dc.contributorDuque Castaño, Monica
dc.contributorTrejos Tamayo, Raúl
dc.contributorSuarez Ibarra, Jaime Yesid
dc.creatorLeal Posada, Laura
dc.date2022-11-29T21:56:48Z
dc.date2022-11-29T21:56:48Z
dc.date2022-11-29
dc.date.accessioned2023-09-06T18:27:02Z
dc.date.available2023-09-06T18:27:02Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/18195
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8697543
dc.descriptionIlustraciones, fotos, gráficas
dc.descriptionspa:El patrón de distribución de las abundancias relativas de foraminíferos planctónicos del Cuaternario fue utilizado para realizar una zonación estratigráfica (bioecozonas) e identificar los estadios glaciales e interglaciales en el testigo sedimentario PC-029. Este testigo sedimentario de 4,25 m fue perforado en el mar Caribe cerca al Ridge de Beata, al NW del departamento de la Guajira, Colombia, a una profundidad de la columna de agua de ~3500 a 4000 m. En este estudio fue posible identificar las bioecozonas V, W, X, Y2, Y1 y Z a partir de la presencia y ausencia de las especies dentro del complejo menardii (Globorotalia menardii, Globorotalia tumida y Globorotalia flexuosa), Pulleniatina spp., y Globoconella inflata. Además, las especies Globorotalia truncatulinoides (morfotipo de enrollamiento dextral) y Globorotalia crassaformis permitieron corroborar algunos límites bioestratigráficos. Los resultados obtenidos asignaron una edad al núcleo de 184,78-1,63 ka (Pleistoceno Medio al Holoceno Superior). Se identificaron los Estadios Isotópicos Marinos MIS 6 al MIS 1, los cuales corresponden a dos períodos interglaciales (MIS 5 y 1) y dos períodos glaciales (MIS 6 y 2-4). Asimismo, se analizó la respuesta ecológica de las asociaciones de foraminíferos a los cambios de temperatura durante estos períodos. Los resultados muestran un predominio de las especies asociadas a temperaturas cálidas especialmente en el MIS 5 y 1, mientras que durante los MIS 6, 2 y 4, las especies con afinidad por aguas frías muestran un leve incremento en sus abundancias. Los datos obtenidos sugieren que, si bien las especies frías incrementaron su abundancia durante las épocas glaciales, no hay evidencia de un recambio ecológico significativo durante todo el intervalo de estudio. Por otra parte, se sugiere que la tasa de sedimentación registrada durante el Pleistoceno fue influenciada por la cantidad de nutrientes disponibles en el área de estudio. Estas variaciones fueron registradas en las abundancias de la especie Globigerina bulloides, las cuales fueron relativamente altas en las épocas glaciales y bajas en los períodos interglaciales. La proveniencia de los nutrientes pudo estar relacionada con el sistema de surgencia de la Guajira o la influencia de las aguas Subtropicales Subsuperficiales del Atlántico Tropical. Por lo tanto, se interpreta que estos nutrientes pudieron ser redistribuidos en la cuenca por la influencia de vórtices oceánicos. Finalmente, se sugiere que el uso de la técnica de bioecozonas en testigos sedimentarios del Caribe colombiano es una herramienta útil para datar sedimentos marinos Cuaternarios y permite realizar estimaciones confiables de la tasa de sedimentación. Sin embargo, la estratigrafía isotópica de oxígeno y las dataciones radiométricas son necesarias para refinar las interpretaciones asociadas al modelo de edad.
dc.descriptioneng:The distribution pattern of the relative abundances of Quaternary planktonic foraminifera was used to make a stratigraphic zonation (bioecozones) and identify the glacial and interglacial stages in the sedimentary core PC-029. This 4.25-meter sedimentary core was drilled in the Caribbean Sea near the Beata Ridge, NW of the department of La Guajira, Colombia, at a water column depth of 3500 to 4000 m. In this study, it was possible to identify the V, W, X, Y2, Y1 and Z bioecozones from the presence and absence of the species within the menardii complex (Globorotalia menardii, Globorotalia tumida and Globorotalia flexuosa), Pulleniatina spp., and Globoconella inflata. Furthermore, the species Globorotalia truncatulinoides (dextral coiling morphotype) and Globorotalia crassaformis allowed to corroborate some biostratigraphy limits. The results obtained assigned an age to the core of 184,78 - 1,63 ka (Middle Pleistocene to Late Holocene). Marine Isotopic Stages, MIS 6 to MIS 1 were identified, which correspond to two interglacial periods (MIS 5 and MIS 1) and two glacial periods (MIS 6 and MIS 2-4). In addition, the ecological response of foraminifera associations to temperature changes during these periods was analyzed. The results show a predominance of species associated with warm temperatures, especially in MIS 5 and 1, while during MIS 6, 2 and 4, species with an affinity for cold waters show a slight increase in their abundances. The data obtained suggest that, although the cold species increased their abundance during the ice ages, there is no evidence of a significant ecological turnover during the entire study interval. On the other hand, it is suggested that the sedimentation rate recorded during the Pleistocene was influenced by the amount of nutrients available in the study area. These variations were recorded in the abundances of the species Globigerina bulloides, which were relatively high in the glacial times and low in the interglacial periods. The provenance of the nutrients could be related to the upwelling system of La Guajira or the influence of the Subtropical Underwater of the tropical Atlantic. Therefore, it is interpreted that these nutrients could be redistributed in the basin by the influence of oceanic vortices. Finally, it is suggested that the use of the bioecozones technique in sedimentary cores from the Colombian Caribbean is a useful tool to date Quaternary marine sediments and allows reliable estimates of the sedimentation rate. However, oxygen isotopic stratigraphy and radiometric dating are necessary to refine the interpretations associated with the age pattern.
dc.description1. Introducción / 2. Objetivos / 2.1. Objetivo General / 2.2. Objetivos Específicos / 3. Área de Estudio / 3.1. Localización / 3.2. Contexto Geológico / 3.2.1. Formación de la Placa Caribe / 3.2.2. Evolución temporal de la placa Caribe y el mar Caribe / 3.2.3. Geología actual alrededor del mar Caribe / 3.3. Contexto Oceanográfico / 4. Antecedentes / 4.1. Bioestratigrafía del Cuaternario tardío basada en foraminíferos planctónicos para el océano Atlántico y el mar Caribe / 4.2. Estudios realizados en el área del mar Caribe para el Cuaternario / 5. Materiales y métodos / 5.1. Revisión bibliográfica / 5.2. Extracción y muestreo del pozo PC-029 / 5.3. Preparación de muestras / 9 5.4. Selección y clasificación de foraminíferos planctónicos / 5.5. Determinación de bioecozonas y construcción del modelo de edad / 5.6. Análisis paleoecológico de las asociaciones de foraminíferos planctónicos / 6. Resultados / 6.1. Descripción litológica del pozo PC-029 / 6.2. Taxonomía y distribución de los foraminíferos planctónicos a lo largo del pozo / 6.3. Bioecozonamiento (BZ) para el pozo PC-029 / 7. Discusión / 7.1. Bioecozonamiento y su relación con los estadios isotópicos marinos (MIS-Marine Isotope Stages) / 7.2. Comparación de las edades propuestas con la técnica del nanoplancton calcáreo / 7.3. Variaciones en la tasa de sedimentación del pozo PC-029 / 7.4. Análisis paleoecológico de las asociaciones de foraminíferos planctónicos a lo largo del pozo PC-029 / 7.5. Relación de las abundancias del complejo menardii con los estadios isotópicos marinos MIS 6 - MIS 1 / 8. Conclusiones / 9. Referencias / 10. Anexos
dc.descriptionUniversitario
dc.descriptionGeólogo(a)
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherManizales
dc.publisherGeología
dc.relationAze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., & Pearson, P. N. (2011). A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biological Reviews, 86 (4), 900–927. https://doi.org/10.1111/j.1469- 185X.2011.00178.x
dc.relationBarrero, D., Pardo, A., Vargas, C. A., & Martínez, J. F. (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. First Edition. Agencia Nacional de Hidrocarburos. ISBN: 978-958-98237-0-5.
dc.relationBhonsale, S., & Saraswat, R. (2012). Abundance and size variation of Globorotalia menardii in the Northeastern Indian Ocean during the Late Quaternary. Journal Geological Society of India, 80 (6), 771–782. https://doi.org/10.1007/s12594-012-0207-8
dc.relationBlaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6 (3), 457–474. https://doi.org/10.1214/11-ba618
dc.relationBolli, H. M., Saunders, J. B., & Perch-Nielsen, K. (1985). Plankton Stratigraphy. First Edition. Cambridge University Press. ISBN: 978-0-521-36719-6
dc.relationBoudagher-Fadel, M. K. (2015). An introduction to planktonic foraminifera. In Biostratigraphic and Geological Significance of Planktonic Foraminifera. UCL Press. Second Edition, 1– 28 . https://www.jstor.org/stable/j.ctt1g69xwk.4
dc.relationBroecker, W., & Pena, L. D. (2014). Delayed Holocene reappearance of G . menardii. Paleoceanography, 29 (4), 291–295. https://doi.org/10.1002/2013PA002590
dc.relationBrummer, G. A., & Kučera, M. (2022). Taxonomic review of living planktonic foraminifera. Journal of Micropalaeontology, 41 (1), 29–74. https://doi.org/10.5194/jm-41-29-2022
dc.relationCapotondi, L., Maria Borsetti, A., & Morigi, C. (1999). Foraminiferal ecozones, a high resolution proxy for the late Quaternary biochronology in the central Mediterranean Sea. Marine Geology, 153 (1–4), 253–274. https://doi.org/10.1016/S0025-3227(98)00079-6
dc.relationChristen, J. A., Esquivel, J., Theiler, J., Gough, B., & Karney, C. (2022). Package ‘rbacon’.
dc.relationCLIMAP Project Members. (1976). The Surface of the Ice-Age Earth: Quantitative geologic evidence is used to reconstruct boundary conditions for the climate 18,000 years ago. Science, 191 (4232), 1131–1137. https://doi.org/10.1126/science.191.4232.1131
dc.relationCLIMAP Project Members. (1981). Relative abundance of planktic foraminifera in the 120 kyr time slice reconstruction of sediment core GIK12392-1. Geological Society of America, Map and Chart Series, 36, 18. https://doi.org/https://doi.org/10.1594/PANGAEA.51983
dc.relationCLIMAP Project Members. (2004). Radiocarbon age determinations on sediment core V12-122. PANGAEA. https://doi.org/https://doi.org/10.1594/PANGAEA.186222
dc.relationCorrea-Ramirez, M., Rodriguez-Santana, Á., Ricaurte-Villota, C., & Paramo, J. (2020). The Southern Caribbean upwelling system off Colombia: Water masses and mixing processes. Deep Sea Research Part I: Oceanographic Research Papers, 155, 103145. https://doi.org/10.1016/j.dsr.2019.103145
dc.relationCorrea Metrio, A., Dechnik, Y., Lozano García, S., & Caballero, M. (2014). Detrended correspondence analysis: A useful tool to quantify ecological changes from fossil data sets. Boletín de La Sociedad Geológica Mexicana, 66 (1), 135–143. https://doi.org/10.18268/BSGM2014v66n1a10
dc.relationCosta, K. B., Camillo Jr, E., Santarosa, A. C. A., Iwai, F. S., Quadros, J. P. D., Leipnitz, I. I., & Toledo, F. A. D. L. (2018). Menardiiform planktonic foraminifera stratigraphy from Middle Pleistocene to Holocene in the Western South Atlantic. Revista Brasileira de Paleontologia, 21 (3), 225–237. https://doi.org/10.4072/rbp.2018.3.03
dc.relationCruz Orosa, I., Blanco Moreno, J., & Vázquez Taset, Y. M. (2005). Análisis de la Evolución Tectónica y Paleogeografía de la Cuenca Central, Cuba. Consultado el 13 de Junio de 2022. https://www.monografias.com/trabajos39/evolucion-tectonica-cuba/evolucion-tectonicacuba4.shtml#refer
dc.relationDahl, K. A., Repeta, D. J., & Goericke, R. (2004). Reconstructing the phytoplankton community of the Cariaco Basin during the Younger Dryas cold event using chlorin steryl esters. Paleoceanography, 19 (1) https://doi.org/10.1029/2003PA000907
dc.relationde Porta, J. (2003). La formación del istmo de Panamá: Su incidencia en Colombia. Revista de la Academia Colombiana de Ciencias, 27 (103), 191–216.
dc.relationDillon, W. P., Edgar, N. T., Scanlon, K. M., & Klitgord, K. D. (1987). Geology of the Caribbean. Oceanus, 30 (4), 42–52.
dc.relationDuque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3 (1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-W
dc.relationDuque-Castaño, M. L., & Osorio Tabares, L. C. (2016). Bioestratigrafía y reconstrucción paleoceanográfica del intervalo Burdigaliense-Tortoniense por medio de foraminíferos planctónicos de los pozos P16 Y P18, Caribe Colombiano. (Tesis de Pregrado, Universidad de Caldas).
dc.relationEmiliani, C. (1966). Paleotemperature Analysis of Caribbean Cores P6304-8 and P6304-9 and a Generalized Temperature Curve for the past 425,000 Years. The Journal of Geology, 74 (2), 109–124. https://doi.org/10.1086/627150
dc.relationEmiliani, C. (1969). A New Paleontology. Micropaleontology, 15 (3), 265–300. https://doi.org/10.2307/1484928
dc.relationEricson, D. B., & Wollin, G. (1968). Pleistocene Climates and Chronology in Deep-Sea Sediments. Science, 162 (3859), 1227–1234. https://doi.org/10.1126/science.162.3859.1227
dc.relationEscalona, A., & Mann, P. (2011). Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean-South American plate boundary zone. Marine and Petroleum Geology, 28 (1), 8–39. https://doi.org/10.1016/j.marpetgeo.2010.01.016
dc.relationFajardo, G. E. (1979). Surgencia costera en las proximidades de la península colombiana de la Guajira. Boletín Científico CIOH, 2, 7–19. https://doi.org/10.26640/22159045.6
dc.relationFerreira, F., Leipnitz, I. I., Vicalvi, M. A., & Sanjinés, A. E. S. (2012). Zoneamento paleoclimático do Quaternário da bacia de Santos com base em foraminíferos planctônicos. Revista Brasileira de Paleontologia, 15 (2), 173–188. https://doi.org/10.4072/rbp.2012.2.06
dc.relationFerreira, F., Silva, C. G., Oliveira, A. S., Chiessi, C. M., Kern, A. K., Baker, P. A., Dwyer, G., Rigsby, C. A., Huang, E., & Tian, J. (2021). Biochronostratigraphy of the western equatorial Atlantic for the last 1.93 Ma. Quaternary International, 598, 24–37. https://doi.org/10.1016/j.quaint.2021.04.042
dc.relationFox, P. J., & Heezen, B. C. (1975). Geology of the Caribbean Crust. In The Gulf of Mexico and the Caribbean. Springer, Boston, MA, 30 (4), 421–466. https://doi.org/10.1007/978-1- 4684-8535-6_10
dc.relationFox, P. J., Ruddiman, W. F., Ryan, W. B., & Heezen, B. C. (1970). The geology of the Caribbean crust, I: Beata Ridge. Tectonophysics, 10 (5–6), 495–513. https://doi.org/10.1016/0040- 1951(70)90041-7
dc.relationFrisch, W., Meschede, W., & Sick, M. (1992). Origin of the Central American ophiolites: Evidence from paleomagnetic results. Geological Society of America Bulletin, 104, 1301–1314.
dc.relationFrozza, C. F., Pivel, M. A. G., Suárez‐Ibarra, J. Y., Ritter, M. N., & Coimbra, J. C. (2020). Bioerosion on Late Quaternary Planktonic Foraminifera Related to Paleoproductivity in the Western South Atlantic. Paleoceanography and Paleoclimatology, 35 (8). https://doi.org/10.1029/2020PA003865
dc.relationGaby, M. L., & Gupta, B. K. (1985). Late Quaternary benthic foraminifera of the Venezuela Basin. Marine Geology, 68 (1–4), 125–144. https://doi.org/10.1016/0025-3227(85)90008-8
dc.relationGarcía-Casco, A., Iturralde-Vinent, M. A., & Pindell, J. (2008). Latest Cretaceous Collision/Accretion between the Caribbean Plate and Caribeana: Origin of Metamorphic Terranes in the Greater Antilles. International Geology Review, 50 (9), 781–809. https://doi.org/10.2747/0020-6814.50.9.781
dc.relationGarcía-Reyes, A., & Dyment, J. (2021). Structure, age, and origin of the Caribbean Plate unraveled. Earth and Planetary Science Letters, 571, 117100. https://doi.org/10.1016/j.epsl.2021.117100
dc.relationGonzález, C., Dupont, L. M., Mertens, K., & Wefer, G. (2008). Reconstructing marine productivity of the Cariaco Basin during marine isotope stages 3 and 4 using organicwalled dinoflagellate cysts. Paleoceanography, 23 (3). https://doi.org/10.1029/2008PA001602
dc.relationGordon, A. L. (1967). Circulation of the Caribbean Sea. Journal of Geophysical Research, 72 (24), 6207–6223. https://doi.org/10.1029/jz072i024p06207
dc.relationHaq, B. U., & Boersma, A. (1998). Introduction to Marine Micropaleontology. Second Edition. Elsevier. https://doi.org/10.1016/B978-0-444-82672-5.X5000-4
dc.relationHecht, A. D. (1973). Faunal and Oxygen Isotopic Paleotemperatures and the Amplitude of Glacial/Interglacial Temperature Changes in the Equatorial Atlantic, Caribbean Sea and Gulf of Mexico. Quaternary Research, 3 (4), 671–690. https://doi.org/10.1016/0033- 5894(73)90037-9
dc.relationHemleben, C., Spindler, M., & Anderson, O. R. (1989). Modern Planktonic Foraminifera. Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-3544-6
dc.relationHill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: An improved ordination technique. Vegetatio, 42 (1–3), 47–58. https://doi.org/10.1007/BF00048870
dc.relationHodell, D. A., Anselmetti, F. S., Ariztegui, D., Brenner, M., Curtis, J. H., Gilli, A., Grzesik, D. A., Guilderson, T. J., Müller, A. D., & Bush, M. B. (2008). An 85-ka record of climate change in lowland Central America. Quaternary Science Reviews, 27 (11–12), 1152–1165. https://doi.org/10.1016/j.quascirev.2008.02.008
dc.relationHüls, M., & Zahn, R. (2000a). Age determination of sediment core M35003-4. PANGAEA. https://doi.org/https://doi.org/10.1594/PANGAEA.734151
dc.relationHüls, M., & Zahn, R. (2000b). Millennial-scale sea surface temperature variability in the western tropical North Atlantic from planktonic foraminiferal census counts. Paleoceanography, 15 (6), 659–678. https://doi.org/10.1029/1999PA000462
dc.relationIaccarino, S. M., Premoli Silva, I., Biolzi, M., Foresi, L. M., Lirer, F., Turco, E., & Petrizzo, M. R. (2007). Practical Manual of Neogene Planktonic Foraminifera. International School on Plaktonic Foraminifera.
dc.relationINVEMAR-ANH. (2010). Biodiversidad del margen continental del Caribe colombiano. Serie de Publicaciones Especiales, Invemar, Santa Marta, (20), 458. https://doi.org/10.13140/RG.2.1.1293.8329
dc.relationIturralde-Vinent, M. A. (2004). The Conflicting Paleontologic versus Stratigraphic Record of the Formation of the Caribbean seaway. In The Circum-Gulf of Mexico and the Caribbean Hydrocarbon Habitats, Basin Formation and Plate Tectonics. American Association of Petroleum Geologists, 1–14. https://doi.org/10.1306/m79877c3
dc.relationIturralde-Vinent, M. A. (2005). La Paleogeografía del Caribe y sus Implicaciones para la Biogeografía Histórica: Cretácico a Eoceno Superior. Revista Del Jardín Botánico Nacional, Cuba, 49–78
dc.relationJames, K. H. (2005a). A simple synthesis of Caribbean geology. Caribbean Journal of Earth Science, 39, 69–82.
dc.relationJames, K. H. (2005b). Arguments for and against the Pacific origin of the Caribbean Plate: Discussion, finding for an inter-American origin. Caribbean Journal of Earth Science, 39, 47–67.
dc.relationKameo, K., Shearer, M. C., Droxler, A. W., Mita, I., Watanabe, R., & Sato, T. (2004). Glacial– interglacial surface water variations in the Caribbean Sea during the last 300 ky based on calcareous nannofossil analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 212 (1–2), 65–76. https://doi.org/10.1016/j.palaeo.2004.05.017
dc.relationKennett, J. P., & Srinivasan, M. S. (1983). Neogene Planktonic Foraminifera: A Phylogenetic Atlas. Hutchinson Ross Publishing Company, Stroudsburg, Pennsylvania, 1–265.
dc.relationKimoto, K. (2015). Planktic Foraminifera. In Marine Protists: Diversity and Dynamics. Springe, Tokyo JP, 129–178. https://doi.org/10.1007/978-4-431-55130-0
dc.relationKnappertsbusch, M. (2007). Morphological variability of Globorotalia menardii (planktonic foraminifera) in two DSDP cores from the Caribbean Sea and the Eastern Equatorial Pacific. Carnets de Géologie (A04), 1–34. https://doi.org/10.4267/2042/8455
dc.relationKucera, M. (2007). Planktonic Foraminifera as Tracers of Past Oceanic Environments. Developments in Marine Geology, 1, 213–262. https://doi.org/10.1016/S1572- 5480(07)01011-1
dc.relationLidz, B. (1972). Globorotalia crassaformis morphotype variations in Atlantic and Caribbean deepsea cores. Micropaleontology, 18 (2), 194–211. https://doi.org/10.2307/1484994
dc.relationLidz, L. (1966). Deep-Sea Pleistocene Biostratigraphy. Science, 154 (3755), 1448–1452. https://doi.org/10.1126/science.154.3755.1448
dc.relationLisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20 (1), PA1003. https://doi.org/10.1029/2004PA001071
dc.relationLisiecki, L. E., & Stern, J. V. (2016). Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography, 31 (10), 1368–1394. https://doi.org/10.1002/2016PA003002
dc.relationLunt, D. J., Valdes, P. J., Haywood, A., & Rutt, I. C. (2007). Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Climate Dynamics, 30 (1), 1–18. https://doi.org/10.1007/s00382-007-0265-6
dc.relationMagnusson, A. (2020). Package “areaplot”
dc.relationMalfait, B. T., & Dinkelman, M. G. (1972). Circum-Caribbean tectonic and igneous activity and the evolution of the Caribbean plate. Geological Society of America Bulletin, 83 (2), 251– 272.
dc.relationMann, P. (1999). Caribbean sedimentary basins: classification and tectonic setting from jurassic to present. In Sedimentary Basins of the World. Elsevier, 4, 3–31 https://doi.org/10.1016/S1874-5997(99)80035-5
dc.relationMartin, R. E., Johnson, G. W., Neff, E. D., & Krantz, D. W. (1990). Quaternary planktonic foraminiferal assemblage zones of the northeast Gulf of Mexico, Colombia Basin (Caribbean Sea), and tropical Atlantic Ocean: Graphic correlation of microfossil and oxygen isotope datums. Paleoceanography, 5 (4), 531–555. https://doi.org/10.1029/PA005i004p00531
dc.relationMartin, R. E., Neff, E. D., Johnson, G. W., Krantz, D. E., Taylor, G., & Dockery, D. T. (1990). Biostratigraphic Expression of Sequence Boundaries in the Pleistocene: the Ericson and Wollin Zonation Revisited. In Sequence Stratigraphy as an Exploration Tool: Concepts and Practices in the Gulf Coast, 11, 155–171. https://doi.org/10.5724/gcs.90.11.0229
dc.relationMartínez-Abarca, L. R., Lozano-García, S., Ortega-Guerrero, B., Chávez-Lara, C. M., TorresRodríguez, E., Caballero, M., Brown, E. T., Sosa-Nájera, S., Acosta-Noriega, C., & Sandoval-Ibarra, V. (2021). Environmental changes during MIS6-3 in the Basin of Mexico: A record of fire, lake productivity history and vegetation. Journal of South American Earth Sciences, 109, 103231. https://doi.org/10.1016/j.jsames.2021.103231
dc.relationMartinez, J. I., Mora, G., & Barrows, T. T. (2007). Paleoceanographic conditions in the western Caribbean Sea for the last 560 kyr as inferred from planktonic foraminifera. Marine Micropaleontology, 64 (3–4), 177–188. https://doi.org/10.1016/j.marmicro.2007.04.004
dc.relationMora, J. A., Oncken, O., Le Breton, E., Ibánez-Mejia, M., Faccenna, C., Veloza, G., Vélez, V., de Freitas, M., & Mesa, A. (2017). Linking Late Cretaceous to Eocene tectonostratigraphy of the San Jacinto fold belt of NW Colombia with Caribbean plateau collision and flat subduction. Tectonics, 36 (11), 2599–2629. https://doi.org/10.1002/2017TC004612
dc.relationMora, J. A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., & de Freitas, M. (2018). Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Marine and Petroleum Geology, 97, 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032
dc.relationMora, J. A. (2018). Upper Cretaceous to Recent plate tectonics , basin formation and tectonostratigraphy of the Lower Magdalena valley and San Jacinto fold belt of Northwestern Colombia : implications for hydrocarbon systems. (Tesis Doctoral, Freien Universität Berlin)
dc.relationMorard, R., Füllberg, A., Brummer, G.-J. A., Greco, M., Jonkers, L., Wizemann, A., Weiner, A. K. M., Darling, K., Siccha, M., Ledevin, R., Kitazato, H., de Garidel-Thoron, T., de Vargas, C., & Kucera, M. (2019). Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PloS one, 14 (12), e0225246. https://doi.org/10.1371/journal.pone.0225246
dc.relationMoreno-Sanchez, M., & Pardo-Trujillo, A. (2003). Stratigraphical and Sedimentological Constraints on Western Colombia Implications on the Evolution of the Caribbean Plate. In The Circum-Gulf of Mexico and the Caribbean Hydrocarbon Habitats, Basin Formation and Plate Tectonics. American Association of Petroleum Geologists. https://doi.org/10.1306/M79877C40
dc.relationMortyn, P. G., & Martinez-Boti, M. A. (2007). Planktonic foraminifera and their proxies for the reconstruction of surface-ocean climate parameters. Contribution to Science, 371–383. https://doi.org/10.2436/20.7010.01.14
dc.relationNerlich, R., Clark, S. R., & Bunge, H.-P. (2014). Reconstructing the link between the Galapagos hotspot and the Caribbean Plateau. GeoResJ, 1, 1–7. https://doi.org/10.1016/j.grj.2014.02.001
dc.relationO’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., … Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2 (8), 1–12. https://doi.org/10.1126/sciadv.1600883
dc.relationOksanen, J., Simpson, G. L., Blanchet, G., Kindt, R., Legendre, P., & Minchin, P. R. (2022). Vegan: Community Ecology Package (2.6-2). The R Project for Statistical Computing. https://cran.r-project.org/web/packages/vegan/index.html
dc.relationParada-Ruffinatti, C. (1996). Foraminiferos del Pleistoceno - Holoceno en el Caribe colombiano. Biblioteca Jose Jeronimo Triana, Instituto de Ciencias Naturales - Museo de Historia Natural.
dc.relationParada-Ruffinatti, C., & Diaz-Rincon, W. (1993). Informe final - Bioestratigrafía y Paleoecología, sobre la base de Foraminíferos, de doce núcleos de perforación obtenidos del Caribe Colombiano.
dc.relationParamo, J., Correa, M., & Núñez, S. (2011). Evidencias de desacople físico-biológico en el sistema de surgencia en La Guajira, Caribe colombiano. Revista de Biología Marina y Oceanografía, 46 (3), 421–430. https://doi.org/10.4067/S0718-19572011000300011
dc.relationPardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627
dc.relationPareja, L. F., Díaz, D. C., Rodríguez, Á. T., Villegas, N. L., & Pérez, I. E. (2013). Análisis del transporte y bombeo de Ekman en el Caribe Colombiano entre 1999 y 2009. Boletín Científico CIOH, 31, 3–12.
dc.relationPawlowski, J. (2009). Foraminifera. In Encyclopedia of Microbiology. Elsevier, 646–662. https://doi.org/10.1016/B978-012373944-5.00361-8
dc.relationPeterson, L. C., Haug, G. H., Hughen, K. A., & Röhl, U. (2000). Rapid changes in the hydrologic cycle of the tropical atlantic during the last glacial. Science, 290 (5498), 1947–1951. https://doi.org/10.1126/science.290.5498.1947
dc.relationPetró, S. M. (2019). Guia para classificação de foraminíferos planctônicos recentes. Porto Alegre: IGEO/UFRGS. ISBN: 978-85-61424-72-5
dc.relationPindell, J. L., & Barrett, S. F. (1990). Geological evolution of the Caribbean region; A platetectonic perspective. In The Caribbean Region. Geological Society of America, 405–432. https://doi.org/10.1130/DNAG-GNA-H.405
dc.relationPindell, J., Maresch, W. V., Martens, U., & Stanek, K. (2012). The Greater Antillean Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution. International Geology Review, 54 (2), 131–143. https://doi.org/10.1080/00206814.2010.510008
dc.relationPivel, M. A. G., Santarosa, A. C. A., Toledo, F. A. L., & Costa, K. B. (2013). The Holocene onset in the southwestern South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 164–172. https://doi.org/10.1016/j.palaeo.2013.01.014
dc.relationPrell, W. L., & Damuth, J. E. (1978). The climate-related diachronous disappearance of Pulleniatina obliquiloculata in late quaternary sediments of the Atlantic and Caribbean. Marine Micropaleontology, 3 (3), 267–277. https://doi.org/10.1016/0377-8398(78)90031- 2
dc.relationRailsback, L. B. (2017). Fundamentals of Quaternary Science. http://railsback.org/FQS/FQS.html
dc.relationRailsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G., & Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111, 94–106. https://doi.org/10.1016/j.quascirev.2015.01.012
dc.relationRincón, D. A., & Martínez, J. I. (2004). El Evento “Younger Dryas” En el Norte de Suramérica. Boletín de Geología, 26 (42), 39–55. https://doi.org/10.18273/revbol
dc.relationRincón Martínez, D. A. (2004). Condiciones paleoceanográficas del mar Caribe suroccidental (0- 60 ka BP), estimadas a partir del registro de asociaciones de foraminíferos bentónicos y planctónicos del núcleo ODP-999A (Tesis Doctoral, Universidad EAFIT)
dc.relationRoss, M. I., & Scotese, C. R. (1988). A hierarchical tectonic model of the Gulf of Mexico and Caribbean region. Tectonophysics, 155 (1-4), 139–168
dc.relationRui, H.-C., Yang, J.-S., Zheng, J.-P., Llanes Castro, A. I., Liu, F., Wu, Y., Wu, W.-W., Valdes Mariño, Y., & Masoud, A. E. (2022). Early Cretaceous subduction initiation of the protoCaribbean plate: geochronological and geochemical evidence from gabbros of the MoaBaracoa ophiolitic massif, Eastern Cuba. Lithos, 418–419 (106674). https://doi.org/10.1016/j.lithos.2022.106674
dc.relationSchiebel, R., & Hemleben, C. (2017). Planktic Foraminifers in the Modern Ocean. In Planktic Foraminifers in the Modern Ocean. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50297-6
dc.relationSchmidt, M. W., Spero, H. J., & Lea, D. W. (2004). Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature, 428 (6979), 160–163. https://doi.org/10.1038/nature02346
dc.relationSchmidt, M. W., Spero, H. J., & Vautravers, M. J. (2006). Western Caribbean sea surface temperatures during the late Quaternary. Geochemistry, Geophysics, Geosystems, 7 (2). https://doi.org/10.1029/2005GC000957
dc.relationSchmiedl, G. (2019). Use of Foraminifera in Climate Science. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.735
dc.relationSchmuker, B., & Schiebel, R. (2002). Planktic foraminifers and hydrography of the eastern and northern Caribbean Sea. Marine Micropaleontology, 46 (3-4), 387–403. https://doi.org/10.1016/s0377-8398(02)00082-8
dc.relationSexton, P. F., & Norris, R. D. (2011). High latitude regulation of low latitude thermocline ventilation and planktic foraminifer populations across glacial–interglacial cycles. Earth and Planetary Science Letters, 311 (1–2), 69–81. https://doi.org/10.1016/j.epsl.2011.08.044
dc.relationShackleton, N. J. (1969). The last interglacial in the marine and terrestrial records. Proceedings of the Royal Society of London. Series B. Biological Sciences, 174 (1034), 135–154.
dc.relationShackleton, S., Menking, J. A., Brook, E., Buizert, C., Dyonisius, M. N., Petrenko, V. V., Baggenstos, D., & Severinghaus, J. P. (2021). Evolution of mean ocean temperature in Marine Isotope Stage 5-4. Climate of the Past, 17 (5), 2273–2289. https://doi.org/https://doi.org/10.5194/cp-2021-8
dc.relationShin, I. C., & Yi, H.-I. (2001). Holocene paleoceanography in the southeast Venezuela Basin, Caribbean Sea. Geosciences Journal, 5 (2), 101–122. https://doi.org/10.1007/BF02910416
dc.relationSilva Barroso, P. G., Bardají, T., Roquero, E., Baena-Preysler, J., Cearreta, A., Rodríguez-Pascua, M. A., Rosas, A., Zazo, C., & Goy, J. L. (2017). El Periodo Cuaternario: La Historia Geológica de la Prehistoria. Cuaternario y Geomorfología, 31 (3–4), 113–154. https://doi.org/10.17735/cyg.v31i3-4.55588
dc.relationSpezzaferri, S., Olsson, R. K., & Hemleben, C. (2018). Taxonomy, Biostratigraphy, and Phylogeny of Oligocene to Lower Miocene Globigerinoides and Trilobatus. Cushman Foundation Special Publication, 46, 269–306
dc.relationSuárez-Ibarra, J. Y., Petró, S. M., Frozza, C. F., Freire, T. M., Portilho-Ramos, R. D. C., & Pivel, M. A. G. (2021). Time-spatial boundaries of bioecozonations (planktonic foraminifera) in the latest Quaternary: a case study from the western South Atlantic. Revue de Micropaléontologie, 73, 100554. https://doi.org/10.1016/j.revmic.2021.100554
dc.relationThomas, F. C., & Murney, M. G. (1985). Techniques for extraction of foraminifers and ostracodes from sediment samples. Canadian Technical Report of Hydrography and Ocean Sciences, 54, vi+24.
dc.relationThunell, R. C., & Reynolds, L. A. (1984). Sedimentation of planktonic foraminifera: seasonal changes in species flux in the panama basin. Micropaleontology, 30 (3), 243-262. https://doi.org/10.2307/1485688
dc.relationToledo, F. A. L., Quadros, J. P., Camillo, E., Santarosa, A. C. A., Flores, J.-A., & Costa, K. B. (2016). Plankton biochronology for the last 772,000 years from the western South Atlantic Ocean. Marine Micropaleontology, 127, 50–62. https://doi.org/10.1016/j.marmicro.2016.07.002
dc.relationUniCaldas-DIMAR. (2019). Informe de análisis de facies y ambientes de depósito de piston core en la cuenca Guajira Offshore. Integración sedimentológica y paleontológica. Informe interno IIES-Manizales, 1–9.
dc.relationUriarte Cantolla, A. (2010). Historia del clima de la Tierra. Segunda Edición. ISBN: 978-84-457- 3037-9
dc.relationValencia Gil, N. J. (2018). Condiciones paleoceanográficas superficiales a partir de foraminíferos planctónicos del Cuaternario tardío: Bloques Merayana (Chocó) y Egoro (Tumaco), Pacífico Colombiano. (Tesis de Pregrado, Universidad de Caldas)
dc.relationVicalvi, M. A. (1999). Zoneamento bioestratigráfico e paleoclimático do Quaternário superior do talude da Bacia de Campos e Platô de São Paulo adjacente, com base em foraminíferos planctônicos (Tese de doutorado, Universidade Federal do Rio de Janeiro)
dc.relationVicalvi, M. A. (2013). Distribuição estratigráfica quantitativa de foraminíferos planctônicos no Quaternário da margem continental do Sudeste brasileiro. Boletim de Geociencias - Petrobras, 21 (2), 357–368.
dc.relationVogelsang, Sarnthein, M., & Pflaumann, U. (2001). d18O Stratigraphy, chronology, and sea surface temperatures of Atlantic sediment records (GLAMAP-2000 Kiel). Berichte – Reports, 13. https://doi.org/https://doi.org/10.2312/reports-ifg.2001.13
dc.relationVogelsang, E., Sarnthein, M., & Pflaumann, U. (2001). Age control of sediment core M35027-1. PANGAEA. https://doi.org/https://doi.org/10.1594/PANGAEA.59701
dc.relationWade, B. S., Berggren, W. A., Wade, B. S., Pearson, P. N., Hemleben, C., Olsson, R. K., Premecfucek, V., Leckie, R. M., Fox, L., Fraass, A., Olsson, R. K., Pearson, P. N., Silva, I. P., Spezzaferri, S., & Wade, B. S. (2018). Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation of Foraminiferal Research, Special Publication, 46, 1-524.
dc.relationWerne, J. P., Hollander, D. J., Lyons, T. W., & Peterson, L. C. (2000). Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela. Paleoceanography, 15 (1), 19–29. https://doi.org/10.1029/1998PA000354
dc.relationWilson, B. (2012). Biogeography and ecostratigraphy of Late Quaternary planktonic foraminiferal taphocoenoses in the Leeward Islands, Lesser Antilles, NE Caribbean Sea. Marine Micropaleontology, 86–87, 1–10. https://doi.org/10.1016/j.marmicro.2011.12.002
dc.relationWilson, B., & Hayek, L.-A. C. (2019). Planktonic foraminifera as indicators of oceanographic complexity on the southern Caribbean Sea continental shelf. In Estuarine, Coastal and Shelf Science, 228 (55), 106359. https://doi.org/10.1016/j.ecss.2019.106359
dc.relationWilson, J. T. (1966). Are the structures of the Caribbean and Scotia arcs analogous to ice rafting?. Earth and Planetary Science Letters, 1 (5), 335–338.
dc.relationYoung, J. R., Wade, B. S., Huber, B., Petrizzo, M.R., Falzoni, F., Gilardoni, S.E & Bown, P. R. (2017). pforams@mikrotax website. http://www.mikrotax.org/pforams.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectRidge de Beata
dc.subjectGlobigerina bulloides
dc.subjectBioecozona
dc.subjectComplejo menardii
dc.subjectBioestratigrafía
dc.subjectCiencias de la tierra
dc.titleBioecozonamiento del núcleo PC-029 a partir del estudio de foraminíferos planctónicos Cuaternarios del Caribe colombiano: Implicaciones paleoecológicas y paleoceanográficas
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeText
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución