dc.contributorZamorano-Montañez, Carolina
dc.contributorJairo Leguizamón Caicedo
dc.contributorGIPPA: Producción Agropecuaria (Categoría A1)
dc.creatorVásquez Ramírez, Luisa Mayens
dc.date2022-12-01T23:19:22Z
dc.date2023-12-01
dc.date2022-12-01T23:19:22Z
dc.date2022-12-01
dc.date.accessioned2023-09-06T18:28:25Z
dc.date.available2023-09-06T18:28:25Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/18202
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8697904
dc.descriptionIlustraciones, fotos, gráficas
dc.descriptionspa:El tomate Solanum lycopersicum L. es una de las hortalizas de mayor difusión en el mundo. Una de las enfermedades más graves que afecta al cultivo por su carácter sistémico y por su difícil manejo, es la Marchitez Vascular causada por Fusarium oxysporum f. sp. lycopersici (Fol), que causa pérdidas en la producción de 21% en sistemas a libre exposición y de más de 40%, bajo cubierta. El objetivo general de este estudio fue contribuir en el manejo integrado de esta enfermedad a través del uso de métodos amigables con el medio ambiente como el control biológico y fuentes de resistencia genética. Los objetivos específicos fueron desarrollar una metodología de bioensayo para evaluar la patogenicidad de Fol en plántulas de tomate y el segundo fue determinar el efecto de cinco aislamientos de Bacterias Promotoras de Crecimiento Vegetal (BPCV), Gluconacetobacter sacchari (GIBI 014, GIBI 031), Serratia marcescens (GIBI 137), Serratia grimesii (GIBI 139) y Burkholderia tropica (GIBI 130) sobre el control de la enfermedad, en seis accesiones de plantas de tomate: IAC426, IAC391, IAC412, LA1480, Santa Clara y Carguero. Se trabajó con un aislamiento de Fol de la región, el cual se identificó como raza 1 mediante pruebas morfológicas y moleculares. Se recomienda usar para pruebas rápidas plántulas de 14 días, y para prolongadas de 30, sin poda radical. La duración de las evaluaciones y la dosis depende del genotipo. Se evaluó in vitro, por medio de cultivos duales, el crecimiento, inhibición de la esporulación y de la germinación de Fol. Tres aislamientos pudieron controlar a Fol: Gluconacetobacter sacchari aislamientos GIBI014 y GIBI031 y Burkholderia tropica aislamiento GIBI130. En cuanto a la evaluación en el campo, sobre cada una de las accesiones de tomate, se encontró que las BPCV son altamente específicas y solo el aislamiento GIBI031 de G. sacchari mostró resultados prometedores en la accesión IAC412. En algunas accesiones los efectos de las BPCV fueron negativos y potenciaron la severidad de la enfermedad. Benomilo dio buenos resultados para el control de la enfermedad, pero en algunos casos no mejoró la producción.
dc.descriptioneng:Tomato (Solanum lycopersicum L.) is one of the most widespread vegetables in the world. One of the most serious diseases affecting the crop because of its systemic nature and difficult management is vascular wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol), which causes yield losses of 21% in free exposure systems and more than 40% under cover. The general objective of this study was to contribute to the integrated management of this disease using environmentally friendly methods such as biological control and sources of genetic resistance. The specific objectives were to develop a bioassay methodology to evaluate the pathogenicity of Fol in tomato seedlings and the second was to determine the effect of five isolates of Plant Growth Promoting Bacteria (PGPB), Gluconacetobacter sacchari (GIBI 014, GIBI 031), Serratia marcescens (GIBI 137), Serratia grimesii (GIBI 139) and Burkholderia tropica (GIBI 130) on disease control, on six tomato plant accessions: IAC426, IAC391, IAC412, LA1480, Santa Clara and Carguero. We worked with an isolate of Fol from the region, which was identified as race 1 by morphological and molecular tests. It is recommended to use 14-day seedlings for rapid tests, and 30-day seedlings for prolonged tests, without root pruning. The duration of the evaluations and the dose depend on the genotype. The growth, sporulation inhibition and germination of Fol were evaluated in vitro by means of dual cultures. Three isolates were able to control Fol: Gluconacetobacter sacchari isolates GIBI014 and GIBI031 and Burkholderia tropica isolate GIBI130. As for the field evaluation on each of the tomato accessions, it was found that the PGPBs are highly specific and only isolate GIBI031 of G. sacchari showed promising results on accession IAC412. In some accessions the effects of PGPBs were negative and enhanced disease severity. Benomyl gave good results for disease control, but in some cases did not improve yield.
dc.descriptionContenido / RESUMEN / ABSTRACT / LA PLANTA DE TOMATE / IMPORTANCIA ECONÓMICA DEL CULTIVO DEL TOMATE / MARCHITEZ VASCULAR CAUSADA POR FUSARIUM OXYSPORUM F. SP. LYCOPERSICI / BIBLIOGRAFÍA / GENERAL / ESPECÍFICOS / CAPÍTULO 1 / IDENTIFICACIÓN DE LA RAZA FISIOLÓGICA DE FUSARIUM OXYSPORUM F. SP. LYCOPERSICI [(SACC.) W.C. SNYDER & H.N. HANSEN)] DE TOMATE EN PEREIRA, COLOMBIA / RESUMEN / ABSTRACT / 1.1 HIPÓTESIS / 1.2 ESTADO DEL ARTE / 1.3 MATERIALES Y MÉTODOS / 1.3.1 Obtención de un cultivo monospórico / 1.3.2 Caracterización morfológica del aislamiento “Combia” de F. oxysporum f. sp. lycopersici bajo microscopía óptica y electrónica / 1.3.3 Identificación de la raza mediante marcadores moleculares / 1.3.4 Evaluación de tres materiales comerciales con genes de resistencia / 1.4 RESULTADOS / 1.4.1 Obtención de un cultivo monospórico / 1.4.2 Caracterización morfológica del aislamiento “Combia” de F. oxysporum f. sp. lycopersici bajo microscopía óptica y electrónica / 1.4.3 Identificación de la raza mediante marcadores moleculares / 1.4.4 Evaluación de tres materiales comerciales con genes de resistencia / 1.5 DISCUSIÓN / 1.6 CONCLUSIONES / 1.7 BIBLIOGRAFÍA / CAPÍTULO 2 / ACTIVIDAD ANTAGÓNICA IN VITRO DE BACTERIAS PROMOTORAS DE CRECIMIENTO VEGETAL CONTRA FUSARIUM OXYSPORUM F. SP. LYCOPERSICI [(SACC) SNYDER & HANSEN] / RESUMEN / ABSTRACT / 2.1 ESTADO DEL ARTE / 2.2 HIPÓTESIS / 2.3 MATERIALES Y MÉTODOS / 2.3.1 Obtención de material biológico / 2.3.2 Determinación in vitro de la actividad antagónica directa de las especies de bacterias promotoras de crecimiento sobre Fusarium oxysporum f. sp. Lycopersici / 2.4 RESULTADOS Y DISCUSIÓN / 2.4.1 Obtención de Material Biológico / 2.4.2 Determinación in vitro de la actividad antagónica directa de las especies de bacterias promotoras de crecimiento sobre Fusarium oxysporum f. sp. Lycopersici / 2.5 CONCLUSIONES / 2.6 BIBLIOGRAFÍA / CAPÍTULO 3 / DESARROLLO DE UNA METODOLOGÍA DE BIOENSAYO PARA EVALUAR LA PATOGENICIDAD DE FUSARIUM OXYSPORUM F. SP. LYCOPERSICI (FOL) EN PLÁNTULAS DE TOMATE (SOLANUM LYCOPERSICUM L.) / RESUMEN / ABSTRACT / 3.1 HIPÓTESIS / 3.2 MATERIALES Y MÉTODOS / 3.2.1. Descripción del área de estudio / 3.2.2. Material Genético / 3.2.3. Inóculo de F. oxysporum f. sp. lycopersii (Fol) / 3.2.4. Establecimiento y Mantenimiento del Bioensayo / 2.3.2.5. Variables y Diseño Experimental / 3.3 RESULTADOS / 3.3.1 Severidad de la Marchitez Vascular / 3.3.2 Peso seco de raíces / 3.3.3 Peso seco de la parte aérea/ 3.3.4 Peso seco de frutos / 3.4 DISCUSIÓN / 3.4.1 Severidad de la Marchitez Vascular / 3.4.2 Peso seco de raíces / 3.4.3 Peso seco de la parte aérea / 3.4.4 Peso seco de frutos / 3.5 CONCLUSIONES / 3.6 BIBLIOGRAFÍA / CAPÍTULO 4 / EFECTO DE CINCO AISLAMIENTOS DE BACTERIAS PROMOTORAS DE CRECIMIENTO VEGETAL (BPCV): GIBI 014, GIBI 031, GIBI 137, GIBI 139 Y GIBI 419 SOBRE SEIS ACCESIONES DE PLANTAS DE TOMATE: IAC426, IAC391, IAC412, LA1480, SANTA CLARA Y CARGUERO INOCULADAS CON FUSARIUM OXYSPORUM F. SP. LYCOPERSICI/ RESUMEN / ABSTRACT / 4.1 HIPÓTESIS / 4.2 ESTADO DEL ARTE / 4.2.1 Materiales de tomate silvestre y variedades mejoradas / 4.2.2 Bacterias Promotoras de Crecimiento Vegetal / 4.3 MATERIALES Y MÉTODOS / 4.3.1 Descripción del área de estudio / 4.3.2 Material Genético / 4.3.3 Inóculos / 4.3.4 Establecimiento del Experimento en el campo / 4.3.5 Diseño experimental y análisis estadístico / 4.4. RESULTADOS / ACCESIONES DE TOMATE TIPO CHERRY / 4.4.1 ACCESIÓN IAC391 / 4.4.2 ACCESIÓN IAC412 / 4.4.3 ACCESIÓN IAC426 / 4.4.4. ACCESIÓN LA 1480 / ACCESIONES DE TOMATE TIPO CHONTO / 4.4.5 HÍBRIDO CARGUERO/ 4.4.6 HÍBRIDO SANTA CLARA / 4.5. DISCUSIÓN / ACCESIONES DE TOMATE TIPO CEREZA / 4.5.1 ACCESIÓN IAC391 / 4.5.2 ACCESIÓN IAC412 / 4.5.3 ACCESIÓN IAC426 / 4.5.4. ACCESIÓN LA 1480 / ACCESIONES DE TOMATE TIPO CHONTO / 4.5.5 HÍBRIDO CARGUERO / 4.5.6 HÍBRIDO SANTA CLARA / 4.6 CONCLUSIONES / 4.7 RECOMENDACIONES / 4.7 BIBLIOGRAFÍA / ANEXOS / ANEXO 1: RESULTADO DEL ANÁLISIS QUÍMICO Y DE FERTILIDAD DE SUELO DE LA GRANJA MONTELINDO / ANEXO 2 / ANÁLISIS DE VARIANZA PARA NÚMERO DE FRUTOS COSECHADOS / ANEXO 3 / ANÁLISIS DE VARIANZA PARA PESO DE FRUTOS COSECHADOS (PFRC) EN GRAMOS / ANEXO 4 / ANÁLISIS DE VARIANZA PARA PESO SECO DE LA PARTE AÉREA DE LA PLANTA EN GRAMOS (PSAEREO) / ANEXO 5 / ANÁLISIS DE VARIANZA PARA PESO SECO DE LA RAÍZ EN GRAMOS (PSRAIZ) / ANEXO 6 / ANÁLISIS DE VARIANZA PARA PERÍODO DE INCUBACIÓN EN DÍAS (P_INCU) / ANEXO 7 / ANÁLISIS DE VARIANZA PARA LONGITUD DEL DAÑO EN CENTÍMETROS (LONG_D) / ANEXO 8 / ANÁLISIS DE VARIANZA PARA EL ÁREA BAJO LA CURVA DE LA ENFERMEDAD / ANEXO 9 / PRUEBA DE FRIEDMAN PARA LA VARIABLE ESCALA / ANEXO 10 / VALORES DE LA MEDIA, COEFICIENTE DE VARIACIÓN Y ERROR ESTÁNDAR DE LA MEDIA PARA LAS VARIABLES QUE MOSTRARON DIFERENCIA EN EL ANÁLISIS DE VARIANZA EN EL HÍBRIDO CARGUERO / ANEXO 11 VALORES DE LA MEDIA, COEFICIENTE DE VARIACIÓN Y ERROR ESTÁNDAR DE LA MEDIA PARA LAS VARIABLES QUE MOSTRARON DIFERENCIA EN EL ANÁLISIS DE VARIANZA EN LA ACCESIÓN IAC391 / ANEXO 12 / VALORES DE LA MEDIA, COEFICIENTE DE VARIACIÓN Y ERROR ESTÁNDAR DE LA MEDIA PARA LAS VARIABLES QUE MOSTRARON DIFERENCIA EN EL ANÁLISIS DE VARIANZA EN LA ACCESIÓN IAC412 / ANEXO 13 / VALORES DE LA MEDIA, COEFICIENTE DE VARIACIÓN Y ERROR ESTÁNDAR DE LA MEDIA PARA LAS VARIABLES QUE MOSTRARON DIFERENCIA EN EL ANÁLISIS DE VARIANZA EN LA ACCESIÓN IAC426 / ANEXO 14 / VALORES DE ÁREA BAJO LA CURVA DE LA ENFERMEDAD (ABCE) PARA CADA UNO DE LOS MATERIALES DE TOMATE EVALUADOS / BIBLIOGRAFÍA
dc.descriptionMaestría
dc.descriptionNo autorizo la publicación en acceso abierto porque está pendiente la publicación de artículos
dc.descriptionMagister en Fitopatología
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias Agropecuarias
dc.publisherManizales
dc.publisherMaestría en Fitopatología
dc.relationAbdel-Aziz, M. S., Ghareeb, M. A., Hamed, A. A., Rashad, E. M., El-Sawy, E. R., Saad, I. M., & Ghoneem, K. M. (2021). Ethyl acetate extract of Streptomyces spp. isolated from Egyptian soil for management of Fusarium oxysporum: the causing agent of wilt disease of tomato. Biocatalysis and Agricultural Biotechnology, 37, 102185.
dc.relationAyodeji, O., & Ajayi, A. (2022). Evaluation of Trichoderma harzianum and solarization for the management of Fusarium wilt and southern blight diseases of tomato. Journal of Global Agriculture and Ecology, 38-48.
dc.relationAkram, S., Khan, S. M., Khan, M. F., Khan, H. U., Tariq, A., Umar, U. U., & Gill, A. (2018). Antifungal activity of different systemic fungicides against Fusarium oxysporum f. sp. lycopersici associated with tomato wilt and emergence of resistance in the pathogen. Pakistan Journal of Phytopathology, 30(2), 169-176.
dc.relationAli, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., ... & Gan, S. H. (2020). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods, 10(1), 45.
dc.relationAmmar, M. M., Khalifa, E. Z., Kamel, S. M., & Kheder, S. (2020). Evaluation Of Some Chemical Fungicide Alternatives Against Fusarium Oxysporum f. sp. capsici The Causal Organism Of Wilt Disease Of Pepper (Capsicum Annum L.). Menoufia Journal of Plant Protection, 5(8), 145-154.
dc.relationArias, L. A., Garzón, A., Ayarza, A., Aux, S., & Bojacá, C. R. (2021). Environmental fate of pesticides in open field and greenhouse tomato production regions from Colombia. Environmental Advances, 3, 100031.
dc.relationArie, T. (2019). Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. Journal of Pesticide Science, J19-03.
dc.relationBaysal, Ö., Siragusa, M., Ikten, H., Polat, I., Gümrükcü, E., Yigit, F., & da Silva, J. T. 2009. Fusarium oxysporum f. sp. lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiological and Molecular Plant Pathology. 74(1); 68-75.
dc.relationBirthisel, S. K., Smith, G. A., Mallory, G. M., Hao, J., & Gallandt, E. R. (2019). Effects of field and greenhouse solarization on soil microbiota and weed seeds in the northeast USA. Organic Farming, 5(1), 66-78.
dc.relationBranthôme, F. X. (2019) Background. The global tomato processing industry. Avignon, FRA: Tomato News. Recuperado de: http://www.tomatonews.com/en/background_47.html [Consultado: 10 de diciembre de 2019].
dc.relationCámara de Comercio de Bogotá. Programa de Apoyo Agrícola y Agroindustrial. Vicepresidencia de Fortalecimiento Empresarial. Manual: Tomate. (2015). https://bibliotecadigital.ccb.org.co/handle/11520/14307
dc.relationCarmona, S. L., Burbano-David, D., Gómez, M. R., Lopez, W., Ceballos, N., Castaño-Zapata, J., ... & Soto-Suárez, M. (2020). Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean region of Colombia. Pathogens, 9(1), 70.
dc.relationCaseiro, M., Ascenso, A., Costa, A., Creagh-Flynn, J., Johnson, M., & Simões, S. (2020). Lycopene in human health. Lwt, 127, 109323.
dc.relationChen, Y., Huang, J., & Wang, C. (2019). Analysis of stress resistances of chlamydospores of Fusarium oxysporum f. sp. lycopersici. Journal of Plant Medicine, 61(4), 21-30.
dc.relationChitwood-Brown, J., Vallad, G. E., Lee, T. G., & Hutton, S. F. (2021). Breeding for resistance to Fusarium wilt of tomato: A review. Genes, 12(11), 1673.
dc.relationDe Corato, U., Patruno, L., Avella, N., Salimbeni, R., Lacolla, G., Cucci, G., & Crecchio, C. (2020). Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. Applied Soil Ecology, 154, 103601.
dc.relationDeng, X., Zhang, N., Shen, Z., Zhu, C., Liu, H., Xu, Z., ... & Salles, J. F. (2021). Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum. NPJ biofilms and microbiomes, 7(1), 1-10.
dc.relationDholu, D., Shete, P. P., Ahmed, M. F., & Dhaval, P. (2021). Wilt (Fusarium oxysporum f. sp. lycopersici) Etiology, morphology, epidemiology, and management of tomato. The Pharma Innovation Journal 10(5): 174-178
dc.relationDíez, M. & Nuez, F. 2008. Tomato. pp 249-323. In: Prohens J. & Nuez F.(eds). Handbook of Plant Breeding: Vegetables II, Springer, New York.
dc.relationEdel-Hermann, V., & Lecomte, C. (2019). Current status of Fusarium oxysporum formae speciales and races. Phytopathology, 109(4), 512-530.
dc.relationEnespa, D. S. (2014). Effectiveness of some antagonistic fungi and botanicals against Fusarium solani and Fusarium oxysporum f. sp. lycopersici infecting brinjal and tomato plants. Asian Journal Plant Pathology, 8, 18-25.
dc.relationEscalona, V., Alvarado, P., Monardes, H., Urbina, C., & Martín, A. (2009). Manual de cultivo de tomate (Lycopersicon esculentum Mill.). Facultad de Ciencias Agronómicas, Universidad de Chile, Chile.
dc.relationFira, D., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of biotechnology, 285, 44-55.
dc.relationFonseca, l. (2015). Manual Tomate. Programa de Apoyo Agrícola y Agroindustrial Vicepresidencia de Fortalecimiento Empresarial Cámara de Comercio de Bogotá. Bogotá.
dc.relationGómez-Tenorio, M. A., Tello, J. C., Zanón, M. J., & de Cara, M. (2018). Soil disinfestation with dimethyl disulfide (DMDS) to control Meloidogyne and Fusarium oxysporum f. sp. radicis-lycopersici in a tomato greenhouse. Crop protection, 112, 133-140.
dc.relationGilardi, G., Vasileiadou, A., Garibaldi, A., & Gullino, M. L. (2022). The effects of biological control agents, potassium phosphite and calcium oxide on race 1 of Fusarium oxysporum f. sp. lactucae of lettuce in closed soilless cultivation systems. Journal of Phytopathology, 170(9), 626-634.
dc.relationGrandillo, S., Chetelat, R., Knapp, S., Spooner, D., Peralta, I., Cammareri, M., & Ercolano, M. R. (2011). Solanum sect. Lycopersicon. pp. 129-215 In: Kole, C. (ed). Wild Crop Relatives: Genomic and Breeding Resources. Springer Berlin Heidelberg
dc.relationGrozeva, S., Nankar, A. N., Ganeva, D., Tringovska, I., Pasev, G., & Kostova, D. (2020). Characterization of tomato accessions for morphological, agronomic, fruit quality, and virus resistance traits. Canadian Journal of Plant Science, 101(4), 476-489.
dc.relationHassan, H. A. (2020). Biology and Integrated Control of Tomato Wilt Caused by Fusarium oxysporum Lycopersici: A Comprehensive Review under the Light of Recent Advancements. J Bot Res, 3(1), 84-99.
dc.relationInstituto Colombiano Agroprecuario (ICA). Ministerio de Agricultura y Desarrollo Rural de Colombia. Productos Bioinsumos registrados. (22 de septiembre de 2022). https://www.ica.gov.co/areas/agricola/servicios/fertilizantes-y-bio-insumos-agricolas/listado-de-bioinsumos/2009/productos-bioinsumos.aspx
dc.relationITIS (Integrated Taxonomic Information System) (2019). Report Solamun lycopersicum L. Taxonomic Serial N°: 521671. Integrated Taxonomic Information System National Museum of Natural History. Washington, D.C. Recuperado de: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=521671#null
dc.relationJoshi, B., Kar, S. K., Yadav, P. K., Yadav, S., Shrestha, L., & Bera, T. K. (2020). Therapeutic and medicinal uses of lycopene: A systematic review.
dc.relationKumhar, K. C., Beniwal, B. S., Jat, R. D., Pate, B., Kumar, A., Raj, H., ... & Kumar, S. (2022). Plant Disease Management Approaches for Organic Crop Production in Indian Scenario: A Critical Review. Journal of Plant Bioinformatics and Biotechnology, 2(1).
dc.relationLeslie, J. F., & Summerell, B. A. (2008). The Fusarium Laboratory Manual. John Wiley & Sons.
dc.relationLi, K., DiLegge, M. J., Minas, I. S., Hamm, A., Manter, D., & Vivanco, J. M. (2019). Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome. Rhizosphere, 12, 100176.
dc.relationLópez-Marín, L. M. (2017). Manual técnico del cultivo de tomate Solanum lycopersicum (No. IICA F01). Programa Regional de Investigación e Innovación por Cadenas de Valor Agrícola IICA, San José (Costa Rica) Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria Unión Europea, Madrid (España).
dc.relationMaurya, S., Dubey, S., Kumari, R., & Verma, R. (2019). Management tactics for fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. Management, 4(5), 1-7.
dc.relationMusheer, N., Ashraf, S., Choudhary, A., Kumar, M., & Saeed, S. (2020). Role of microbiotic factors against the soil-borne phytopathogens. In Phytobiomes: Current Insights and Future Vistas (pp. 251-280). Springer, Singapore.
dc.relationNeshev, G. (2008). Major soil-borne phytopathogens on tomato and cucumber in Bulgaria, and methods for their management. Manual on alternatives to replace methyl bromide for soil-borne pest control in East and Central Europe, 1-22.
dc.relationOleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S., & Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 743, 140682.
dc.relationOrganización de las Naciones Unidas para la Agricultura y la Alimentación. (2020) FAOSTAT, F.A.O. Statistical databases. Food and Agriculture Organization of the United Nations. Consulta: 9 de diciembre de 2020. http://www.fao.org/faostat/en/#data/QC Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture, 10(1), 16.
dc.relationPatel, R., Mehta, K., Prajapati, J., Shukla, A., Parmar, P., Goswami, D., & Saraf, M. (2022). An anecdote of mechanics for Fusarium biocontrol by plant growth promoting microbes. Biological Control, 105012.
dc.relationRed de Información y Comunicación del Sector Agropecuario Colombiano. (29 de abril de 2020). Plagas y Enfermedades del Tomate. https://www.agronet.gov.co/Noticias/Paginas/Plagas-y-Enfermedades-del-Tomate.aspx
dc.relationRamyabharathi, S. A., Meena, B., & Raguchander, T. (2012). Induction of chitinase and β-1, 3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. Journal of Today’s Biological Sciences: Research & Review. India, 1(1), 50-60.
dc.relationRandall, T. E., Fernandez-Bayo, J. D., Harrold, D. R., Achmon, Y., Hestmark, K. V., Gordon, T. R., ... & VanderGheynst, J. S. (2020). Changes of Fusarium oxysporum f. sp. lactucae levels and soil microbial community during soil biosolarization using chitin as soil amendment. PloS one, 15(5), e0232662
dc.relationRed de Información y Comunicación del Sector Agropecuario Colombiano. (1 de noviembre de 2022). Reporte: Área, Producción y Rendimiento Nacional por Cultivo. Tomate. http://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relationRemondino, Marco; Valdenassi, Luigi. Different uses of ozone: environmental and corporate sustainability. Literature review and case study. Sustainability, 2018, vol. 10, no 12, p. 4783.
dc.relationRodriguez, M. H., Bandte, M., Gaskin, T., Fischer, G., & Büttner, C. (2018). Efficacy of electrolytically-derived disinfectant against dispersal of Fusarium oxysporum and Rhizoctonia solani in hydroponic tomatoes. Scientia Horticulturae, 234, 116-125.
dc.relationSajeena, A., Nair, D. S., & Sreepavan, K. (2020). Non-pathogenic Fusarium oxysporum as a biocontrol agent. Indian Phytopathology, 73(2), 177-183.
dc.relationSher Khan, R., Iqbal, A., Malak, R., Shehryar, K., Attia, S., Ahmed, T., ... & Mii, M. (2019). Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech, 9(5), 1-12.
dc.relationSistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. Dirección de Cadenas Agrícolas y Forestales. Ministerio de Agricultura y Desarrollo Rural de Colombia. Cadena de las Hortalizas. (junio de 2021). https://sioc.minagricultura.gov.co/Hortalizas/Documentos/2021-06-30%20cifras%20sectoriales.pdf
dc.relationSistema de Información de Precios y Abastecimiento del Sector Agropecuario. Departamento Administrativo Nacional de Estadística (DANE). Boletín Semanal: Precios Mayoristas. (28 de octubre de 2022). https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/bol_22oct_al_28oct_2022.pdf
dc.relationSistema de Información de Precios y Abastecimiento del Sector Agropecuario. Departamento Administrativo Nacional de Estadística (DANE). Boletín Semanal: Precios Mayoristas. (28 de octubre de 2022). https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/bol_22oct_al_28oct_2022.pdf
dc.relationSrinivas, C., Devi, D. N., Murthy, K. N., Mohan, C. D., Lakshmeesha, T. R., Singh, B., ... & Srivastava, R. K. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity–A review. Saudi journal of biological sciences, 26(7), 1315-1324.
dc.relationÜnsal, İ., Kaş, S., & Türkkan, M. (2019). Effect of some calcium salts on the growth and development of Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Akademik Ziraat Dergisi, 8(1), 35-42.
dc.relationVaghasiya, M. P., & Sumit, S. (2021). Novel Ecofriendly Approaches for Controlling Soil Borne Fungal Pathogens: A Review.
dc.relationYang, F. C., Xu, F., Wang, T. N., & Chen, G. X. (2021). Roles of vitamin A in the regulation of fatty acid synthesis. World Journal of Clinical Cases, 9(18), 4506.
dc.relationAbbasi, S., Safaie, N., Sadeghi, A., & Shamsbakhsh, M. (2019). Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Frontiers in Microbiology, 10, 1505.
dc.relationAboul-Nasr, M. B. & Abdul-Rahman, M. Rageh. 2014. A simple technique for single spore isolation of Fusarium verticillioides and Fusarium subglutinans. World Journal of Biology and Biological Sciences. 2 (1), 021-025.
dc.relationAdhikari, T. B., Gao, A., Ingram, T., & Louws, F. J. (2020). Pathogenomics Characterization of an Emerging Fungal Pathogen, Fusarium oxysporum f. sp. lycopersici in Greenhouse Tomato Production Systems. Frontiers in microbiology, 11, 1995.
dc.relationAgrios, G.N. 2005. Plant pathology. Fifth Ed. Academic Press, Burlington. 635 p.
dc.relationAlmeida, I. P., Astudillo, Á. R. M., Litardo, R. M., Rosales, G. S., Dascon, A. F., & Castillo, T. S. (2016). Evaluación molecular de genotipos de tomate por su resistencia a Meloidogyne incognita, Fusarium oxysporum y Ralstonia solanacearum con fines de mejoramiento. Bioagro, 28(2), 107-116.
dc.relationAlon, H., Katan, J., & Kedar, N. (1974). Factors affecting penetrance of resistance to Fusarium oxysporum f. sp. lycopersici in tomatoes. Phytopathology, 64(455), 61.
dc.relationAscencio, A., López, A., Borrego, F., Rodríguez, S., Flores, A., Jiménez, F., & Gámez, A. 2008. Marchitez vascular del tomate: Presencia de razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen en Culiacán, Sinaloa, México. (on line) Revista Mexicana de Fitopatología. 26(2): 114-120. Consulta: agosto de 2013. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092008000200003& lng =es&tlng=pt
dc.relationArmenta-López, S. E., Valenzuela-Solano, C., & Hernández-Martínez, R. (2021). Identification and molecular analysis of races of Fusarium oxysporum f. sp. lycopersici isolated from tomato in Baja California, Mexico. Revista mexicana de fitopatología, 39(2), 266-288.
dc.relationBaysal, Ö., Siragusa, M., Ikten, H., Polat, I., Gümrükcü, E., Yigit, F., & da Silva, J. T. 2009. Fusarium oxysporum f. sp. lycopersici races and their genetic discrimination by molecular markers in West Mediterranean region of Turkey. Physiological and Molecular Plant Pathology. 74(1); 68-75.
dc.relationBooth, C. 1971. The genus Fusarium (4, 8, 10, acuminatum, graminearum, heterosporum, lateritium, merismoides, oxysporum, poae, redolens, sacchari, sambucinum,scirpi, semitectum, solani, verticillioides). Commonwealth Mycological Institute, Kew, Surrey, United Kingdom.
dc.relationCarmona, S. L., Burbano-David, D., Gómez, M. R., Lopez, W., Ceballos, N., Castaño-Zapata, J., ... & Soto-Suárez, M. (2020). Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean region of Colombia. Pathogens, 9(1), 70.
dc.relationChang, Y. D., Bin, D. U., Ling, W. A. N. G., Pei, J. I., XIE, Y. J., LI, X. F., ... & WANG, J. M. (2018). A study on the pathogen species and physiological races of tomato Fusarium wilt in Shanxi, China. Journal of Integrative Agriculture, 17(6), 1380-1390.
dc.relationCrill, P., Jones, J. P., & Burgis, D. S. (1973). Prevalence of the vertifolia effect in the Fusarium wilt disease of tomato. Evolution of the Gene Rotation Concept for Rice Blast Control, 13.
dc.relationCrous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H. J., Chaverri, P., ... & Thines, M. (2021). Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology, 98, 100116.
dc.relationde Gusmão, M. T., de Gusmão, S. A., & de Araújo, J. A. (2006). Produtividade de tomate tipo cereja cultivado em ambiente protegido e em diferentes substratos. Horticultura Brasileira, 431-436.
dc.relationDebbi, A., Boureghda, H., Monte, E., & Hermosa, R. (2018). Distribution and genetic variability of Fusarium oxysporum associated with tomato diseases in Algeria and a biocontrol strategy with indigenous Trichoderma spp. Frontiers in microbiology, 9, 282.
dc.relationEdel-Hermann, V., & Lecomte, C. (2019). Status of Fusarium oxysporum formae speciales and races. Phytopathology, 109(4), 512-530.
dc.relationEl Komy, M. H., Al-Qahtani, R. M., Widyawan, A., Molan, Y., & Almasrahi, A. (2021). First Report of Fusarium Root and Stem Rot Caused by Fusarium oxysporum f. sp. radicis-cucumerinum on Greenhouse Cucumbers in Saudi Arabia. Plant Disease.
dc.relationFAOSTAT (2019). Statistical databases. Food and Agriculture Organization of the United Nations. Consulta: julio 23 de 2019. http://faostat3.fao.org/home/index.htmL#HOME
dc.relationGabe, H. L. (1975). Standardization of nomenclature for pathogenic races of Fusarium oxysporium f. sp. lycopersici. Transactions of the British mycological Society, 64(1), 156-159.
dc.relationGonçalves, A. M., Cabral, C. S., Reis, A., Fonseca, M. E. N., Costa, H., Ribeiro, F. H. S., & Boiteux, L. S. (2021). A three–decade survey of Brazilian Fusarium oxysporum f. sp. lycopersici races assessed by pathogenicity tests on differential tomato accessions and by molecular markers. Journal of Applied Microbiology, 131(2), 873-884.
dc.relationGonzález, G.J.J. & Marín, S.S.M. 2015. Respuesta de germoplasma de tomate tipo cereza (Solanum spp.) a la Marchitez vascular (Fusarium oxysporum f. sp. lycopersici Snyder & Hansen). Trabajo de grado para optar al título de Ingeniero Agrónomo, Universidad de Caldas, Colombia.
dc.relationHernández Martínez, R., López Benítez, A., Borrego Escalante, F., Espinoza Velázquez, J., Sánchez Aspeytia, D., Maldonado Mendoza, I. E., & López Ochoa, L. A. (2014). Razas de Fusarium oxysporum f. sp. lycopersici en predios tomateros en San Luis Potosí. Revista mexicana de ciencias agrícolas, 5(7), 1169-1178.
dc.relationHirano, Y., & Arie, T. (2006). PCR-based differentiation of Fusarium oxysporum ff. sp. lycopersici and radicis-lycopersici and races of F. oxysporum f. sp. lycopersici. Journal of General Plant Pathology, 72(5), 273-283.
dc.relationHorinouchi, H., Watanabe, H., Taguchi, Y., Muslim, A. & Hyakumachi, M. 2011. Biological control of Fusarium wilt of tomato with Fusarium equiseti GF191 in both rock wool and soil systems. Biocontrol. 56(6): 915-923.
dc.relationHuarhua, M., Aragón, L., Flores, J., Tsuzuki, R., & Arie, T. (2020). Primer reporte de Fusarium oxysporum f. sp. lycopersici raza 1 aislada de tomate (Solanum lycopersicum L.) proveniente de la Costa central del Perú. Scientia fungorum, 50.
dc.relationInami, K., Kashiwa, T., Kawabe, M., Onokubo-Okabe, A., Ishikawa, N., Pérez, E. R., & Madadi, K. A. (2014). The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes. Microbes and environments, ME13184.
dc.relationInami, K., Yoshioka-Akiyama, C., Morita, Y., Yamasaki, M., Teraoka, T. & Arie, T. 2012. A genetic mechanism for emergence of races in Fusarium oxysporum f. sp. lycopersici: inactivation of avirulence gene AVR1 by transposon insertion. PLoS One. 7(8): 1-10. Consulta: mayo de 2016. http://journals.plos.org/plosone/article/asset?id=10.1371%2Fjournal.pone.0044101.PDF
dc.relationJha, A. C., Kumar, A., Jamwal, S., Jamval, R., & Jamwal, A. (2018). Integrated management of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. J. Entomol. Zool. Stud, 6, 1338-1341.
dc.relationJha, A. C., Kumar, A., Jamwal, S., Jamval, R., & Jamwal, A. (2018). Integrated management of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. J. Entomol. Zool. Stud, 6, 1338-1341.
dc.relationMarín-Serna, S. M., González-Guzmán, J. J., Castaño-Zapata, J., & Ceballos-Aguirre, N. (2014) Respuesta de Quince Introducciones de Tomate Tipo Cereza (Solanum spp.) a la Marchitez Vascular (Fusarium oxysporum f. sp. lycopersici SNYDER & HANSEN). Revista Agronomía 2(2): 48 - 59, 2014
dc.relationMarín-Serna, S. M., González-Guzmán, J. J., Castaño-Zapata, J., & Ceballos-Aguirre, N. (2014) Respuesta de Quince Introducciones de Tomate Tipo Cereza (Solanum spp.) a la Marchitez Vascular (Fusarium oxysporum f. sp. lycopersici SNYDER & HANSEN). Revista Agronomía 2(2): 48 - 59, 2014
dc.relationMbofung, G. Y., Hong, S. G., & Pryor, B. M. (2007). Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology, 97(1), 87-98.
dc.relationMcLain, N. K., & Gachomo, E. W. (2019). Chemicals of emerging concern in treated wastewater impact microbial growth. Frontiers in Environmental Science, 7, 156. Murugan, L., Krishnan, N., Venkataravanappa, V., Saha, S., Mishra, A. K., Sharma, B. K., & Rai, A. B. (2020). Molecular characterization and race identification of Fusarium oxysporum f. sp. lycopersici infecting tomato in India. 3 Biotech, 10(11), 1-12.
dc.relationNelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: an illustrated manual for identification.
dc.relationNirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R., Gupta, V. K., Yli-Mattila, T., & Chandra, N. S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Scientific reports, 6, 21367.
dc.relationPirayesh, S., Zamanizade, H., & Morid, B. (2018). Molecular Identification of Physiological Races of Fusarium oxysporum f. sp. lycopersici and radicis lycopersici Causal Agent of Fusarium Wilt of Tomato in Iran. Journal of Agricultural Science and Technology, 20(1), 193-202.
dc.relationRam, N., Gireesh, C., & Chandrashekhar, A. (2020). Morphological and Genetic Diversity of Fusarium spp. associated with Panama wilt disease of Banana in Bihar. Research Journal of Biotechnology Vol, 15, 5.
dc.relationRedkar, A., Sabale, M., Schudoma, C., Zechmann, B., Gupta, Y. K., López-Berges, M. S., ... & Di Pietro, A. (2022). Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. The Plant Cell, 34(9), 3214-3232.
dc.relationSingh, N., & Kumar, A. (2020) Plant Disease Management through Bio-Char: A Review. International Journal of Current Microbiology and Applied Sciences Special Issue-11: 3499-3510
dc.relationSrinivas, C., Devi, D. N., Murthy, K. N., Mohan, C. D., Lakshmeesha, T. R., Singh, B., ... & Srivastava, R. K. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity–A review. Saudi journal of biological sciences, 26(7), 1315-1324.
dc.relationSun, Y., Wang, R., Qiao, K., Pan, H., Wang, F., Wang, Y., & Liu, J. (2022). First Report of Fusarium solani Causing Leaf Sheath Rot of Bush Lily in China. Plant Disease, PDIS-02.
dc.relationYe, Q., Wang, R., Ruan, M., Yao, Z., Cheng, Y., Wan, H., ... & Zhou, G. (2020). Genetic diversity and identification of wilt and root rot pathogens of tomato in China. Plant disease, 104(6), 1715-1724.
dc.relationAbd-Allah, E. F., Ezzat, S. M., & Tohamy, M. R. (2007). Bacillus subtilis as an alternative biologically based strategy for controlling Fusarium wilt disease in tomato: A histological study. Phytoparasitica, 35(5), 474-478.
dc.relationAgrios, G.N. 2005. Plant pathology. Fifth Ed. Academic Press, Burlington. 635 p.
dc.relationAhemad, M. & Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science. 26(1): 1-20.
dc.relationAli, S. Z., Sandhya, V., Grover, M., Kishore, N., Rao, L. V., & Venkateswarlu, B. (2009). Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biology and fertility of soils, 46(1), 45-55.
dc.relationAlström, S. (2001). Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. Journal of Phytopathology,149(2), 57-64.
dc.relationBranthôme, F. X. (2022) 26 de julio de 2022. “The value of the TOP20 import markets” Avignon, FRA: Tomato News. Recuperado de: http://www.tomatonews.com/en/2017-production-should-be-in-line-with-estimated-global-consumption_2_123.html [Consultado: 23 julio de 2019].
dc.relationChakraborty, U., Chakraborty, B. N. & Chakraborty, A. P. 2010. Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. Journal of Plant Interactions. 5(4): 261-272.
dc.relationCruz, R., & Russo, V. M. (1985). Inorganic nutrition of Fusarium oxysporum f. sp. lycopersici and Rhizoctonia solani. Mycopathologia, 89(2), 123-126.
dc.relationDe Lozano, V. S., Morales, A., & Yañez, M. (2014). Principios y práctica de la microscopía electrónica. UAT. CONICET. Bahía Blanca. Buenos Aires, Argentina.
dc.relationDe Souza, A. R., De Souza, S. A., De Oliveira, M. V. V., Ferraz, T. M., Figueiredo, F. A. M. M. A., Da Silva, N. D. & De Souza Filho, G. A. (2015). Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense. Plant and Soil. 399 (1-2): 257-270.
dc.relationDe Vleesschauwer, D. & Höfte, M. 2009. Rhizobacteria-induced systemic resistance. Advances in Botanical Research. 51: 223-281.
dc.relationDihazi, A., Jaiti, F., Jaoua, S., Driouich, A., Baaziz, M., Daayf, F. & Serghini, M. A. (2012). Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L.) seedlings. Plant Physiology and Biochemistry. 55: 7-15.
dc.relationEnespa, D. S. (2014). Effectiveness of some antagonistic fungi and botanicals against Fusarium solani and Fusarium oxysporum f. sp. lycopersici infecting brinjal and tomato plants. Asian Journal Plant Pathology, 8, 18-25.
dc.relationFood and Agriculture Organization, FAO, 2008. Manejo integrado de enfermedades. Consulta: 1 de marzo de 2016. http://www.fao.org/3/a-a1374s/a1374s05.pdf
dc.relationFAOSTAT, F. A. O. 2022. Statistical databases. Food and Agriculture Organization of the United Nations. Consulta: 17 de agosto de 2022. http://www.fao.org/faostat/en/#data/QC
dc.relationFRAC (2019). Fungal control agents sorted by cross resistance pattern and mode of action (including FRAC Code numbering). E. U. Fungicide Resistance Action Committee. https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2019.pdf [Consultado: 21 de noviembre de 2019]
dc.relationGaleano Vanegas, N. F., Marulanda Moreno, S. M., Padilla Hurtado, B. E., Mantilla Afanador, J. G., Ceballos Aguirre, N., & Restrepo Franco, G. M. (2020). Antagonism of plant growth promoting rhizobacteria against the causal agent of the vascular wilting of tomato. Revista Colombiana de Biotecnología, 22(2), 35-43.
dc.relationGutiérrez-Román, M. I., Holguín-Meléndez, F., Dunn, M. F., Guillén-Navarro, K. & Huerta-Palacios, G. (2015). Antifungal activity of Serratia marcescens CFFSUR-B2 purified chitinolytic enzymes and prodigiosin against Mycosphaerella fijiensis, causal agent of black Sigatoka in banana (Musa spp.). BioControl. 60(4):565-572.
dc.relationHöfte, M. & Bakker P. (2007). Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. pp. 121-133. In: Varma A, Chincholkar SB (eds). Microbial Siderophores. Springer, Berlin.
dc.relationKelman, A., Boothroyd, C., Davis, B., Deep, I., Diachun, S., Fulton, J., Hendrix, J., Mitchell, J., Owen, J., Sill, W., Stevens, R. & Zabel, R. 1967. Sourcebook of laboratory exercises in plant pathology. W.H. Freeman and Company, San Franscisco & London.
dc.relationKerr, J. R. (1999). Bacterial inhibition of fungal growth and pathogenicity. Microbial ecology in health and disease, 11(3), 129-142.
dc.relationKumar, M., Teotia, P., Varma, A., Tuteja, N. & Kumar, V. 2016. Induced systemic resistance by rhizospheric microbes. pp. 197-206. In: Choudhary, D. K. & Varma, A. (eds.). Microbial-Mediated Induced Systemic Resistance in Plants. Springer, Singapore.
dc.relationLeslie, J. F., & Summerell, B. A. (2008). The Fusarium Laboratory Manual. John Wiley & Sons.
dc.relationLogeshwarn, P., Thangaraju, M., & Rajasundari, K. (2011). Antagonistic potential of Gluconacetobacter diazotrophicus against Fusarium oxysporum in sweet potato (Ipomea batatus). Archives of phytopathology and plant protection,44(3), 216-223.
dc.relationMandal, S. & Ray, R. (2011). Induced systemic resistance in biocontrol of plant diseases. pp. 241-260. In: Singh, A., Parmar, N. & Kuhad, R. C. (eds.) Bioaugmentation, Biostimulation and Biocontrol. Springer Berlin Heidelberg.
dc.relationMarín-Serna, S. M., González-Guzmán, J. J., Castaño-Zapata, J., & Ceballos-Aguirre, N. Respuesta de quince introducciones de tomate tipo cereza (Solanum spp.) a la Marchitez Vascular (Fusarium oxysporum f. sp. lycopersici Snyder & Hansen).
dc.relationMoore-Landecker, E. (1996). Fundamentals of the Fungi (No. Ed. 4). prentice Hall.
dc.relationMoreno Reséndez, A., Carda Mendoza, V., Carrillo, R., Luis, J., Vásquez Arroyo, J., & Cano Ríos, P. (2018). Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68-83.
dc.relationRamyabharathi, S. A., Meena, B., & Raguchander, T. 2012. Induction of chitinase and β-1, 3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. Journal of Today’s Biological Sciences. Research and Review, 1(1): 50-60.
dc.relationRestrepo, F. G. M. 2014. Obtención y evaluación de un preparado líquido como promotor del crecimiento de cultivos de tomate (Solanum lycopersicum L.) empleando la bacteria Gluconacetobacter diazotrophicus. Tesis para optar el título de Doctora en Ciencias Agrarias. Universidad de Caldas. Manizales, Caldas, Colombia
dc.relationRestrepo, G. M., Sanchez, O. J., Marulanda, S. M., Galeano, N. F., & Taborda, G. (2017). Evaluation of plant-growth promoting properties of Gluconacetobacter diazotrophicus and Gluconacetobacter sacchari isolated from sugarcane and tomato in West Central region of Colombia. African Journal of Biotechnology, 16(30), 1619-1629.
dc.relationRyu, H., Park, H., Suh, D. S., Jung, G. H., Park, K., & Lee, B. D. (2014). Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1. Journal of Ginseng Research,38(3), 215-219.
dc.relationShanmugam, V., Atri, K., Gupta, S., Kanoujia, N., & Naruka, D. S. (2011). Selection and differentiation of Bacillus spp. antagonistic to Fusarium oxysporum f. sp. lycopersici and Alternaria solani infecting tomato. Folia microbiologica,56(2), 170-177.
dc.relationTenorio-Salgado, S., Tinoco, R., Vazquez-Duhalt, R., Caballero-Mellado, J., & Perez-Rueda, E. (2013). Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered, 4(4), 236-243.
dc.relationUribe, M. V., Castro, R. A., Paéz, I., Carvajal, N., Barbosa, E., León, L. M., & Díaz, S. M. (2012). Impacto en la salud y el medio ambiente por exposición a plaguicidas e implementación de buenas prácticas agrícolas en el cultivo de tomate, Colombia, 2011. Revista chilena de salud pública, 16(2), 96-106.
dc.relationVásquez Ramírez., L.M., & Castaño Zapata, J. (2017). Manejo integrado de la marchitez vascular del tomate [Fusarium oxysporum f. sp. lycopersici (SACC.) Wc snyder & hn hansen]: una revisión.
dc.relationYoshimi, A., Kojima, K., Takano, Y., & Tanaka, C. (2005). Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryotic cell, 4(11), 1820-1828.
dc.relationAbdallah, N. A., Shah, D., Abbas, D., & Madkour, M. (2010). Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM crops, 1(5), 344-350.
dc.relationAgrios, G.N. 2005. Plant pathology. Fifth Ed. Academic Press, Burlington. 635 p.
dc.relationAjilogba, C. F., & Babalola, O. O. (2013). Integrated management strategies for tomato Fusarium wilt. Biocontrol science, 18(3), 117-127.
dc.relationAmini, J.; Sidovich, D.F., 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J. Plant Prot. Res. 50:172-178.
dc.relationAntoun, H. 2013. Plant-growth-promoting rhizobacteria. pp. 353-355. In: S. Maloy & K. Hughes (eds.). Brenner's Encyclopedia of Genetics (Second Edition). Academic Press, San Diego.
dc.relationAscencio, A., López, A., Borrego, F., Rodríguez, S., Flores, A., Jiménez, F., & Gámez, A. 2008. Marchitez vascular del tomate: Presencia de razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder y Hansen en Culiacán, Sinaloa, México. [on line] Revista Mexicana de fitopatología. 26(2): 114-120. Consulta: agosto de 2017. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092008000200003& lng =es&tlng=pt.
dc.relationBernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource technology, 100(22), 5444-5453.
dc.relationBikandi, J, San Millán, R et al. 2015/07/30 Cámara de contaje Neubauer improved. University of the Basque Country. Universidad del País Vasco http://insilico.ehu.es/camara_contaje/neubauer_improved.php
dc.relationBooth, C. 1971. The genus Fusarium (4, 8, 10, acuminatum, graminearum, heterosporum, lateritium, merismoides, oxysporum, poae, redolens, sacchari, sambucinum,scirpi, semitectum, solani, verticillioides). Commonwealth Mycological Institute, Kew, Surrey, United Kingdom.
dc.relationBouain, N., Krouk, G., Lacombe, B., & Rouached, H. (2019). Getting to the root of plant mineral nutrition: combinatorial nutrient stresses reveal emergent properties. Trends in Plant Science, 24(6), 542-552.
dc.relationBranthôme, F. X. (2019) Background. The global tomato processing industry. Avignon, FRA: Tomato News. Recuperado de: http://www.tomatonews.com/en/background_47.html [Consultado: 10 de diciembre de 2019].
dc.relationButler, D. M., Rosskopf, E. N., Kokalis-Burelle, N., Albano, J. P., Muramoto, J., & Shennan, C. (2012). Exploring warm season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant and Soil, 355(1-2), 149-165.
dc.relationChen, Y. L., Lee, C. Y., Cheng, K. T., Chang, W. H., Huang, R. N., Nam, H. G., & Chen, Y. R. (2014). Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. The Plant Cell, 26(10), 4135-4148.
dc.relationCarmona, S. L., Burbano-David, D., Gómez, M. R., Lopez, W., Ceballos, N., Castaño-Zapata, J., ... & Soto-Suárez, M. (2020). Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean region of Colombia. Pathogens, 9(1), 70.
dc.relationEl-Sheekh, M. M., Mousa, A. S. H., & Farghl, A. A. (2020). Biological control of fusarium wilt disease of tomato plants using seaweed extracts. Arabian Journal for Science and Engineering, 45(6), 4557-4570.
dc.relationDatnoff, L. E., Elmer, W. H., & Huber, D. M. (2007). Mineral nutrition and plant disease. American Phytopathological Society (APS Press).
dc.relationDíez, M. & Nuez, F. 2008. Tomato. pp 249-323. In: Prohens J. & Nuez F.(eds). Handbook of Plant Breeding: Vegetables II, Springer, New York.
dc.relationDoan, H. K., Maharaj, N. N., Kelly, K. N., Miyao, E. M., Davis, R. M., & Leveau, J. H. (2020). Antimycotal activity of Collimonas isolates and synergy-based biological control of Fusarium wilt of tomato. Phytobiomes Journal, 4(1), 64-74.
dc.relationDwivedi, N., & Dwivedi, S. K. (2020). Soil solarization: An ecofriendly technique to eradicate soil Fusaria causing wilt disease in guava (Psidium guajava). International Journal of Fruit Science, 20(sup3), S1765-S1772.
dc.relationEnespa, D. S., & Dwivedi, S. K. (2014). Effectiveness of some antagonistic fungi and botanicals against Fusarium solani and Fusarium oxysporum f. sp. lycopersici infecting brinjal and tomato plants. Asian Journal of Plant Pathology, 8(1), 18-25.
dc.relationFAO. Food and Agriculture Organization of the United Nations. FAOSTAT, F. A. O. 2020. Statistical databases. Food and Agriculture Organization of the United Nations. Consulta: 9 de diciembre de 2020. http://www.fao.org/faostat/en/#data/QC
dc.relationFountain, E. D. & Wratten, S. D. 2013. Conservation biological control and biopesticides in agricultural? En: Reference Module in Earth Systems and Environmental Sciences: Elsevier.
dc.relationFourie, G., Steenkamp, E. T., Ploetz, R. C., Gordon, T. R. & Viljoen, A. 2011. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infection, Genetics and Evolution. 11(3): 533-542.
dc.relationGarcía-Jaramillo, D. J., López-Zapata, S. P., Bustamante-Granada, S., López, W. R., Castaño-Zapata, J., & Ceballos-Aguirre, N. (2022). Reacción y rendimiento de microinjertos de tomate (Solanum spp.) inoculados con Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen causante del marchitamiento vascular. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(180), 714-729.
dc.relationGirhepuje, P. V., & Shinde, G. B. (2011). Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell, Tissue and Organ Culture (PCTOC), 105(2), 243-251.
dc.relationGlireath, J. P., Noling, J. W., Jones, J. P., Overman, A. J. & Santos, B. M. 2003. Experiencias iniciales con alternativas al bromuro de metilo en tomate. Manejo Integrado de Plagas y Agroecología. 69: 81-84.
dc.relationGrandillo, S., Chetelat, R., Knapp, S., Spooner, D., Peralta, I., Cammareri, M., & Ercolano, M. R. (2011). Solanum sect. Lycopersicon. pp. 129-215 In: Kole, C. (ed). Wild Crop Relatives: Genomic and Breeding Resources. Springer Berlin Heidelberg.
dc.relationHashem, A., Akhter, A., Alqarawi, A. A., Singh, G., Almutairi, K. F., & Abd_Allah, E. F. (2021). Mycorrhizal fungi induced activation of tomato defense system mitigates Fusarium wilt stress. Saudi Journal of Biological Sciences.
dc.relationHirano, Y., & Arie, T. (2006). PCR-based differentiation of Fusarium oxysporum ff. sp. lycopersici and radicis-lycopersici and races of F. oxysporum f. sp. lycopersici. Journal of General Plant Pathology, 72(5), 273-283.
dc.relationHorinouchi, H., Watanabe, H., Taguchi, Y., Muslim, A. & Hyakumachi, M. 2011. Biological control of Fusarium wilt of tomato with Fusarium equiseti GF191 in both rock wool and soil systems. Biocontrol. 56(6): 915-923.
dc.relationHossain, M. M., Hossain, N., Sultana, F., Islam, S. M. N., Islam, M. S. & Bhuiyan, M. K. A. 2013. Integrated management of Fusarium wilt of chickpea (Cicer arietinum L.) caused by Fusarium oxysporum f. sp. ciceris with microbial antagonist, botanical extract, and fungicide. African Journal of Biotechnology. 12(29): 4699-4706. Inami, K., Yoshioka-Akiyama, C., Morita, Y., Yamasaki, M., Teraoka, T. & Arie, T. 2012. A genetic mechanism for emergence of races in Fusarium oxysporum f. sp. lycopersici: inactivation of avirulence gene AVR1 by transposon insertion. PLoS One. 7(8): 1-10. Consulta: mayo de 2016.
dc.relationIoannou, N., & Ioannou, M. (2000, October). Integrated management of soil-borne pathogens of greenhouse tomato in Cyprus. In II Balkan Symposium on Vegetables and Potatoes 579 (pp. 433-438).
dc.relationIPGRI International Plant Genetic Resources Institute (1996). Descriptores para el cultivo del tomate (Lycopersicon spp.). IPGRI, Rome. 49 p.
dc.relationJangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., & Kapoor, R. (2021). Secreted in Xylem genes: drivers of host adaptation in Fusarium oxysporum. Frontiers in plant science, 12.
dc.relationKant, P., Reinprecht, Y., Martin, C. J., Islam, R. & Pauls, K. P. 2011. Integration of biotechnologies: disease resistance pathology Fusarium. pp. 729-743. In: Moo-Young M. (ed.). Comprehensive Biotechnology, second edition, Elsevier, Amsterdam. Katan, T., Shlevin, E., & Katan, J. (1997). Sporulation of Fusarium oxysporum f. sp. lycopersici on stem surfaces of tomato plants and aerial dissemination of inoculum. Phytopathology, 87(7), 712-719.
dc.relationLarkin, R. P., & Fravel, D. R. (1998). Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant disease, 82(9), 1022-1028.
dc.relationLi, J., Chitwood-Brown, J., Kaur, G., Labate, J. A., Vallad, G. E., Lee, T. G., & Hutton, S. F. (2022). Novel Sources of Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 Among Solanum pennellii Accessions. Journal of the American Society for Horticultural Science, 147(1), 35-44.
dc.relationLópez-Marín, L. M. (2017). Manual técnico del cultivo de tomate Solanum lycopersicum (No. IICA F01). Programa Regional de Investigación e Innovación por Cadenas de Valor Agrícola IICA, San José (Costa Rica) Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria Unión Europea, Madrid (España).
dc.relationMarín-Serna, S. M., González-Guzmán, J. J., Castaño-Zapata, J., & Ceballos-Aguirre, N. (2014). Respuesta de quince introducciones de tomate tipo cereza (Solanum spp.) a la marchitez vascular (Fusarium oxysporum f. sp. lycopersici Snyder & Hansen). Agronomía 22(2), 48-50.
dc.relationMadden, Laurence V., Gareth Hughes, and Frank Van Den Bosch. "The study of plant disease epidemics." (2007).
dc.relationMawar, R., Lodha, S., Ranawat, M., El Enshasy, H. A., Rahman, R. A., Gafur, A., ... & Sayyed, R. Z. (2022). Combined Effects of Biosolarization and Brassica Amendments on Survival of Biocontrol Agents and Inhibition of Fusarium oxysporum. Agronomy, 12(8), 1752.
dc.relationMcGovern, R. J., & McSorley, R. (2012). Management of bacterial and fungal plant pathogens by soil solarization. Soil Solarization: Theory and Practice. APS Press, Minneapolis, MN, 53-62.
dc.relationMcGovern, R. J. (2015). Management of tomato diseases caused by Fusarium oxysporum. Crop Protection, 73, 78-92.
dc.relationMbofung, G. Y., Hong, S. G., & Pryor, B. M. (2007). Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology, 97(1), 87-98.
dc.relationMinisterio de Salud de Colombia. 1996. Resolución número 00138, por la cual se prohíbe el uso de una sustancia química. En: Biblioteca Virtual del Ministerio de Medio Ambiente. Disponible desde internet en: biblovirtual.minambiente.gov.co:3000/DOCS/.../1996/Resolu ciones /RS01381996.doc. [con acceso el 16/11/2016].
dc.relationMorra, L., Carrieri, R., Fornasier, F., Mormile, P., Rippa, M., Baiano, S., ... & Lahoz, E. (2018). Solarization working like a “solar hot panel” after compost addition sanitizes soil in thirty days and preserves soil fertility. Applied Soil Ecology, 126, 65-74.
dc.relationNelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: an illustrated manual for identification.
dc.relationNeshev, G. (2008). Major soil-borne phytopathogens on tomato and cucumber in Bulgaria, and methods for their management. Manual on alternatives to replace methyl bromide for soil-borne pest control in East and Central Europe, 1-22.
dc.relationNewman, S. E. (2004, February). Disinfecting irrigation water for disease management. In 20th Annual Conference on Pest Management on Ornamentals (Vol. 970, pp. 1-10).
dc.relationPanthee, D. R., & Chen, F. (2010). Genomics of fungal disease resistance in tomato. Current genomics, 11(1), 30-39.
dc.relationPark, M. S., Jang, K. S., Choi, Y. H., Kim, J. C., & Choi, G. J. (2013). Simple mass-screening methods for resistance of tomato to Fusarium oxysporum f. sp. lycopersici. Korean Journal of Horticultural Science & Technology, 31(1), 110-116.
dc.relationRamyabharathi, S. A., Meena, B., & Raguchander, T. (2012). Induction of chitinase and β-1, 3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. Journal of Today’s Biological Sciences: Research & Review. India, 1(1), 50-60.
dc.relationSaleh, O., Gabr, M., Khalil, M., & Mohamed, E. E. D. (2016). Molecular Variations among some Isolates of Fusarium oxysporum f. sp lycopersici and Response of Different Tomato Cultivars and Seedling Age to Infection. Egyptian Journal of Phytopathology, 44(1), 205-226.
dc.relationScott, J. W., & Jones, J. P. (1989). Monogenic resistance in tomato to Fusarium oxysporum f. sp. lycopersici race 3. Euphytica, 40(1), 49-53.
dc.relationScott, J. W., Agrama, H. A., & Jones, J. P. (2004). RFLP-based analysis of recombination among resistance genes to Fusarium wilt races 1, 2, and 3 in tomato. Journal of the American Society for Horticultural Science, 129(3), 394-400.
dc.relationShishido, M., Miwa, C., Usami, T., Amemiya, Y., & Johnson, K. B. (2005). Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology, 95(9), 1072-1080.
dc.relationSmith, S. N. (2007). An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathol Bull, 16, 97-120.
dc.relationUniversidad de Caldas (2019). Sistema de Granjas. Página institucional. Consulta: 5 de octubre de 2020. https://www.ucaldas.edu.co/portal/sistema-de-granjas/
dc.relationUribe, M. V., Castro, R. A., Paéz, I., Carvajal, N., Barbosa, E., León, L. M., & Díaz, S. M. (2012). Impacto en la salud y el medio ambiente por exposición a plaguicidas e implementación de buenas prácticas agrícolas en el cultivo de tomate, Colombia, 2011. Revista Chilena de Salud Pública, 16(2), 96-106.
dc.relationVallejo, F.A. 1999. Mejoramiento genético y producción de tomate en Colombia. Universidad Nacional de Colombia. Sede Palmira. 219 p.
dc.relationVallejo, C.F.A. & Estrada, S.E.I. 2002 Mejoramiento genético de plantas. Universidad Nacional de Colombia, Sede Palmira. 402 p.
dc.relationvan der Plank, J. E. (1968). Disease resistance in plants (No. SB731. V36 1968.).
dc.relationVuksani, G. J., Balliu, A., Vuksani, A., & Sallaku, G. (2011, October). The influence of mechanical root pruning on dry matter partitioning and stand establishment rate of tomato (Lycopersicon esculentum Mill.) seedlings under saline conditions. In V Balkan Symposium on Vegetables and Potatoes 960 (pp. 177-182).
dc.relationWatson, R.T.; Albritton, D.T.; Anderson, S.O.; Lee-Bapty, S. 1992. Methyl Bromide: Its atmospheric science, technology, and economics. Montreal Protocol Assessment Suppl., U.N.E.P., Nairobi, Kenya. 234 p.
dc.relationWeststeijn, G. 1973. Soil sterilization and glasshouse disinfection to control Fusarium oxysporum f. sp. lycopersici in tomatoes in the Netherlands. Neth. J. Plant Pathol. 79 (1): 36-40.
dc.relationAhemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26(1), 1-20.
dc.relationAli, S. Z., Sandhya, V., Grover, M., Kishore, N., Rao, L. V., & Venkateswarlu, B. (2009). Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biology and fertility of soils, 46(1), 45-55.
dc.relationAlmaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1), 57-61.
dc.relationAmini, J., & Sidovich, D. F. (2010). The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of plant protection research, 50(2).
dc.relationAriza, Y., & Sánchez, L. (2012). Determinación de metabolitos secundarios a partir de Bacillus subtilis con efecto biocontrolador sobre Fusarium sp. Nova, 10(18), 149-155.
dc.relationBai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Annals of botany, 100(5), 1085-1094.
dc.relationBarker, A. V., & Pilbeam, D. J. (Eds.). (2015). Handbook of plant nutrition. CRC press.
dc.relationBhattacharyya, P.N., Jha, D.K., 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327–1350.
dc.relationBolívar-Anillo, H. J., Contreras-Zentella, M. L., & Teherán-Sierra, L. G. (2016). Burkholderia tropica una bacteria con gran potencial para su uso en la agricultura. Tip, 19(2), 102-108.
dc.relationBodale, I., Mihalache, G., Achiţei, V., Teliban, G. C., Cazacu, A., & Stoleru, V. (2021). Evaluation of the nutrients uptake by Tomato plants in different phenological stages using an electrical conductivity technique. Agriculture, 11(4), 292.
dc.relationBooth, C. 1971. The genus Fusarium (4, 8, 10, acuminatum, graminearum, heterosporum, lateritium, merismoides, oxysporum, poae, redolens, sacchari, sambucinum,scirpi, semitectum, solani, verticillioides). Commonwealth Mycological Institute, Kew, Surrey, United Kingdom.
dc.relationCaballero-Mellado, J., Onofre-Lemus, J., Estrada-De Los Santos, P., & Martínez-Aguilar, L. (2007). The tomato rhizosphere, an environment rich in nitrogen fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol., 73(16), 5308-5319.
dc.relationCazorla, F. M., Romero, D., Pérez‐García, A., Lugtenberg, B. J. J., Vicente, A. D., & Bloemberg, G. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of applied microbiology, 103(5), 1950-1959.
dc.relationCenicafé. Centro Nacional de Investigaciones de Café. (2021). Anuario Meteorológico Cafetero 2020.
dc.relationChoudhary, D. K., Prakash, A. & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology. 47(4): 289-297.
dc.relationChowdappa, P., Kumar, S. M., Lakshmi, M. J., & Upreti, K. K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological control, 65(1), 109-117.
dc.relationDe Souza et al 2015. Plant growth-promoting bacteria as inoculants in agricultural soils Rocheli de Souza, Adriana Ambrosini and Luciane M.P. Passaglia. Genetics and Molecular Biology, 38, 4, 401-419 (2015). Copyright © 2015, Sociedade Brasileira de Genética. Printed in Brazil. DOI: http://dx.doi.org/10.1590/S1415-475738420150053
dc.relationDastager, S. G., Deepa, C. K., & Pandey, A. (2011). Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World Journal of Microbiology and Biotechnology, 27(2), 259-265.
dc.relationDe Vleesschauwer, D. & Höfte, M. 2009. Rhizobacteria-induced systemic resistance. Advances in Botanical Research. 51: 223-281.
dc.relationDevi, K. A., Pandey, P., & Sharma, G. D. (2016). Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. HAYATI Journal of Biosciences, 23(4), 173-180.
dc.relationDevi, N. O., Tombisana Devi, R. K., Debbarma, M., Hajong, M., & Thokchom, S. (2022). Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Egyptian Journal of Biological Pest Control, 32(1), 1-14.
dc.relationDixon, M., Simonne, E., Obreza, T., & Liu, G. (2020). Crop response to low phosphorus bioavailability with a focus on tomato. Agronomy,10(5), 617.
dc.relationGaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G. & Uknes, S. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 261:754–756
dc.relationGaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G. & Uknes, S. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 261:754–756
dc.relationGeorge, P., Gupta, A., Gopal, M., Thomas, L., & Thomas, G. V. (2013). Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World Journal of Microbiology and Biotechnology, 29(1), 109-117.
dc.relationEurosemillas (1 de agosto de 2022). Descripción de semillas. https://eurosemillas.co/descripcion-de-semillas/#carguero
dc.relationGlick, B. R. (2015). Beneficial plant-bacterial interactions (pp. 1-28). Heidelberg: Springer.
dc.relationGrandillo, S., Chetelat, R., Knapp, S., Spooner, D., Peralta, I., Cammareri, M., & Ercolano, M. R. (2011). Solanum sect. Lycopersicon. pp. 129-215 In: Kole, C. (ed). Wild Crop Relatives: Genomic and Breeding Resources. Springer Berlin Heidelberg.
dc.relationGeorge, P., Gupta, A., Gopal, M., Thomas, L., & Thomas, G. V. (2013). Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World Journal of Microbiology and Biotechnology, 29(1), 109-117.
dc.relationHashem, A., Tabassum, B., & Abd_Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi journal of biological sciences.
dc.relationHeidarzadeh, N.; Baghaee-Ravari, S. Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Arch. Phytopathol. Plant Protect. 2015, 48, 13–16.
dc.relationHernández-Aparicio, F., Lisón, P., Rodrigo, I., Bellés, J. M., & López-Gresa, M. P. (2021). Signaling in the tomato immunity against Fusarium oxysporum. Molecules, 26(7), 1818.
dc.relationHollomon DW, Butters JA, Barker H, Hall L. Fungal beta-tubulin, expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicides. Antimicrob Agents Chemother. 1998 Sep;42(9):2171-3. doi: 10.1128/AAC.42.9.2171. PMID: 9736529; PMCID: PMC105765.
dc.relationHopkins, W. G., & Hüner, N. P. (1995). Introduction to plant physiology.
dc.relationITIS (Integrated Taxonomic Information System) (2019). Report Solamun lycopersicum L. Taxonomic Serial N°: 521671. Integrated Taxonomic Information System National Museum of Natural History. Washington, D.C. Recuperado de: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=521671#null
dc.relationJamil, A., Musheer, N., & Kumar, M. (2021). Evaluation of biocontrol agents for management of wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici. Archives of Phytopathology and Plant Protection, 54(19-20), 1722-1737.
dc.relationJayaraj, J., Yi, H., Liang, G. H., Muthukrishnan, S., & Velazhahan, R. (2004). Foliar application of Bacillus subtilis AUBS1 reduces sheath blight and triggers defense mechanisms in rice. Journal of Plant Diseases and Protection, 111(2), 115-125.
dc.relationJi, Y., Scott, J. W., Schuster, D. J., & Maxwell, D. P. (2009). Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. Journal of the American Society for Horticultural Science, 134(2), 281-288.
dc.relationKhan, N., Maymon, M., & Hirsch, A. M. (2017). Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms, 5(4), 75
dc.relationKunkel, B. N., & Harper, C. P. (2018). The roles of auxin during interactions between bacterial plant pathogens and their hosts. Journal of Experimental Botany, 69(2), 245-254.
dc.relationLehr, N. A., Schrey, S. D., Bauer, R., Hampp, R., & Tarkka, M. T. (2007). Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytologist, 174(4), 892-903.
dc.relationLiu, H., Brettell, L. E., Qiu, Z., & Singh, B. K. (2020). Microbiome-mediated stress resistance in plants. Trends in Plant Science, 25(8), 733-743.
dc.relationLópez-Marín, L. M. (2017). Manual técnico del cultivo de tomate Solanum lycopersicum (No. IICA F01). Programa Regional de Investigación e Innovación por Cadenas de Valor
dc.relationLudueña, L. M., Anzuay, M. S., Angelini, J. G., McIntosh, M., Becker, A., Rupp, O., ... & Taurian, T. (2018). Strain Serratia sp. S119: A potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms. Applied Soil Ecology, 126, 107-112.
dc.relationMa, K. W., & Ma, W. (2016). Phytohormone pathways as targets of pathogens to facilitate infection. Plant Molecular Biology, 91(6), 713-725.
dc.relationMaggini, V., Mengoni, A., Gallo, E. R., Biffi, S., Fani, R., Firenzuoli, F., & Bogani, P. (2019). Tissue specificity and differential effects on in vitro plant growth of single bacterial endophytes isolated from the roots, leaves and rhizospheric soil of Echinacea purpurea. BMC plant biology, 19(1), 1-9.
dc.relationMandal, S. & Ray, R. 2011. Induced systemic resistance in biocontrol of plant diseases. pp. 241-260. In: Singh, A., Parmar, N. & Kuhad, R. C. (eds.) Bioaugmentation, Biostimulation and Biocontrol. Springer Berlin Heidelberg.
dc.relationMarín-Serna, S., González-Guzmán, J. J., Castaño-Zapata, J., & Ceballos-Aguirre, N. (2014). Respuesta de quince introducciones de tomate tipo cereza (Solanum spp.) a la marchitez vascular (Fusarium oxysporum f. sp. lycopersici Snyder & Hansen). Agronomía, 22(2), 48-50.
dc.relationMartínez-Aguilar, L., Díaz, R., Peña-Cabriales, J. J., Estrada-de Los Santos, P., Dunn, M. F., & Caballero-Mellado, J. (2008). Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Applied and Environmental Microbiology, 74(14), 4574-4579.
dc.relationMaulidia, V., Sriwati, R., Soesanto, L., Hamaguchi, T., & Hasegawa, K. (2021). Endophytic bacteria isolated from higher plant in Aceh, Indonesia, and their chemical compounds activity against Fusarium oxysporum f. sp. lycopersici. Egyptian Journal of Biological Pest Control, 31(1), 1-7.
dc.relationMbofung, G. Y., Hong, S. G., & Pryor, B. M. (2007). Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology, 97(1), 87-98.
dc.relationMoreno Reséndez, A., Carda Mendoza, V., Carrillo, R., Luis, J., Vásquez Arroyo, J., & Cano Ríos, P. (2018). Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68-83
dc.relationNarayanasamy, P. 2008. Molecular biology in plant pathogenesis and disease management. 3 ed. Springer, Netherlands. Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: an illustrated manual for identification.
dc.relationOsborn, T. C., Kramer, C., Graham, E., & Braun, C. J. (2007). Insights and innovations from wide crosses: examples from canola and tomato. Crop science, 47, S-228.
dc.relationRadzki, W., Mañero, F. G., Algar, E., García, J. L., García-Villaraco, A., & Solano, B. R. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104(3), 321-330.
dc.relationReis, V. M., & Teixeira, K. R. D. S. (2015). Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. Journal of basic microbiology, 55(8), 931-949.
dc.relationRestrepo, G. M. (2014). Obtención y evaluación de un preparado líquido como promotor del crecimiento de cultivos de tomate (Solanum lycopersicum L.) empleando la bacteria Gluconacetobacter diazotrophicus. Manizales, Colombia: Doctorado en Ciencias Agrarias, Facultad de Ciencias Agropecuarias, Universidad de Caldas.
dc.relationRick, C. M. (1987). Seedling traits of primary trisomics. Rep Tomato Genet Coop, 37, 60-61.
dc.relationRobertson, L. D., & Labate, J. A. (2007). Genetic resources of tomato (Lycopersicon esculentum Mill.) and wild relatives. Genetic improvement of Solanaceous crops, 2, 25-75.
dc.relationRomero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., ... & Pérez-García, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20(4), 430-440.
dc.relationSaleh, O., Gabr, M., Khalil, M., & Mohamed, E. E. D. (2016). Molecular Variations among some Isolates of Fusarium oxysporum f. sp lycopersici and Response of Different Tomato Cultivars and Seedling Age to Infection. Egyptian Journal of Phytopathology, 44(1), 205-226.
dc.relationSchlemper, T. R., Dimitrov, M. R., Gutierrez, F. A. S., van Veen, J. A., Silveira, A. P., & Kuramae, E. E. (2018). Effect of Burkholderia tropica and Herbaspirillum frisingense strains on sorghum growth is plant genotype dependent. PeerJ, 6, e5346.
dc.relationSelvakumar, G., Mohan, M., Kundu, S., Gupta, A.D., Joshi, P., Nazim, S., Gupta, H.S., 2008. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol. 46, 171–175.
dc.relationSerrato, R. V., Sassaki, G. L., Gorin, P. A., Cruz, L. M., Pedrosa, F. O., Choudhury, B., ... & Iacomini, M. (2008). Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohydrate polymers, 73(4), 564-572.
dc.relationSilva, J. C. D., & Bettiol, W. (2005). Potential of non-pathogenic Fusarium oxysporum isolates for control of Fusarium wilt of tomato. Fitopatologia Brasileira, 30, 409-412.
dc.relationStanley, N. R., Britton, R. A., Grossman, A. D., & Lazazzera, B. A. (2003). Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. Journal of Bacteriology, 185(6), 1951-1957.
dc.relationTeixeira, P. J. P., Colaianni, N. R., Fitzpatrick, C. R., & Dangl, J. L. (2019). Beyond pathogens: microbiota interactions with the plant immune system. Current opinion in microbiology, 49, 7-17.
dc.relationTenorio-Salgado, S., Tinoco, R., Vazquez-Duhalt, R., Caballero-Mellado, J., & Perez-Rueda, E. (2013). Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered, 4(4), 236-243.
dc.relationTsuda, K., & Katagiri, F. (2010). Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current opinion in plant biology, 13(4), 459-465.
dc.relationWalters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology, 95(12), 1368-1373.
dc.relationWang, Q., Liu, J., & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 9, 313.
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.subjectControl biológico
dc.subjectResistencia genética
dc.subjectManejo integrado
dc.subjectEnfermedad de las plantas
dc.titleEfecto de bacterias promotoras de crecimiento vegetal en el control de la marchitez vascular (Fusarium oxysporum f.sp. lycopersici [(Sacc.) W.C. Snyder & H.N. Hansen]) del tomate (Solanum lycopersicum L.)
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución