |
dc.relation | Delezie J, Handschin C. Endocrine crosstalk between Skeletal muscle and the brain. Front Neurol [Internet]. 2018 Aug 24 [cited 2020 Nov 7];9(AUG):698. Available from: www.frontiersin.org | |
dc.relation | Giudice J, Taylor J. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol [Internet]. 2017 [cited 2020 Oct 10];34:49–55. Available from: https://www.sciencedirect.com/science/article/pii/S1471489217300024?casa_tok en=w7y4VXNq7KcAAAAA:t1_Ni5psh1YiygNNDKtmHaq8C9- XFqAajkRU6NxnvfJscXGNEtVkGb3Z_6uNl3X3izZK7CBmTA | |
dc.relation | Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: The role of myokines in exercise adaptations. Cold Spring Harb Perspect Med [Internet]. 2017 Nov 1 [cited 2020 Nov 7];7(11):a029793. Available from: http://perspectivesinmedicine.cshlp.org/content/7/11/a029793.full | |
dc.relation | Karstoft K, Pedersen BK. Skeletal muscle as a gene regulatory endocrine organ. Curr Opin Clin Nutr Metab Care. 2016 Jul 1;19(4):270–5. | |
dc.relation | Joro R, Uusitalo A, DeRuisseau KC, Atalay M. Changes in cytokines, leptin, and IGF-1 levels in overtrained athletes during a prolonged recovery phase: A casecontrol study. J Sports Sci [Internet]. 2017 Dec 2 [cited 2020 Nov 13];35(23):2342–9. Available from: https://www.tandfonline.com/doi/abs/10.1080/02640414.2016.1266379 | |
dc.relation | Slusher AL, Zúñiga TM, Acevedo EO. Maximal Exercise Alters the Inflammatory Phenotype and Response of Mononuclear Cells. Med Sci Sport Exerc [Internet]. 2018 Apr 1 [cited 2020 Nov 13];50(4):675–83. Available from: https://journals.lww.com/00005768-201804000-00005 | |
dc.relation | Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol [Internet]. 1979 [cited 2020 Oct 4];42(1):25–34. Available from: https://link.springer.com/content/pdf/10.1007/BF00421101.pdf | |
dc.relation | Wasserman K, McIlroy M. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol [Internet]. 1964 [cited 2020 Oct 4];14(6):844–52. Available from: https://www.sciencedirect.com/science/article/pii/0002914964900128 | |
dc.relation | Brooks GA. The science and translation of lactate shuttle theory. Cell Metab [Internet]. 2018 [cited 2021 Nov 24];27(4):757–85. Available from: https://www.sciencedirect.com/science/article/pii/S1550413118301864 | |
dc.relation | Mosienko V, Teschemacher AG, Kasparov S. Is L-lactate a novel signaling molecule in the brain? J Cereb Blood Flow Metab [Internet]. 2015 Jul 1 [cited 2020 Jun 30];35(7):1069–75. Available from: www.jcbfm.com | |
dc.relation | Belli J, Bacal F, Bocchi E. Comportamento do ergorreflexo na insuficiência cardíaca. Arq Bras [Internet]. 2011 [cited 2020 Jun 27]; Available from: https://www.scielo.br/scielo.php?pid=S0066- 782X2011001100012&script=sci_arttext | |
dc.relation | Dong J. The role of heart rate variability in sports physiology. Exp Ther Med [Internet]. 2016 [cited 2020 Nov 2];11(5):1531–6. Available from: https://www.spandidos-publications.com/etm/11/5/1531?text=fulltext | |
dc.relation | Arce J, Segovia J, Ballesteros J. Valoración de la condición física por medio de test. Primera. Madrid: Ediciones Pedagógicas ; 1996. | |
dc.relation | Portela SJ. Consideraciones sobre cómo desarrollar y mantener niveles de aptitud física. Colegio General de profesores y licenciados; 1986. | |
dc.relation | Martínez LE. Pruebas de aptitud física [Internet]. Primera. Barcelona: Paidotribo; 2002 [cited 2020 Oct 19]. 25–32 p. Available from: https://books.google.es/books?hl=es&lr=&id=QAl0ugcRccgC&oi=fnd&pg=PA13& dq=aptitud+fisica&ots=myQ_alxC41&sig=o3G3ogotCINB2TUvfyLj6Zg_amA | |
dc.relation | Billat V. FISIOLOGÍA Y METODOLOGÍA DEL ENTRENAMIENTO. De la teoría a la práctica [Internet]. Primera. Barcelona: Paidotribo; 2002 [cited 2020 Jul 19]. 09–09 p. Available from: https://books.google.com.co/books?id=cM_OJJQH0lsC&printsec=frontcover&dq =inauthor:%22Véronique+Billat%22&hl=es&sa=X&ved=2ahUKEwjBspnz_9nqAh WmiOAKHbtzAmIQ6AEwAHoECAMQAg#v=onepage&q&f=false | |
dc.relation | Cortegaza FL, Luong CD. Bases teóricas del rendimiento deportivo. EFDeportes.com, Revista Digital · Año 20 · N° 207 [Internet]. 2015 Aug [cited 2020 Jul 19]; Available from: https://www.efdeportes.com/efd207/bases-teoricasdel-rendimiento-deportivo.htm | |
dc.relation | Reglamento RFEC. REAL FEDERACIÓN ESPAÑOLA DE CICLISMO [Internet]. 2020 [cited 2020 Nov 5]. Available from: https://rfec.com/index.php/es/smartweb/seccion/seccion/rfec/home | |
dc.relation | Reglamento UCI. Union Cycliste Internationale [Internet]. 2020 [cited 2020 Nov 5]. Available from: https://www.uci.org/ | |
dc.relation | Verkhoshansky Y. TEORÍA Y METODOLOGÍA DEL ENTRENAMIENTO DEPORTIVO [Internet]. Primera. Barcelona: Paidotribo; 2002 [cited 2020 Oct 4]. 1–189 p. Available from: https://books.google.com.co/books?hl=es&lr=&id=rcHpCFKiQUoC&oi=fnd&pg=P P9&dq=Teoría+y+metodología+del+entrenamiento+deportivo&ots=DorE_TPH3r &sig=ygVnUjrU2hxLS2QrXMG_7aZgsog#v=onepage&q=Teoría y metodología del entrenamiento deportivo&f=false | |
dc.relation | Weineck J. Entrenamiento total. 2005 [cited 2020 Jul 19]; Available from: https://books.google.es/books?hl=es&lr=&id=blGKlpVmNrcC&oi=fnd&pg=PA11& dq=entrenamiento+total+weineck&ots=PhovKpAL_F&sig=zoxdSbp3vCRLYiYJY 50h7IIshCM | |
dc.relation | Platonov VN. Teoría general del entrenamiento deportivo olímpico [Internet]. Primera. Barcelona: Paidotribo; 2001 [cited 2020 Jul 19]. Available from: https://books.google.com.co/books?id=tBbimZs3msUC&printsec=frontcover&dq =Entrenamiento+deportivo+platonov&hl=es&sa=X&ved=2ahUKEwip0Mfqg9rqAh WSTd8KHSZTDIwQ6AEwAHoECAAQAg#v=onepage&q=Entrenamiento deportivo platonov&f=false | |
dc.relation | ACSM’s AC of SM. Guidelines for Exercise Testing and Prescription. Tenth. Kluwer W, editor. Batilmore: Williams & Wilkins, Lippincott; 2017. 1–471 p. | |
dc.relation | Karsten B, Petrigna L, Klose A, Bianco A, Townsend N, Triska C. Relationship Between the Critical Power Test and a 20-min Functional Threshold Power Test in Cycling. Front Physiol. 2021 Jan 22;11. | |
dc.relation | Gavin TP, Van Meter JB, Brophy PM, Dubis GS, Potts KN, Hickner RC. Comparison of a field-based test to estimate functional threshold power and power output at lactate threshold. J Strength Cond Res [Internet]. 2012 [cited 2020 Oct 5];26(2):416–21. Available from: https://cdn.journals.lww.com/nscajscr/FullText/2012/02000/Comparison_of_a_Field_Based_Test_to_Estimate.13.a spx | |
dc.relation | Sanders D, Taylor RJ, Myers T, Akubat I. A field-based cycling test to assess predictors of endurance performance and establishing training zones. J Strength Cond Res [Internet]. 2017 Mar [cited 2020 Jun 27];1. Available from: https://pubmed.ncbi.nlm.nih.gov/28368958/ | |
dc.relation | MacInnis MJ, Thomas ACQ, Phillips SM. The reliability of 4-minute and 20- minute time trials and their relationships to functional threshold power in trained cyclists. Int J Sports Physiol Perform [Internet]. 2019 Jan 1 [cited 2020 Nov 7];14(1):38–45. Available from: https://pubmed.ncbi.nlm.nih.gov/29809063/ | |
dc.relation | Morgan PT, Black MI, Bailey SJ, Jones AM, Vanhatalo A. Road cycle TT performance: Relationship to the power-duration model and association with FTP. J Sports Sci. 2019 Apr 18;37(8):902–10. | |
dc.relation | Borszcz F, Tramontin A, Bossi A, Carminatti L, Costa V. Functional Threshold Power in Cyclists: Validity of the Concept and Physiological Responses. Int J Sports Med [Internet]. 2018 Oct 25 [cited 2020 Oct 30];39(10):737–42. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0044-101546 | |
dc.relation | Denham J, Scott-Hamilton J, Hagstrom AD, Gray AJ. Cycling Power Outputs Predict Functional Threshold Power And Maximum Oxygen Uptake. J Strength Cond Res. 2017 Sep;1. | |
dc.relation | Valenzuela P, Morales J, Foster C, Lucia A, de la Villa P. Is the functional threshold power a valid surrogate of the lactate threshold? J Sport [Internet]. 2018 [cited 2020 Jun 26]; Available from: https://journals.humankinetics.com/view/journals/ijspp/13/10/article-p1293.xml | |
dc.relation | Niño W, Leguízamo J. Correlación entre el Umbral Funcional de Potencia y el Umbral de Lactato en los ciclistas del equipo élite “Boyacá es para vivirla.” Tesis maestria en Pedagogia de la cultura Fisica. Universidad Pedagógica y Tecnológica de Colombia; 2019. | |
dc.relation | Borszcz FK, Tramontin AF, Costa VP. Is the functional threshold power interchangeable with the maximal lactate steady state in trained cyclists? Int J Sports Physiol Perform [Internet]. 2019 Sep 1 [cited 2020 Oct 30];14(8):1029–35. Available from: https://journals.humankinetics.com/view/journals/ijspp/14/8/article-p1029.xml | |
dc.relation | Pratesi A, Tarantini F, Di Bari M. Skeletal muscle: an endocrine organ. Clin cases Miner bone Metab [Internet]. 2013 [cited 2020 Oct 10];10(1):11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710002/ | |
dc.relation | Dembic Z. The Cytokines of the Immune System: The Role of Cytokines in Disease Related [Internet]. 1 edición. Elsevier, editor. Mica Haley; 2015 [cited 2020 Jun 29]. 17–200 p. Available from: https://books.google.com.co/books?id=DdacBAAAQBAJ&printsec=frontcover&d q=The+Cytokines+of+the+Immune+System&hl=es&sa=X&ved=2ahUKEwjQnuC btqfqAhVkT98KHduBAh0Q6AEwAHoECAYQAg#v=onepage&q=The Cytokines of the Immune System&f=false | |
dc.relation | Reid MB, Li YP. Tumor necrosis factor-α and muscle wasting: A cellular perspective. Respir Res. 2001;2(5):269–72. | |
dc.relation | Larsen A, Lindal S, Aukrust P, Toft I, Aarsland T. Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and. Int J Cardiol [Internet]. 2002 [cited 2020 Oct 10];83(1):25–32. Available from: https://www.sciencedirect.com/science/article/pii/S0167527302000141 | |
dc.relation | Gielen S, Adams V, Möbius-Winkler S, Linke A, Erbs S, Yu J, et al. Antiinflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol [Internet]. 2003 [cited 2020 Oct 10];42(5):861–8. Available from: https://www.onlinejacc.org/content/42/5/861.abstract | |
dc.relation | Bernecker C, Scherr J, Schinner S, Braun S, Scherbaum WA, Halle M. Evidence for an exercise induced increase of TNF-α and IL-6 in marathon runners. Scand J Med Sci Sport. 2013 Apr;23(2):207–14. | |
dc.relation | Krzemiński K, Buraczewska M, Miśkiewicz Z. Effect of ultra-endurance exercise on left ventricular performance and plasma cytokines in healthy trained men. Biol Sport [Internet]. 2016 [cited 2020 Oct 11];33(1):63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786588/ | |
dc.relation | Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise [Internet]. Vol. 98, Journal of Applied Physiology. American Physiological Society; 2005 [cited 2020 Jun 30]. p. 1154–62. Available from: https://journals.physiology.org/doi/abs/10.1152/japplphysiol.00164.2004 | |
dc.relation | Reihmane D, Jurka A, Tretjakovs P, Dela F. Increase in IL-6, TNF-α, and MMP9, but not sICAM-1, concentrations depends on exercise duration. Eur J Appl Physiol. 2013 Apr;113(4):851–8. | |
dc.relation | Zwetsloot K, John C, Lawrence M. High-intensity interval training induces a modest systemic inflammatory response in active, young men. J Inflamm Res [Internet]. 2014 [cited 2020 Oct 11];7:9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3920540/ | |
dc.relation | Luk HY, Levitt DE, Lee EC, Ganio MS, McDermott BP, Kupchak BR, et al. Proand anti-inflammatory cytokine responses to a 164-km road cycle ride in a hot environment. Eur J Appl Physiol. 2016 Oct 1;116(10):2007–15. | |
dc.relation | Clarke CJP, Hales A, Hunt A, Foxwell BMJ. IL-10-mediated suppression of TNFα production is independent of its ability to inhibit NFκB activity. Eur J Immunol. 1998 May;28(5):1719–26. | |
dc.relation | Opal SM, Depalo VA. Anti-Inflammatory Cytokines [Internet]. Vol. 117, CHEST. 2000 [cited 2020 Oct 18]. Available from: http://journal.publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/2 1942/ | |
dc.relation | Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and antiinflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999 Feb 15;515(1):287–91. | |
dc.relation | Leng S, McElhaney J, Walston D, Xie D, Fedarko N, Kuchel G. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. Biol Sci Med Sci [Internet]. 2008 [cited 2020 Oct 18];63(8):879–84. Available from: https://academic.oup.com/biomedgerontology/articleabstract/63/8/879/567391 | |
dc.relation | Jürimäe J, Mäestu J, Jürimäe T, Mangus B, von Duvillard S. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review. Metabolism [Internet]. 2011 [cited 2020 Jun 30];60(3):335–50. Available from: https://www.sciencedirect.com/science/article/pii/S0026049510000636?casa_tok en=jlFH5JSrjHEAAAAA:PWQnwN223eljaAK4ZWbPt6pekfYTtVS6uRfzDN_ptJ9AvoQpS6kkDKrdgNX3jn5DozOVbkrJw | |
dc.relation | Pedersen B. Muscles and their myokines. jeb.biologists.org [Internet]. 2011 [cited 2020 Jun 30]; Available from: https://jeb.biologists.org/content/214/2/337.short | |
dc.relation | Pedersen B, Åkerström T, Nielsen A, Fischer C. Role of myokines in exercise and metabolism. Vol. 103, Journal of Applied Physiology. 2007. p. 1093–8. | |
dc.relation | Pedersen B, Fischer C. Beneficial health effects of exercise - the role of IL-6 as a myokine. Trends Pharmacol Sci. 2007 Apr 1;28(4):152–6. | |
dc.relation | Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro-and antiinflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta (BBA)-Molecular Cell Res [Internet]. 2011 [cited 2020 Oct 10];878–88. Available from: https://www.sciencedirect.com/science/article/pii/S0167488911000425 | |
dc.relation | Albu A, Lupu D. Adipokines, systemic inflammation and exercise. In: Palestrica of the Third Millennium Civilization & Sport [Internet]. 2015 [cited 2020 Oct 10]. p. 257–61. Available from: http://pm3.ro/pdf/61/PM3_Nr.3(61)_2015m.pdf#page=59 | |
dc.relation | León-Ariza HH, Botero-Rosas DA, Acero-Mondragón EJ, Reyes-Cruz D. Soluble interleukin-6 receptor in young adults and its relationship with body composition and autonomic nervous system. Physiol Rep [Internet]. 2019 Dec 1 [cited 2021 May 1];7(24). Available from: https://pubmed.ncbi.nlm.nih.gov/31872577/ | |
dc.relation | Huh JY. The role of exercise-induced myokines in regulating metabolism [Internet]. Vol. 41, Archives of Pharmacal Research. Pharmaceutical Society of Korea; 2018 [cited 2020 Nov 7]. p. 14–29. Available from: https://link.springer.com/article/10.1007/s12272-017-0994-y | |
dc.relation | MacDonald TL, Wan Z, Frendo-Cumbo S, Dyck DJ, Wright DC. IL-6 and epinephrine have divergent fiber type effects on intramuscular lipolysis. J Appl Physiol. 2013 Nov 15;115(10):1457–63. | |
dc.relation | Mckee T, Mckee JR. bioquimica la base molecular de la vida [Internet]. Tercera Ed. McGRAW-HILL I, editor. Madrid; 2003 [cited 2020 Jun 29]. 108–530 p. Available from: https://www.google.com.co/search?biw=1366&bih=608&tbm=bks&ei=Lgj6Xv2gII Tu_QapzI_AAg&q=bioquimica+la+base+molecular+de+la+vida&oq=bioquimica+ la+base+molecular+de+la+vida&gs_l=psyab.3...1075947.1090527.0.1091399.39.32.0.0.0.0.496.4026.2-2j5j4.11.0....0...1 | |
dc.relation | Mazza JC. Ácido láctico y ejercicio (Parte II). Actual en Cienc del Deport [Internet]. 1997 [cited 2021 Nov 24];5–14. Available from: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Mazza%2C+J.+C.+1 997&btnG= | |
dc.relation | Davis J, Vodak P, Wilmore J, Vodak J, Kurtz P. Anaerobic threshold and maximal aerobic power for three modes of exercise. J Appl Physiol. 1976;41(4):544–50. | |
dc.relation | Faude O, Kindermann W, Meyer T. Lactate threshold concepts: How valid are they? [Internet]. Vol. 39, Sports Medicine. Sports Med; 2009 [cited 2020 Jun 29]. p. 469–90. Available from: https://pubmed.ncbi.nlm.nih.gov/19453206/ | |
dc.relation | Feriche B, Delgado M. Evolution and practical application of anaerobic threshold in sports training. Review. Eur J Hum Mov [Internet]. 2010 [cited 2020 Oct 4];2:35–9. Available from: https://recyt.fecyt.es/index.php/ejhm/article/view/56115 | |
dc.relation | Ribas J. Lactato: De indeseable a valioso metabolito. El papel de la producción de lactato en la regulación de la excitabilidad durante altas demandas de potencia en las fibras musculares. Arch med Deport [Internet]. 2010 [cited 2020 Jun 29];(211–230). Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=3276596 | |
dc.relation | López chicharro J, Fernández Vaquero A. Fisiología del ejercicio [Internet]. 3rd ed. Buenos Aires: Editorial Medica Panamericana; 2006 [cited 2021 Jun 7]. 182– 239 p. Available from: https://books.google.com.co/books?id=LBSwgLWTHEC&printsec=copyright&hl=es&source=gbs_pub_info_r#v=onepage&q&f=fa lse | |
dc.relation | Keul J. Bestimmung der individuellen anaeroben Schwelle zur Leistungsbewertung und Trainingsgestaltung. Dtsch Z Sport [Internet]. 1979 [cited 2020 Oct 4];30:212–8. Available from: https://ci.nii.ac.jp/naid/10008306355/ | |
dc.relation | Mader A, Heck H. A theory of the metabolic origin of “anaerobic threshold.” Int J Sports Med. 1986;7(1):45–65. | |
dc.relation | Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold . Int J Sport Med . 1985;6(03):117–30. | |
dc.relation | Farrell P, Wilmore J, Coyle E, Billing E, Costill D. Plasma lactate accumulation and distance running performance. Med Sci Sport [Internet]. 1979 [cited 2020 Oct 4];11(4):338–44. Available from: https://www.academia.edu/download/49855369/Plasma_lactate_accumulation_a nd_distance20161025-6356-h4t0qv.pdf | |
dc.relation | Sjodin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med. 1981;2(1):23–6. | |
dc.relation | Billat LV, Sirvent P, Guillaume P, Koralsztein JP, Mercier J. The concept of maximal lactate steady state: A bridge between biochemistry, physiology and sport science. Sport Med. 2003;33(6):407–26 | |
dc.relation | Londeree BR, Ames SA. Maximal steady state versus state of conditioning. Eur J Appl Physiol Occup Physiol. 1975 Dec;34(1):269–78. | |
dc.relation | Coote JH, Hilton SM, Perez‐Gonzalez JF. The reflex nature of the pressor response to muscular exercise. J Physiol [Internet]. 1971 Jul 1 [cited 2020 Jun 27];215(3):789–804. Available from: https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.1971.sp009498 | |
dc.relation | White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: Revisited. Vol. 592, Journal of Physiology. Blackwell Publishing Ltd; 2014. p. 2491–500. | |
dc.relation | Michael S, Graham KS, Oam GMD. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review. Vol. 8, Frontiers in Physiology. Frontiers Media S.A.; 2017. | |
dc.relation | Gourine A V., Ackland GL. Cardiac vagus and exercise [Internet]. Vol. 34, Physiology. American Physiological Society; 2019 [cited 2020 Jul 15]. p. 71–80. Available from: www.physiologyonline.org | |
dc.relation | Peçanha T, Silva-Júnior ND, Forjaz CL de M. Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clin Physiol Funct Imaging [Internet]. 2014 Sep 1 [cited 2020 Jun 27];34(5):327–39. Available from: http://doi.wiley.com/10.1111/cpf.12102 | |
dc.relation | Pichon A, De Bisschop C, Roulaud M, Denjean A. Spectral Analysis of Heart Rate Variability during Exercise in Trained Subjects. researchgate.net [Internet]. 2004 [cited 2020 Jul 15]; Available from: https://www.researchgate.net/publication/8134523 | |
dc.relation | Cunha FA, Midgley AW, Gonçalves T, Soares PP, Farinatti P. Parasympathetic reactivation after maximal CPET depends on exercise modality and resting vagal activity in healthy men. Springerplus. 2015;4(1):100. | |
dc.relation | Guzii О, Romanchuk A. Determinants of the functional state of sportsmen using heart rate variability measurements in tests with controlled respiration. J Phys Educ Sport [Internet]. 2018;18(2):715–24. Available from: www.efsupit.ro | |
dc.relation | Hottenrott L, Ketelhut S, Hottenrott K. Commentary: Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning – Resting, Reactivity, and Recovery. Front Neurosci. 2019 Dec 5;13:1300. | |
dc.relation | Laborde S, Mosley E, Mertgen A. Vagal Tank theory: The three Rs of cardiac vagal control functioning - resting, reactivity, and recovery. Front Neurosci. 2018 Jul 10;12(JUL). | |
dc.relation | Schäfer D, Olstad BH, Wilhelm M. Can Heart Rate Variability Segment Length During Orthostatic Test Be Reduced To 2 Min? Med Sci Sport Exerc. 2015 May;47:48. | |
dc.relation | Kaikkonen P, Mann TNC, Rusko H, Hynynen E, Mann T, Nummela A. Can HRV be used to evaluate training load in constant load exercises? Eur J Appl Physiol [Internet]. 2010 Feb [cited 2020 Oct 6];108(3):435–42. Available from: https://www.researchgate.net/publication/26892420 | |
dc.relation | Casonatto J, Tinucci T, Dourado A, Polito M. Cardiovascular and autonomic responses after exercise sessions with different intensities and durations. Clinics [Internet]. 2011 [cited 2020 Jun 25];66(3):453–8. Available from: https://www.scielo.br/scielo.php?pid=S1807- 59322011000300016&script=sci_arttext&tlng=es | |
dc.relation | Kaikkonen P, Nummela A, Rusko H. Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol. 2007 Dec;102(1):79–86. | |
dc.relation | Seiler S, Haugen O, Kuffel E. Autonomic Recovery after Exercise in Trained Athletes: Intensity and Duration Effects. Med Sci Sport Exerc [Internet]. 2007 [cited 2020 Jul 14];39(8):1366–73. Available from: http://www.acsm-msse.org | |
dc.relation | Daniłowicz-Szymanowicz L, Raczak G, Pinna GD, Maestri R, Ratkowski W, Figura-Chmielewska M, et al. The effects of an extreme endurance exercise event on autonomic nervous system activity. Pol Merkur Lek organ Pol Tow Lek [Internet]. 2005 [cited 2020 Jun 25];19(109):20–31. Available from: https://europepmc.org/article/med/16194022 | |
dc.relation | Blasco-Lafarga C, Martínez-Navarro I, Mateo-March M. Is Baseline Cardiac Autonomic Modulation Related to Performance and Physiological Responses Following a Supramaximal Judo Test? PLoS One [Internet]. 2013 Oct 18 [cited 2020 Jun 25];8(10). Available from: https://pubmed.ncbi.nlm.nih.gov/24205273/ | |
dc.relation | Da Silva DF, Verri SM, Nakamura FY, Machado FA. Longitudinal changes in cardiac autonomic function and aerobic fitness indices in endurance runners: A case study with a high-level team. Eur J Sport Sci [Internet]. 2014 [cited 2020 Jun 27];14(5):443–51. Available from: https://pubmed.ncbi.nlm.nih.gov/23998661/ | |
dc.relation | Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Vol. 43, Sports Medicine. 2013. p. 1259–77. | |
dc.relation | Michael S, Jay O, Halaki M, Graham K, Davis GM. Submaximal exercise intensity modulates acute post-exercise heart rate variability. Eur J Appl Physiol [Internet]. 2016 Apr 1 [cited 2020 Jun 27];116(4):697–706. Available from: https://link.springer.com/article/10.1007/s00421-016-3327-9 | |
dc.relation | Ranadive S, Fahs C, Yan H, Rossow L, Agliovlastis S, Fernhall B. Heart rate recovery following maximal arm and leg-ergometry. Clin Auton Res [Internet]. 2011 [cited 2020 Jun 25];21(2):117–20. Available from: https://link.springer.com/content/pdf/10.1007/s10286-010-0094-2.pdf | |
dc.relation | Ranadive S, Fahs C, Yan H, Rossow L, Agliovlastis S, Fernhall B. Heart rate recovery following maximal arm and leg-ergometry. Clin Auton Res [Internet]. 2011 [cited 2020 Jun 25];21(2):117–20. Available from: https://link.springer.com/content/pdf/10.1007/s10286-010-0094-2.pdf | |
dc.relation | Buchheit M, Al Haddad H, Laursen PB, Ahmaidi S. Effect of body posture on postexercise parasympathetic reactivation in men. Exp Physiol [Internet]. 2009 [cited 2020 Jun 27];94(7):795–804. Available from: https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/expphysiol.2009.048041 @10.1002/(ISSN)1469-445X(CAT)VirtualIssues(VI)bbep2011 | |
dc.relation | Barak O, Jakovljevic D, Gacesa J. Heart rate variability before and after cycle exercise in relation to different body positions. J Sport [Internet]. 2010 [cited 2020 Jun 27]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761735/ | |
dc.relation | Al Haddad H, Laursen PB, Chollet D, Ahmaidi S, Buchheit M. Reliability of resting and postexercise heart rate measures. Int J Sports Med. 2011;32(8):598– 605. | |
dc.relation | Boullosa DA, Barros ES, Del Rosso S, Nakamura FY, Leicht AS. Reliability of heart rate measures during walking before and after running maximal efforts. Int J Sports Med [Internet]. 2014 [cited 2020 Jun 25];35(12):999–1005. Available from: https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0034- 1372637 | |
dc.relation | Dupuy O, Mekary, S NB. Reliability of heart rate measures used to assess post‐ exercise parasympathetic reactivation. Clin Physiol [Internet]. 2012 [cited 2020 Jun 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475- 097X.2012.01125.x | |
dc.relation | Task Force ES of the E. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation [Internet]. 1996 Mar 1 [cited 2020 Jul 15];93(5):1043–65. Available from: https://www.ahajournals.org/doi/10.1161/01.CIR.93.5.1043 | |
dc.relation | Gameli FX, Berthoin S, Bosquet L. Validity of the Polar S810 Heart Rate Monitor to Measure R-R Intervals at Rest. Med Sci Sport Exerc [Internet]. 2006 May [cited 2020 Jun 16];38(5):887–93. Available from: http://journals.lww.com/00005768-200605000-00013 | |
dc.relation | Nunan D, Sandercock GRH, Brodie DA. A Quantitative Systematic Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults. PACE [Internet]. 2010 Nov [cited 2021 May 1];33(11):1407–17. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-8159.2010.02841.x | |
dc.relation | Brennan, M., Palaniswami, M., & Kamen P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342–7. | |
dc.relation | Baevsky RM. Methodical recommendations use kardivar system for determination of the stress level and estimation of the body adaptability standards of measurements and physiological interpretation [Internet]. 2009 [cited 2021 May 1]. Available from: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Methodical+recomm endations+use+kardivar+system+for+determination+of+the+stress+level+and+e stimation+of+the+body+adaptability+standards+of+measurements+and+physiol ogical+interpretation&btnG= | |
dc.relation | de Boer RW, Karemaker JM, Strackee J. Spectrum of a series of point events, generated by the integral pulse frequency modulation model. Med Biol Eng Comput. 1985 Mar;23(2):138–42. | |
dc.relation | Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: A review [Internet]. Vol. 44, Medical and Biological Engineering and Computing. Springer; 2006 [cited 2021 May 1]. p. 1031–51. Available from: https://link.springer.com/article/10.1007/s11517-006-0119-0 | |
dc.relation | Kamen P, Krum H, science AT-C, 1996 undefined. Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. portlandpress.com [Internet]. [cited 2021 May 1]; Available from: https://portlandpress.com/clinsci/article/91/2/201/76585 | |
dc.relation | Hernández Sampieri R, Mendoza Torres C. METODOLOGÍA DE LA INVESTIGACIÓN: LAS RUTAS CUANTITATIVA, CUALITATIVA Y MIXTA - Roberto Hernandez Sampieri - Google Libros [Internet]. México: McGraw Hill ; 2018 [cited 2021 Jul 18]. Available from: https://books.google.com.co/books?id=5A2QDwAAQBAJ&printsec=frontcover&d q=Metodología+de+la+investigación&hl=es&sa=X&redir_esc=y#v=onepage&q= Metodología de la investigación&f=false | |
dc.relation | Wayne WD. Bioestadistica: Base para el analisis de las ciencias de la salud. 4th ed. LIMUSA, editor. México; 2017. 15–737 p. | |
dc.relation | Sousa V, Driessnack M, de IM-R latino-americana, 2007 undefined. Revisión de diseños de investigación resaltantes para enfermería. Parte 1: diseños de investigación cuantitativa. SciELO Bras [Internet]. [cited 2021 Jul 18]; Available from: https://www.scielo.br/j/rlae/a/7zMf8XypC67vGPrXVrVFGdx/?format=pdf&lang=e s | |
dc.relation | Otzen T, Morphology CM. Técnicas de Muestreo sobre una Población a Estudio. Int J Morphol [Internet]. 2017 [cited 2021 Jul 20];35(1):227–32. Available from: https://scielo.conicyt.cl/scielo.php?pid=S0717- 95022017000100037&script=sci_arttext | |
dc.relation | Borszcz FK, Tramontin AF, Costa VP. Reliability of the Functional Threshold Power in Competitive Cyclists. Int J Sports Med [Internet]. 2020 Jan 17 [cited 2021 Aug 11];41(03):175–81. Available from: http://www.thiemeconnect.com/products/ejournals/html/10.1055/a-1018-1965 | |
dc.relation | Pussieldi GA, Veneroso CE, De Paz JA, Teixeira MM. Inflammatory and antinflammatory response after acute swimming exercise. Rev Int Med y Ciencias la Act Fis y del Deport [Internet]. 2018 Sep 1 [cited 2020 Oct 11];18(71):413–21. Available from: https://revistas.uam.es/rimcafd/article/view/9958 | |
dc.relation | Cullen T, Thomas AW, Webb R, Hughes MG. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: The effect of exercise intensity and volume. Appl Physiol Nutr Metab. 2016 Apr 8;41(8):803–8. | |
dc.relation | Cipryan L. The effect of fitness level on cardiac autonomic regulation, IL-6, total antioxidant capacity, and muscle damage responses to a single bout of highintensity interval training. J Sport Heal Sci. 2018 Jul 1;7(3):363–71. | |
dc.relation | Eaton M, Granata C, Barry J, Safdar A, Bishop D, Little J. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human. J Sport Heal Sci [Internet]. 2018 [cited 2020 Oct 11];7(2):191–6. Available from: https://www.sciencedirect.com/science/article/pii/S2095254617300030 | |
dc.relation | Konrad M, Nieman DC, Henson DA, Kennerly KM, Jin F, Wallner-Liebmann SJ. The acute effect of ingesting a quercetin-based supplement on exercise-induced inflammation and immune changes in runners. Int J Sport Nutr Exerc Metab [Internet]. 2011 [cited 2020 Oct 11];21(4):338–46. Available from: https://journals.humankinetics.com/view/journals/ijsnem/21/4/article-p338.xml | |
dc.relation | Nieman DC, Konrad M, Henson DA, Kennerly K, Shanely RA, Wallner-Liebmann SJ. Variance in the acute inflammatory response to prolonged cycling is linked to exercise intensity. J Interf Cytokine Res. 2012 Jan 1;32(1):12–7. | |
dc.relation | Cosio-Lima L, Desai B, Schuler P, Keck L, Scheeler L. A comparison of cytokine responses during prolonged cycling in normal and hot environmental conditions. Open access J Sport Med [Internet]. 2011 [cited 2020 Jun 30];2:7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781876/ | |
dc.relation | Forti L, Roie E Van, Njemini R, Coudyzer W, Beyer I, Delecluse C, et al. Effects of resistance training at different loads on inflammatory markers in young adults. Eur J Appl Physiol [Internet]. 2017 [cited 2020 Oct 11];117(3):511–9. Available from: https://link.springer.com/content/pdf/10.1007/s00421-017-3548-6.pdf | |
dc.relation | Sugama K, Suzuki K, Yoshitani K, Shiraishi K, Kometani T. Urinary excretion of cytokines versus their plasma levels after endurance exercise - PubMed. Exerc Immunol Rev 19 [Internet]. 2013 [cited 2020 Nov 8];19:29–49. Available from: https://pubmed.ncbi.nlm.nih.gov/23977718/ | |
dc.relation | Cerqueira É, Marinho DA, Neiva HP, Lourenço O. Inflammatory Effects of High and Moderate Intensity Exercise—A Systematic Review. Front Physiol. 2020 Jan 9;10:1550. | |
dc.relation | Pedersen B. Muscular interleukin-6 and its role as an energy sensor. Med Sci Sports Exerc. 2012 Mar;44(3):392–6. | |
dc.relation | Jürimäe J, Mäestu J, Jürimäe T, Mangus B, Von Duvillard S. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: A review. Vol. 60, Metabolism: Clinical and Experimental. W.B. Saunders; 2011. p. 335–50. | |
dc.relation | Philp A, Macdonald AL, Watt PW. Lactate–a signal coordinating cell and systemic function. J Exp Biol [Internet]. 2005 [cited 2020 Jun 30];208(24):4561– 75. Available from: https://jeb.biologists.org/content/208/24/4561.short | |
dc.relation | Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol [Internet]. 2004 [cited 2020 Nov 9];87(3):R502–16. Available from: www.ajpregu.org | |
dc.relation | Oliveira-Silva I, Silva VA, Cunha RM, Foster C. Autonomic changes induced by precompetitive stress in cyclists in relation to physical fitness and anxiety. PLoS One [Internet]. 2018 Dec 1 [cited 2020 Jun 27];13(12). Available from: https://pubmed.ncbi.nlm.nih.gov/30589905/ | |
dc.relation | Borges NR, Reaburn PR, Doering TM, Argus CK, Driller MW. Autonomic cardiovascular modulation in masters and young cyclists following high-intensity interval training. Clin Auton Res. 2017 Apr 1;27(2):83–90. | |
dc.relation | Arslan E, Aras D. Comparison of body composition, heart rate variability, aerobic and anaerobic performance between competitive cyclists and triathletes. J Phys Ther Sci [Internet]. 2016 [cited 2020 Jun 27];28(4):1325-1329. Available from: https://www.jstage.jst.go.jp/article/jpts/28/4/28_jpts-2015-968/_article/-char/ja/ | |
dc.relation | Earnest CP, Jurca R, Church TS, Chicharro JL, Hoyos J. Relation between physical exertion and heart rate variability characteristics in professional cyclists during the Tour of Spain. Br J Sport Med [Internet]. 2004 [cited 2020 Jun 27];38:568–75. Available from: http://bjsm.bmj.com/ | |
dc.relation | Scorcine C, Madureira F, Freitas C, Pereira R, Couto A, Kayamori J, et al. Classification of Heart Rate Variability in Swimming. J Exerc Physiol Online [Internet]. 2019 [cited 2020 Oct 23];22(5):157–64. Available from: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Classification+of+He art+Rate+Variability+in+Swimming&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Din fo%3AkiBZIhHXBwgJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp %3D0%26hl%3Des | |
dc.relation | Saboul D, Bernard C, Lyon U, Hautier CA, Pialoux V, Hautier C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur J Sport Sci [Internet]. 2013 Sep [cited 2020 Oct 23];13(5):534–42. Available from: http://dx.doi.org/10.1080/17461391.2013.767947 | |
dc.relation | Palak K, Furgała A, Ciesielczyk K, Szyguła Z, Thor PJ. The changes of heart rate variability in response to deep breathing in professional swimmers. Folia Medica Cracoviensia [Internet]. 2013 [cited 2020 Oct 23];LIII:43–52. Available from: https://journals.pan.pl/Content/87576/mainfile.pdf | |
dc.relation | Abad CCC, Do Nascimento AM, Gil S, Kobal R, Loturco I, Nakamura FY, et al. Cardiac autonomic control in high level brazilian power and endurance trackand-field athletes. Int J Sports Med. 2014;35(9):772–8. | |
dc.relation | Berkoff D, Cairns C, Sanchez L, Moorman III C. Heart rate variability in elite American track-and-field athletes. J strength Cond Res [Internet]. 2007 [cited 2020 Oct 23];21(1):227. Available from: http://search.proquest.com/openview/043a9f2c53826913f3e2ee0557d9e46a/1?p q-origsite=gscholar&cbl=30912 | |
dc.relation | Bonaduce D, Petretta M, Cavallaro V, Apicella C, Ianniciello A, Romano M, et al. Intensive training and cardiac autonomic control in high level athletes. Med Sci Sports Exerc [Internet]. 1998 [cited 2020 Oct 23];30(5):691–6. Available from: https://europepmc.org/article/med/9588610 | |
dc.relation | Marocolo M, Nadal J, Benchimol-Barbosa PR. The effect of an aerobic training program on the electrical remodeling of the heart: high-frequency components of the signal-averaged electrocardiogram are. Brazilian J Med Biol Res [Internet]. 2007 [cited 2020 Oct 23];40(2):199–2008. Available from: https://www.scielo.br/scielo.php?pid=s0100- 879x2007000200006&script=sci_arttext | |
dc.relation | Molina G, Porto L, Fontana K, Junqueira L. Unaltered R–R interval variability and bradycardia in cyclists as compared with non-athletes. Clin Auton Res [Internet]. 2013 [cited 2020 Oct 23];23(3):141–8. Available from: https://link.springer.com/content/pdf/10.1007/s10286-013-0196-8.pdf | |
dc.relation | Schäfer D, Gjerdalen GF, Solberg EE, Khokhlova M, Badtieva V, Herzig D, et al. Sex differences in heart rate variability: a longitudinal. Eur J Appl Physiol [Internet]. 2015 [cited 2020 Oct 23];115(10):2107–14. Available from: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Sex+differences+in+ heart+rate+variability%3A+a+longitudinal+study+in+international+elite+cross‐co untry+skiers&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3ApQ4xZyPHvPgJ %3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Des | |
dc.relation | Aubert A, Beckers F, Ramaekers D. Short-term heart rate variability in young athletes. J Cardiol [Internet]. 2001 [cited 2020 Oct 23];37:85. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11433833 | |
dc.relation | Kingsley JD, Figueroa A. Acute and training effects of resistance exercise. Clin Physiol Funct Imaging [Internet]. 2016 [cited 2020 Nov 15];36(3):179–87. Available from: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Acute+and+training+ effects+of+resistance+exercise+on+heart+rate+variability&btnG= | |
dc.relation | Düking P, Zinner C, Reed JL, Holmberg H-C, Sperlich B. Predefined vs data‐ guided training prescription based on autonomic nervous system variation: A systematic review. Wiley Online Libr [Internet]. 2020 Dec 1 [cited 2022 Aug 23];30(12):2291–304. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/sms.13802 | |
dc.relation | Machhada A, Trapp S, Marina N, Stephens RC, Whittle J, Lythgoe MF, et al. Vagal determinants of exercise capacity. Nat Commun [Internet]. 2017 [cited 2020 Jun 26];8(1):1–7. Available from: https://www.nature.com/articles/ncomms15097/ | |
dc.relation | Verweij N, Vegte Y, van de Harst P. Genetic study links components of the autonomous nervous system to heart-rate profile during exercise. Nat Commun [Internet]. 2018 [cited 2020 Nov 16];9(1):1–9. Available from: https://www.nature.com/articles/s41467-018-03395-6 | |
dc.relation | Flatt AA, Globensky L, Bass E, Sapp BL, Riemann BL. Heart Rate Variability, Neuromuscular and Perceptual Recovery Following Resistance Training. Sports [Internet]. 2019 Oct 18 [cited 2020 Jun 25];7(10):225. Available from: https://www.mdpi.com/2075-4663/7/10/225 | |
dc.relation | Ahmadian M, Dabidi Roshan V. Heart rate recovery following arm cranking is positively associated with resting heart rate variability in children. Sport Sci Health. 2015 Dec 5;11(2):153–7. | |
dc.relation | Bellenger CR, Fuller JT, Thomson RL, Davison K, Robertson EY, Buckley JD. Monitoring Athletic Training Status Through Autonomic Heart Rate Regulation: A Systematic Review and Meta-Analysis. Sport Med [Internet]. 2016 Oct 1 [cited 2020 Nov 15];46(10):1461–86. Available from: https://link.springer.com/article/10.1007/s40279-016-0484-2 | |
dc.relation | Carrasco-Poyatos M, González-Quílez A, Martínez-González-moro I, GraneroGallegos A. HRV-Guided Training for Professional Endurance Athletes: A Protocol for a Cluster-Randomized Controlled Trial. Int J Environ Res Public Heal 2020, Vol 17, Page 5465 [Internet]. 2020 Jul 29 [cited 2022 Aug 23];17(15):5465. Available from: https://www.mdpi.com/1660- 4601/17/15/5465/htm | |
dc.relation | Catai AM, Pastre CM, da Silvaa E, de Medeiros Takahashi AC, Marques Vanderlei LC. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Brazilian J Phys Ther [Internet]. 2020 [cited 2022 Aug 23];24(2):91–102. Available from: https://www.sciencedirect.com/science/article/pii/S1413355518307974?casa_tok en=G5bIiECxYVwAAAAA:Orp_yKtnaHArq_0FvkyHkRP1eC7CsPIwaLIVsDtmRsI dDZMEFiiSGw-1j_cwD5HQyYnpv1AbOQ | |
dc.relation | Povea C, Schmitt L. Effects of Intermittent Hypoxia on Heart Rate Variability during Rest and Exercise Hypoxic Training View project Heart Rate varibility In sports and physical Activity View project. Artic High Alt Med Biol [Internet]. 2005 Sep [cited 2020 Oct 5];6(3):215–25. Available from: https://www.researchgate.net/publication/7579530 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Atletas | |
dc.subject | Citocinas | |
dc.subject | Interleucinas | |
dc.subject | Sistema nervioso autónomo | |
dc.subject | Sistema nervioso parasimpático | |
dc.subject | Interleukins | |
dc.subject | Athletes | |
dc.subject | Autonomic nervous system | |
dc.subject | Cytokines | |
dc.subject | Parasympathetic nervous system | |
dc.subject | Deporte | |
dc.subject | Medicina deportiva | |
dc.title | Variabilidad de la frecuencia cardiaca, Lactatemia e IL-6 y su relación con el umbral de potencia funcional en ciclistas de competición | |
dc.title | Heart rate variability, Lactate and IL-6 and their relationship to functional threshold power in competitive cyclists | |
dc.type | Trabajo de grado - Doctorado | |
dc.type | http://purl.org/coar/resource_type/c_db06 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/doctoralThesis | |
dc.type | info:eu-repo/semantics/publishedVersion |