dc.contributorRodríguez-Rey, Ghennie T
dc.contributorGutiérrez-Cárdenas, Paul David Alfonso
dc.contributorGrupo de Ecología y Diversidad de Anfibios y Reptiles (Categoría B)
dc.creatorRojas Rivera, María Alejandra
dc.date2023-02-07T19:40:00Z
dc.date2023-02-07T19:40:00Z
dc.date2023-02-06
dc.date.accessioned2023-09-06T18:26:32Z
dc.date.available2023-09-06T18:26:32Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/18766
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8697413
dc.descriptionIlustraciones, fotos, mapas, gráficas
dc.descriptionspa:Las condiciones climáticas durante el Plioceno y el Pleistoceno afectaron la distribución, la diversificación y la dinámica demográfica de los anfibios. Bajo esta premisa, combinamos secuencias genéticas junto con reconstrucciones paleoclimáticas para evaluar el impacto de esas oscilaciones sobre la biogeografía y demografía histórica del anuro Rhaebo colomai. Adicionalmente, evaluamos la variabilidad y la estructura genética de esta especie presente en la Reserva Natural Río Ñambí (Nariño, Colombia - RNRÑ), utilizando secuencias del gen mitocondrial COI de individuos recolectados en cuatro transectos (tres quebradas y un bosque), separados entre sí por distancias lineales entre 170-495 m. Rhaebo colomai divergió de su especie hermana (R. olallai) hace ~3.1 M.a. durante el Plioceno en el área ancestral del sur de los Andes del Norte en Ecuador. El área de distribución de R. colomai en la zona ecuatorial se comprimió durante el Last Glacial Maximum (34750–27900) formando refugios, en los cuales esta especie sobrevivió. Posteriormente, ocurrió un evento de dispersión desde el área ancestral hacia Colombia, donde la población de R. colomai en la RNRÑ experimentó una expansión demográfica que inició hace ~12 980 años. Las secuencias genéticas analizadas de 40 individuos de Ñambí mostraron una variabilidad genética total baja (H = 0.276; π = 0.00238) y un flujo génico restricto entre los individuos de la quebrada dos y los demás sitios de muestreo debido probablemente a la presencia de una franja de bosque amplia (2.9 ha) con una pendiente un poco pronunciada que podría estar limitando el movimiento de los individuos hacia los demás transectos.
dc.descriptioneng:We combine genetic sequences with paleoclimatic reconstructions to evaluate the impact of the conditions climatic during the Pleistocene and Pliocene on the biogeography and historical demography of Rhaebo colomai. Additionally, we evaluated the variability and genetic structure of this species present in the Reserva Natural Río Ñambí (Nariño, Colombia - RNRÑ), using COI mtDNA from individuals collected in four transects (three streams and one forest), separated from each other by linear distances between 170-495 m. Rhaebo colomai diverged from its sister species (R. olallai) ~3.1 Mya ago during the Pliocene in the southern ancestral area of the Northern Andes in Ecuador. The distribution area of R. colomai in the Ecuadorian region was compressed during the Last Glacial Maximum (~35–28 ka) forming refugia, in which this species survived. Subsequently, a dispersal event occurred from the ancestral area to Colombia. Rhaebo colomai in the RNRÑ experienced a demographic expansion that began ~13 ka. The species showed a low total genetic variability and a restricted gene flow between the individuals from one of the streams and those of the other transects, probably due to the presence of a wide strip of forest with a slightly steep slope that could be limiting the movement of individuals.
dc.descriptionINTRODUCCIÓN GENERAL / BIBLIOGRAFÍA / CAPÍTULO 1. Historia evolutiva y estructura genética poblacional de Rhaebo colomai (Amphibia: Bufonidae), una especie amenazada de Colombia y Ecuador / RESUMEN / 1. INTRODUCCIÓN / 2. MATERIALES Y MÉTODOS / 2.1. Área de estudio / 2.2. Recolección, extracción y amplificación de muestras / 2.3. Historia evolutiva / Tiempos de divergencia y reconstrucción de áreas ancestrales / Historia demográfica / Modelamiento de nicho / 2.4. Estructuración genética y variabilidad poblacional de Rhaebo colomai en Colombia / 3. RESULTADOS / 3.1. Historia evolutiva / Tiempos de divergencia y reconstrucción de áreas ancestrales / Historia demográfica / Modelamiento de nicho / 3.2. Estructuración genética y variabilidad poblacional de Rhaebo colomai en Colombia / 4. DISCUSIÓN / 4.1. Historia evolutiva / 4.2. Estructuración genética y variabilidad poblacional de Rhaebo colomai en Colombia / 4.3. Implicaciones para la conservación / 5. BIBLIOGRAFÍA / 6. MATERIAL SUPLEMENTARIO / 6.1. Tabla S1. Secuencias de especies y números de acceso en el GenBank
dc.descriptionMaestría
dc.descriptionMagister en Ciencias Biológicas
dc.descriptionEcología de Anfibios y reptiles
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherManizales
dc.publisherMaestría en Ciencias Biológicas
dc.relationAlford RA, Dixon PM, Pechmann JHK. 2001. Global amphibian population declines. Nature 412: 499–500.
dc.relationAlvarado-Serrano DF, Knowles LL. 2013. Ecological niche models in phylogeographic studies: applications, advances and precautions. Molecular Ecology Resources 14: 233–248.
dc.relationAllentoft ME, Siegismund HR, Briggs L, Andersen LW. 2009. Microsatellite analysis of the natterjack toad (Bufo calamita) in Denmark: populations are islands in a fragmented landscape. Conservation Genetics 10: 15–28.
dc.relationAllentoft ME, O´Brien J. 2010. Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2: 47–71.
dc.relationAllouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.
dc.relationAngelone S, Kienast F, Holderegger R. 2011. Where movement happens: scale‐dependent landscape effects on genetic differentiation in the European tree frog. Ecography 34: 714–722.
dc.relationAmaro RC, Rodrigues MT, Yonenaga-Yassuda Y, Carnaval AC. 2012. Demographic processes in the montane Atlantic rainforest: molecular and cytogenetic evidence from the endemic frog Proceratophrys boiei. Molecular Phylogenetics and Evolution 62: 880–888.
dc.relationArroyo-Lambaer D, Chapman H, Hale M, Blackburn D. 2018. Conservation genetics of two threatened frogs from the Mambilla highlands, Nigeria. Plos one 13: e0202010.
dc.relationAvise JC. 2009. Phylogeography: retrospect and prospect. Journal of Biogeography 36: 3–15.
dc.relationArteaga A, Pyron RA, Peñafiel N, Romero-Barreto P, Culebras J, Bustamante L, Yánez Muñoz M, Guayasamin JM. 2016. Comparative phylogeography reveals cryptic diversity and repeated patterns of cladogenesis for amphibians and reptiles in Northwestern Ecuador. PloS one 11: e0151746.
dc.relationBáez AM, Gasparini ZB. 1979. The South American herpetofauna: an evaluation of the fossil record. In: Duellman WE, ed. The South American herpetofauna: its origin, evolution and dispersal. Lawrence, Kansas, USA: Museum of Natural History, University of Kansas Monograph No.7: 29–55. 51
dc.relationBacca N, Flórez C. 2019. Construcción participativa del plan de manejo de la reserva natural río ñambí-colombia. Fundación Ecológica Los Colibríes de Altaquer FELCA, Critical Ecosystem Partnership Fund CEPF.
dc.relationBaker PA, Fritz SC, Battisti DS, Dick CW, Vargas OM, Asner GP, Martin RE, Wheatley A, Prates I. 2020. Beyond Refugia: New insights on Quaternary climate variation and the evolution of biotic diversity in tropical South America. In: Rull V, Carnaval A, eds. Neotropical diversification: Patterns and processes. Fascinating Life Sciences. Springer, Cham
dc.relationBandeira LN, Villalobos F, Werneck FP, Peterson AT, Anciães M. 2021. Different elevational environments dictate contrasting patterns of niche evolution in Neotropical Pithecopus treefrog species. Biotropica 53: 1042–1051.
dc.relationBeebee TJC. 2005. Conservation genetics of amphibians. Heredity 95: 423–427.
dc.relationBeebee TJC, Rowe G. 2000. Microsatellite analysis of natterjack toad Bufo calamita Laurenti populations: consequences of dispersal from a Pleistocene refugium. Biological Journal of the Linnean Society 69: 367–381.
dc.relationBenjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57: 289–300.
dc.relationBlaustein AR, Wake DB, Sousa WP. 1994. Amphibians declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation Biology 8: 60–71.
dc.relationBurrowes PA, Joglar RL. 1999. Population genetics of the Puerto Rican cave-dwelling frog, Eleutherodactylus cooki. Journal Herpetology 33: 706–711
dc.relationBreiman L. 2001. Random forests. Mach Learn 45: 5–32.
dc.relationBroennimann O, Mráz P, Petitpierre B, Guisan A, Müller‐Schärer H. 2014. Contrasting spatio‐temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. Journal of Biogeography 41: 1126–1136
dc.relationBrown JL, Hill DJ, Dolan AM, Carnaval AC, Haywood AM. 2018. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 5: 1–9.
dc.relationCabe PR, Page RB, Hanlon TJ, Aldrich ME, Connors L, Marsh DM. 2007. Fine-scale population differentiation and gene flow in a terrestrial salamander Plethodon cinereus living in continuous habitat. Heredity 98: 53–60.
dc.relationCaicedo-Martínez LS, Castaño-Bernal N, Ramírez-Castaño VA. 2021. Rhaebo haematiticus (Cope, 1862). Sapo de Truando, sapo hojarasquero. Catálogo de Anfibios y Reptiles de Colombia 7: 81–89.
dc.relationCarnaval AC, Moritz C. 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography 35: 1187–1201.
dc.relationCarnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323: 785–789.
dc.relationCarlson AE. 2013. The Younger Dryas Climate Event. In: Elias SA, ed. The Encyclopedia of Quaternary Science, vol. 3, pp. 126-134. Amsterdam: Elsevier.
dc.relationChen SY, Zhang YJ, Wang XL, Sun JY, Xue Y, Zhang P, Zhou H, Qu L-H. 2012. Extremely low genetic diversity indicating the endangered status of Ranodon sibiricus (Amphibia: Caudata) and implications for phylogeography. Plos one 7: e33378.
dc.relationClark W, Christopher K. 2001. Chapter 5. An Introduction to DNA: Spectrophotometry, Degradation, and the ‘Frankengel’ Experiment. Tested studies for laboratory teaching 22: 81– 99. In: Karcher SJ, ed. Tested studies for laboratory teaching. Proceedings of the 22nd Workshop/Conference of the Association of Biology Laboratory Education (ABLE), 489pp.
dc.relationColoma LA, Ron SR, Frenkel C, Pazmiño-Armijos G, Carrión JC. 2020. Rhaebo haematiticus. In: Ron SR, Merino-Viteri A, Ortiz DA, Eds. 2019. Anfibios del Ecuador. Museo de Zoología, Pontificia Universidad Católica del Ecuador.
dc.relationCorander J, Cheng L, Marttinen P, Sirén J, Tang J. 2013. BAPS: Bayesian analysis of population structure. Finland: Department of Mathematics and Statistics, University of Helsinki.
dc.relationCortés-Bedoya S. 2019. Dinámica poblacional de Rhaebo colomai (Hoogmoed 1985, Amphibia: Bufonidae): amenazas y estrategias para su conservación en el suroccidente de Nariño, Colombia. Unpublished Tesis de Maestría. Universidad de Manizales. Manizales, Colombia.
dc.relationde Carvalho TR, Moraes LJCL, Lima AP, Fouquet A, Peloso PLV, Pavan D, Drummond LO, Rodrigues MT, Giaretta AA, Gordo M, Neckel-Oliveira S, Haddad CFB. 2021. Systematics and historical biogeography of neotropical foam-nesting frogs of the Adenomera heyeri clade (Leptodactylidae), with the description of six new Amazonian species. Zoological Journal of the Linnean Society 191: 395–433.
dc.relationDixo M, Metzger JP, Morgante JS, Zamudio KR. 2009. Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic coastal forest. Biological Conservation 142: 1560–1569.
dc.relationDodd CK, Jr. 2009. Amphibian ecology and conservation. A handbook of techniques. Oxford, UK: Oxford University Press, 556.
dc.relationDolan AM, Haywood AM, Hunter SJ, Tindall JC, Dowsett HJ, Hill DJ, Pickering SJ. 2015. Modelling the enigmatic late Pliocene glacial event—Marine Isotope Stage M2. Global and Planetary Change 128: 47–60.
dc.relationDonnelly MA, Guyer CJ, Juterbock E, Alford RA. 1994. Techniques for marking amphibians. In: Heyer WR, Donnelly MA, McDiarmid RW, Hayek, L-AC, Foster MS, eds. Measuring and monitoring biological diversity: Standard methods for amphibians. Washington, D.C.: Smithsonian Institution Press, 277–284.
dc.relationDuellman WE. 1999. Distribution patterns of amphibians in South America. In: Duellman WE, ed. Patterns of distribution of amphibians: a global perspective. Baltimore: The Johns Hopkins University Press, 255–328.
dc.relationDuellman WE, Trueb L. 1994. Biology of amphibians. Baltimore: The Johns Hopkins University Press.
dc.relationDrummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
dc.relationEdgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.
dc.relationElmer KR, Dávila JA, Lougheed SC. 2007. Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni. BMC evolutionary biology 7: 1–14.
dc.relationElith J, Kearney M, Phillips S. 2010. The art of modelling range‐shifting species. Methods in ecology and evolution 1: 330–342.
dc.relationEstoup A, Wilson IJ, Sullivan C, Cornuet JM, Moritz C. 2001. Inferring population history from microsatellite and enzyme data in serially introduced cane toads, Bufo marinus. Genetics 159: 1671–1687.
dc.relationEstoup A, Baird SJ, Ray N, Currat M, Cornuer JM, Santos, Beaumont MA, Excoffier, L. 2010. Combining genetic, historical, and geographical data to reconstruct the dynamics of bioinvasions: application to the cane toad Bufo marinus. Molecular ecology resources 10: 86– 1331 901.
dc.relationExcoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.
dc.relationExcoffier L, Lischer HEL. 2010. Arlequin suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567
dc.relationFenolio DB, Mendelson JR, III, Lamar WW. 2012. A new diagnosis and description of variation among adult Rhinella ceratophrys (Boulenger) (Amphibia: Bufonidae), with notes on ecology and distribution. South American Journal of Herpetology 7: 9–15.
dc.relationFilippelli GM, Flores JA. 2009. From the warm Pliocene to the cold Pleistocene: A tale of two oceans. Geology 37: 959–960.
dc.relationFitzpatrick BM. 2009. Power and sample size for nested analysis of molecular variance. Molecular Ecology, 18: 3961–3966.
dc.relationFong JJ, Li PP, Yang BT, Zhou ZY, Leaché AD, Min MS, Waldman B. 2016. Influence of geology and human activity on the genetic structure and demography of the Oriental fire-bellied toad (Bombina orientalis). Molecular phylogenetics and Evolution 97: 69–75.
dc.relationFong JJ, Yang BT, Li PP, Waldman B, Min MS. 2020. Phylogenetic systematics of the water toad (Bufo stejnegeri) elucidates the evolution of semi-aquatic toad ecology and Pleistocene Glacial Refugia. Frontiers Ecology Evolution 7: 523.
dc.relationFu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.
dc.relationFukutani K, Matsui M, Van Tran D, Nishikawa K. 2022. Genetic diversity and demography of Bufo japonicus and Bufo torrenticola (Amphibia: Anura: Bufonidae) influenced by the Quaternary climate. PeerJ 10: e13452
dc.relationFunk W.C, Forsman, E.D, Johnson M, Mullins T.D, Haig S. M. 2010. Evidence for recent population bottlenecks in northern spotted owls (Strix occidentalis caurina). Conservation Genetics 11:1023–1021.
dc.relationFriedman JH. 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics 29: 1189–1232.
dc.relationFreeland JR. 2005. Molecular Ecology. Wiley, South Sussex.
dc.relationFrost DR. 2021. Amphibian Species of the World: An Online Reference. Version 6.1 (sep 2021). Electronic Database accessible at https://amphibiansoftheworld.amnh.org/index. php. New York, USA: American Museum of Natural History.
dc.relationGarcía-R JC, Crawford AJ, Mendoza AM, Ospina O, Cárdenas H, Castro F. 2012. Comparative phylogeography of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the southern Andes of Colombia. Plos one 7: e46077.
dc.relationGarcía‐Rodríguez A, Velasco JA, Villalobos F, Parra‐Olea G. 2021. Effects of evolutionary time, speciation rates and local abiotic conditions on the origin and maintenance of amphibian montane diversity. Global Ecology and Biogeography: 30: 674–684.
dc.relationGarner TWJ, Pearman PB, Angelone S. 2004. Genetic diversity across a vertebrate species' range: a test of the central-peripheral hypothesis. Molecular Ecology 13: 1047–1053.
dc.relationGómez LF, Gallego B, Naranjo LG. 2017. Atlas socioambiental de las cuencas transfronterizas Mira y Mataje: aportes para su ordenamiento y gestión integral Colombia- Ecuador. Cali: WWF-Colombia.
dc.relationGraham CH, Moritz C, Williams SE. 2006. Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences 103: 632–636.
dc.relationGrant WS, Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. Journal Heredity 89: 415–425.
dc.relationGuarnizo CE, Cannatella DC. 2013. Genetic divergence within frog species is greater in topographically more complex regions. Journal of Zoological Systematics and Evolutionary Research 51: 333–340.
dc.relationGutiérrez A, Carillo E, Rojas SV. 2004. Guía ilustrada de los colibríes de la Reserva Natural Río Ñambí. Bogotá: FPAA, Felca, Ecotono.
dc.relationHajdas I, Bonani G, Moreno PI, Ariztegui D. 2003. Precise radiocarbon dating of late-glacial cooling in mid-latitude South America. Quaternary Research 59: 70–78.
dc.relationHamilton M.B. 2009. Population Genetics. Chichester, UK: Wiley-Blackwell.
dc.relationHaffer J. 1969. Speciation in amazonian forest birds. Science 165: 131–137.
dc.relationHaffer J. 1982. General aspects of the refuge theory. In: Prance GT, ed. Biological diversification in the tropics: 6–24. Columbia University Press.
dc.relationHanley JA, McNeil BJ. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29–36.
dc.relationHeine K. 1995a. Late Quaternary glacier advances in the Ecuadorian Andes: a preliminary report. Quaternary of South America and Antarctic 9: 1–22.
dc.relationHeine K. 1995b. Bedded slope deposits with respect to the late Quaternary glacial sequence in the high Andes of Ecuador and Bolivia. In: Slaymaker, O, Ed. Steepland Geomorphology. J. Wiley & Sons, Chichester, pp. 257–278.
dc.relationHeine K. 2000. Tropical South America during the last glacial maximum: evidence from glacial, periglacial and fluvial records. Quaternary International 72: 7–21.
dc.relationHeled J, Drummond AJ. 2012. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Systematic Biology 6: 138–149.
dc.relationHewitt GM. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.
dc.relationHewitt GM. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.
dc.relationHewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London B 359: 183–195.
dc.relationHijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. 2017. dismo: Species distribution modeling. R package version 1.4.2.
dc.relationHijmans RJ, Cameron SE, Parra JE, Jones PG, Jarvis A. 2005. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.
dc.relationHoban SM, Gaggiotti OE, Bertorelle G. 2013. The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation-based study. Molecular Ecology 22: 3444–3450.
dc.relationHoldridge LR. 1967. Life Zone Ecology. Tropical Science Center, San Jose. 206 pp.
dc.relationHooghiemstra H, van der Hammen T. 2004. Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical transactions of the Royal Society of London B 359: 173–180.
dc.relationHoogmoed MS. 1985. A new genus of toads (Amphibia: Anura: Bufonidae) from the Pacific slopes of the Andes in northern Ecuador and southern Colombia, with the description of two new species. Zoologische Mededelingen 59: 251–274.
dc.relationHoogmoed MS. 1989. On the identity of some toads of the genus Bufo from Ecuador, with additional remarks on Andinophryne colomai Hoogmoed, 1985 (Amphibia: Anura, Bufonidae). Zoologische Verhandlelingen 250: 1–32
dc.relationHoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.
dc.relationHutchison DW, Templeton AR. 1999. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53: 1898–1914.
dc.relationHutter CR, Lambert SM, Wiens JJ. 2017. Rapid diversification and time explain amphibian richness at different scales in the Tropical Andes, Earth’s most biodiverse hotspot. The American Naturalist 190: 828–843.
dc.relationiNaturalist. 2022a. iNaturalist Research-grade Observations. iNaturalist.org. Occurrence dataset https://doi.org/10.15468/ab3s5x accessed via GBIF.org on 2022-10-01. https://www.gbif.org/occurrence/3859918443).
dc.relationiNaturalist. 2022b. iNaturalist Research-grade Observations. iNaturalist.org. Occurrence dataset https://doi.org/10.15468/ab3s5x accessed via GBIF.org on 2022-10-01. https://www.gbif.org/occurrence/3039392786)
dc.relationJaramillo C. 2019. 140 million years of tropical biome evolution. In: Gómez J, Pinilla–Pachón AO, eds. The Geology of Colombia, Volume 2 Mesozoic. Publicaciones Geológicas Especiales 36. Bogotá, Colombia: Servicio Geológico Colombiano 209–236.
dc.relationKarger DN, Nobis MP, Normand S, Graham CH, Zimmermann NE. 2021. CHELSA TraCE21k V1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past Discussions: 1-27.
dc.relationKerkhoff AJ, Moriarty PE, Weiser MD. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences 111: 8125–8130
dc.relationKobayashi S, Abe S, Matsuki R. 2013. Genetic structure of a Japanese brown frog (Rana japonica) population implies severe restriction of gene flow caused by recent urbanization in a satoyama landscape. Mitochondrial DNA 24: 697–704.
dc.relationKobayashi S, Abe S, Tomita M, Matsuki R. 2018. Fine-scale genetic structure and estimation of gene flow of the Japanese brown frog Rana japonica in a Satoyama landscape on the Western Side of Inba Lake, Eastern Japan. Current Herpetology 37: 11-22.
dc.relationKong WS. 1996. The distribution of dicotyledons in time and space in the Korean Peninsula. The Korean Journal of Quaternary Research 10: 1–18.
dc.relationLampert KP, Rand AS, Mueller UG, Ryan MJ. 2003. Fine-scale genetic pattern and evidence for sex-biased dispersal in the túngara frog, Physalaemus pustulosus. Molecular Ecology 12: 3325–3334.
dc.relationLanfear R, Calcott B, Ho SY, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701.
dc.relationLeigh J, Bryant WD. 2015. PopART: Full-feature software for haplotype network construction. Methods Ecology Evolution 6: 1110–1116.
dc.relationLiu GW, Leopold EB. 1994. Climatic comparison of Miocene pollen floras from northern East- China and south-central Alaska, USA. Paleogeography, Paleoclimatology and Paleobotany 108: 217–228.
dc.relationLynch RL, Sebastian K, Ayala-Varela F, Hamilton PS, Ron SR. 2014. Rediscovery of Andinophryne olallai Hoogmoed, 1985 (Anura, Bufonidae), an enigmatic and endangered Andean toad. Amphibian & Reptile Conservation 8: 1–7.
dc.relationLyra ML, Haddad CFB, de Azeredo-Espin AML. 2016. Meeting the challenge of DNA barcoding Neotropical amphibians: polymerase chain reaction optimization and new COI primers. Molecular Ecology Resources 17: 966–980.
dc.relationMaciel NM, Collevatti RG, Colli GR, Schwartz EF. 2010. Late Miocene diversification and phylogenetic relationships of the huge toads in the Rhinella marina (Linnaeus, 1758) species group (Anura: Bufonidae). Molecular Phylogenetics and Evolution 57: 787–797.
dc.relationMcCullagh P, Nelder JA. 2019. Generalized linear models. Routledge.
dc.relationMaddison WP, Maddison DR. 2010. Mesquite: a modular system for evolutionary analysis, Version 2.73.
dc.relationManel S, Williams CH, Ormerod SJ. 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931.
dc.relationMartínez-Monzón A, Cuenca-Bescós G, Bisbal-Chinesta J, Blain H. 2021. One million years of diversity shifts in amphibians and reptiles in a Mediterranean landscape: resilience rules the Quaternary. Palaeontology 64:673–686.
dc.relationMendoza AM, Bolívar-García W, Vázquez-Domínguez E, Ibáñez R, Parra Olea G. 2019. The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). PeerJ 7: e6115.
dc.relationMiller MA, Pfeiffer W, Schwartz T. 2012. The CIPRES Science Gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond. Chicago, Illinois, USA: Association for Computing Machinery 1–8.
dc.relationMiller SA, Dykes DD, Polesky HF. 1988. A simple salting procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16: 215.
dc.relationMims MC, Phillipsen IC, Lytle DA, Kirk EEH, Olden JD. 2015. Ecological strategies predict associations between aquatic and genetic connectivity for dryland amphibians. Ecology 96: 1371– 1382.
dc.relationMona S, Ray N, Arenas M, Excoffier L. 2014. Genetic consequences of habitat fragmentation during a range expansion. Heredity 112: 291–299.
dc.relationMontoya-Marín M. 2019. Variabilidad genética y estructura poblacional del sapo endémico de Colombia Osornophryne percrassa (Ruíz-Carranza y Hernández-Camacho, 1976) en Risaralda, Caldas y Quindío. Unpublished Trabajo de grado. Facultad de Ciencias Básicas. Programa de Biología. Corporación Universitaria de Santa Rosa de Cabal UNISARC. Santa Rosa de Cabal.
dc.relationMoraes LJ, Werneck FP, Réjaud A, Rodrigues MT, Prates I, Glaw F, Kok PJR, Ron SR, Chaparro JC, Osorno-Muñoz M, Dal Vechio F, Recoder RS, Marquez-Souza S, Rojas RR, Demay L, Hrbek T, Fouquet A. 2022. Diversification of tiny toads (Bufonidae: Amazophrynella) sheds light on ancient landscape dynamism in Amazonia. Biological Journal of the Linnean Society 136: 75–91.
dc.relationMoritz C. 1994. Applications of mitochondrial DNA analysis in conservation: a critical review. Molecular Ecology 3: 401–411.
dc.relationMorrone JJ. 2014. Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota. Cladistics 30: 202–214.
dc.relationMueses-Cisneros JJ, Cisneros-Heredia DF, McDiarmid RW. 2012. A new Amazonian species of Rhaebo (Anura: Bufonidae) with comments on Rhaebo glaberrimus (Günther, 1869) and Rhaebo guttatus (Schneider, 1799). Zootaxa 3447: 22–40.
dc.relationMurphy MA, Evans JS, Storfer A. 2010. Quantifying Bufo boreas connectivity in Yellowstone National Park wi.th landscape genetics. Ecology 91: 252–261.
dc.relationNavas CA, Otani L. 2007. Physiology, environmental change, and anuran conservation. Phyllomedusa 6: 83–103.
dc.relationNaimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191–203.
dc.relationNaimi B, Araujo, MB. 2016. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39: 368–375.
dc.relationNei M, Maruyama T, Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.
dc.relationNewnham RM, Lowe DJ. 2000. Fine-resolution pollen record of late-glacial climate reversal from New Zealand. Geology 28: 759–762.
dc.relationNuñez JJ, Wood NK, Rabanal FE, Fontanella FM, Sites JW Jr. 2011. Amphibian phylogeography in the Antipodes: Refugia and postglacial colonization explain mitochondrial haplotype distribution in the Patagonian frog Eupsophus calcaratus (Cycloramphidae). Molecular Phylogenetics and Evolution 58: 343–352.
dc.relationOksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens HH, Szoecs E, Wagner H. 2013. Package vegan version 2: 1–295.
dc.relationPaz A, González A, Crawford AJ. 2019. Testing effects of Pleistocene climate change on the altitudinal and horizontal distributions of frogs from the Colombian Andes: a species distribution modeling approach. Frontiers of Biogeography 11: e37055.
dc.relationPeacock MM, Beard KH, O’Neill EM, Kirchoff VS, Peters MB. 2009. Strong founder effects and low genetic diversity in introduced populations of Coqui frogs. Molecular Ecology 18: 3603–3615.
dc.relationPeery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Beer E, Robinson S, Vásquez-Carrillo SC, Pauli JN, Palsbøll PJ. 2012. Reliability of genetic bottleneck tests for detecting recent population declines. Molecular Ecology 21: 3403–3418.
dc.relationPeltier WR, Fairbanks RG. 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25: 3322–3337.
dc.relationPereyra MO, Blotto BL, Baldo D, Chaparro JC, Ron SR, Elias-Costa AJ, Iglesias PP, Venegas PJ, Thomé MTC, Ospina-Sarria JJ, Maciel NM, Rada M, Kolenc F, Borteiro FC, Rivera-Correa M, Rojas-Runjaic FJM, Moravec J, De La Riva I, Wheeler WC, Castroviejo-Fisher S, Grant T, Haddad CFB, Faivovich J. 2021. Evolution in the genus Rhinella: a total evidence phylogenetic analysis of Neotropical true toads (Anura: Bufonidae). Bulletin of the American Museum of Natural History 447: 1–156.
dc.relationPortik DM, Papenfuss TJ. 2015. Historical biogeography resolves the origins of the enemic Arabian toad lineages (Anura: Bufonidae): evidence for ancient vicariance and dispersal events with the Horn of Africa and South Asia. BMC Evolutionary Biology 15: 152.
dc.relationPhillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling 190: 231–259.
dc.relationPramuk JB, Robertson T, Sites JW, Noonan BP. 2008. Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae). Global Ecology Biogeography 17: 72–83.
dc.relationPrance GT. 1981. A review of the phytogeographic evidence for Pleistocene climate changes in the Neo tropics. Annals of the Missouri Botanical Garden 69:594–624.
dc.relationQiu YX, Fu CX, Comes HP. 2011. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution 59: 225–244.
dc.relationQuintero I, Wiens JJ. 2013. What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades. Global Ecology and Biogeography 22: 422–432.
dc.relationR Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relationRambaut A. 2014. FigTree version 4.2. A graphical viewer of phylogenetic trees. Available from left angle bracket http://tree.bio.ed.ac.uk/software/figtree/right angle bracket.
dc.relationRambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer.
dc.relationRamírez-Barahona S, Eguiarte LE. 2013. The role of glacial cycles in promoting genetic diversity in the Neotropics: the case of cloud forests during the Last Glacial Maximum. Ecology and Evolution 3: 725–738.
dc.relationRamírez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A. 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179: 555–567.
dc.relationRamos-Onsis SE, Rozas J. 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19: 2092–2100.
dc.relationRamos EKS, de Magalhães RF, Sari EHR, Rosa AHB, Garcia PCA, Santos FR. 2018. Population genetics and distribution data reveal conservation concerns to the sky island endemic Pithecopus megacephalus (Anura: Phyllomedusidae). Conservation Genetics 19: 99– 110.
dc.relationRavelo AC, Dekens PS, McCarthy M. 2006. Evidence for El Niño–like conditions during the Pliocene. Geological Society of America Today 16: 4–11.
dc.relationRay N, Currat M, Excoffier L. 2003. Intra-deme molecular diversity in spatially expanding populations. Molecular Biology and Evolution 20: 76–86.
dc.relationReyes-Puig C, Bittencourt-Silva GB, Sánchez MT, Wilkinson M, Streicher JW, Maddock ST, Kotharambath R, Müller H, Angiolani Larrea FN, Almeida-Reinoso D, Ron SR, Cisneros-Heredia DF. 2019. Rediscovery of the endangered Carchi Andean Toad, Rhaebo colomai (Hoogmoed, 1985), in Ecuador, with comments on its conservation status and extinction risk. Check List 15: 415–419.
dc.relationRhoads EA, Williams PK, Krane CM. 2017. High inbreeding and low connectivity among Ambystoma texanum populations in fragmented Ohio forests. Ecology and evolution 7: 11135– 11147.
dc.relationRobertson JM, Lips KR, Heist EJ. 2008. Fine scale gene flow and individual movements among subpopulations of Centrolene prosoblepon (Anura: Centrolenidae). Revista de Biología Tropical 56: 13–26.
dc.relationRodríguez A, Börner M, Pabijan M, Gehara M, Haddad CF, Vences M. 2015. Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions. Evolutionary Ecology 29: 765–785.
dc.relationRogers AR, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552–569.
dc.relationRon SR, Mueses-Cisneros JJ, Gutiérrez-Cárdenas PDA, Rojas-Rivera A, Lynch RL, Rocha CFD, Galarza G. 2015. Systematics of the endangered toad genus Andinophryne (Anura: Bufonidae): phylogenetic position and synonymy under the genus Rhaebo. Zootaxa 3947: 347– 366.
dc.relationRonquist F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46: 195–203.
dc.relationRonquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liang, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
dc.relationRosche C, Heinicke S, Hensen I, Silantyeva MM, Stolz J, Gröning S, Wesche K. 2018. Spatio- environmental determinants of the genetic structure of three steppe species in a highly fragmented landscape. Basic and Applied Ecology 28: 48–59.
dc.relationRowe GTJC, Beebee TJC, Burke T. 2000. A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations. Oikos 88: 641–651.
dc.relationRozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology Evolution 34: 3299–3302.
dc.relationRull V. 2020. Neotropical Diversification: Historical Overview and Conceptual Insights. In: Rull V, Carnaval A, eds. Neotropical diversification: Patterns and processes. Fascinating Life Sciences. Springer, Cham.
dc.relationSalaman P. 2001. The study of an understorey avifauna community in an Andean premontane pluvial forest. Unpublished Thesis, Wolfson College, University of Oxford, Oxford.
dc.relationSanchíz B. 1998. Salientia. Handbuch der Paläoherpetologie. In: Wellnhofer P, ed. Munich: Verlag Dr. Friedrich Pfeil 1–275.
dc.relationSandberger-Loua L, Rödel MO, Feldhaar H. 2018. Gene-flow in the clouds: landscape genetics of a viviparous, montane grassland toad in the tropics. Conservation Genetics 19: 169–180.
dc.relationSantana-Cornélio G, Araújo-de-Oliveira E, Magalhães-Xavier K, Barros-da-Silva GW, Ribeiro Rodrigues LR, Hernández-Ruz EJ. 2020. La estructura genética de Pristimantis latro (Anura: Craugastoridae) refleja rasgos de su historia de vida. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 44: 729–739.
dc.relationSavage JM. 2002. The amphibians and reptiles of Costa Rica. A herpetofauna between two continents, between two seas. Chicago: The University of Chicago Press, 934 pp.
dc.relationShcheglovitova M, Anderson RP. 2013. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecological Modelling 269: 9–17.
dc.relationSmith TB, Kinnison MT, Strauss SY, Fuller TL, Carroll SP. 2014. Prescriptive evolution to conserve and manage biodiversity. Annual Review of Ecology, Evolution, and Systematics 45: 1–22.
dc.relationStynoski JL, Castro E, Vargas Ramirez O. 2013. Rhaebo haematiticus (litter toad) and Craugastor fitzingeri (Fitzinger's rain frog) reproductive behavior. Herpetological Review 44: 129–130.
dc.relationSuchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: vey016.
dc.relationTajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetic 123: 585–595.
dc.relationTamura K, Dudley J, Nei M, Kumar S. 2016. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599.
dc.relationTempleton AR, Shaw K, Routman E, Davis SK. 1990. The Genetic Consequences of Habitat Fragmentation. Annals of the Missouri Botanical Garden 77: 13–27.
dc.relationThomé MTC, Zamudio KR, Giovanelli JG, Haddad CF, Baldissera FA Jr, Alexandrino J. 2010. Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest. Molecular Phylogenetics and Evolution 55: 1018–1031.
dc.relationThompson JD, Higgins DG, Gibson TJ. 1994. CLUSTALW improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.
dc.relationTihen JA. 1965. A review of New World fossil bufonids. American Midland Naturalist 68: 1–50
dc.relationVan Bocxlaer I, Loader SP, Roelants K, Biju SD, Menegon M, Bossuyt F. 2010. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 372: 679–682.
dc.relationVanzolini PE, Williams EE. 1970. South American anoles: the geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria, Iguanidae). Arquivos de Zoologia 19:125–298.
dc.relationVasconcelos-Tiago S, Nascimento Bruno TM, Prado Vitor HM. 2018. Expected impacts of climate change threaten the anuran diversity in the Brazilian hotspots. Ecology and Evolution 8: 7894–7906.
dc.relationVásquez DC, Correa L, Pastenes R, Palma E, Méndez MA. 2013. Low phylogeographic structure of Rhinella arunco (Anura: Bufonidae), an endemic amphibian from the Chilean Mediterranean hotspot. Zoological Studies 52: 1–11.
dc.relationVelasco JA, Estrada F, Calderón-Bustamante O, Swingedouw D, Ureta C, Gay C, Defrance D. 2021. Synergistic impacts of global warming and thermohaline circulation collapse on amphibians. Communications Biology 4: 141.
dc.relationVitt LJ, Caldwell JP. 2014. Herpetology: an introductory biology of amphibians and reptiles. Fourth edition. London: Elsevier, 757 pp.
dc.relationVuilleumier BS. 1971. Pleistocene changes in the fauna and flora of South America. Science 173: 771–780.
dc.relationWang IJ. 2009. Fine‐scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul). Molecular Ecology 18: 3847–3856.
dc.relationWang B, Jiang J, Xie F, Li C. 2012. Postglacial colonization of the Qinling Mountains: phylogeography of the swelled vent frog (Feirana quadranus). Plos one 7: e41579.
dc.relationWang IJ. 2012. Environmental and topographic variables shape genetic structure and effective population sizes in the endangered Yosemite toad. Diversity and Distributions 18: 1033–1041.
dc.relationWang IJ. 2013. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67: 3403–3411.
dc.relationWang WJ, McKay BD, Dai CY, Zhao N, Zhang RY, Qu YH, Song G, Li S, Liang W, Yang XJ, Pasquet E, Lei FM. 2013. Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus). Journal of Biogeography 40: 1156–1169.
dc.relationWarren DL, Seifert SN. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21: 335– 342.
dc.relationWells KD. 2007. The ecology and behavior of amphibians. Chicago: The University of Chicago Press, 1148 pp.
dc.relationWiens JJ. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58: 193–197.
dc.relationWiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519–539.
dc.relationWiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies JT, Grytnes J-A, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology letters 13: 1310–1324.
dc.relationYánez-Muñoz MH, Batallas D, Franco-Mena D, Meza-Ramos PA, Oyagata LA, Padilla D, Paucar C, Reyes-Puig JP; Rodríguez MA, Urgilés-Merchán MA, Vega-Yánez M. 2020. Anfibios en los Ecosistemas Andino-Tropicales de la provincia del Carchi. Serie de Publicaciones del Gobierno Autónomo Descentralizado Provincial del Carchi y el Instituto Nacional de Biodiversidad. 14:1–340. Quito, Ecuador: INABIO – GADPC.
dc.relationYánez-Muñoz MH, Reyes-Puig JP, Batallas-Revelo D, Broaddus C, Urgilés-Merchán M, Cisneros-Heredia DF, Guayasamin JM. 2021. A new Andean treefrog (Amphibia: Hyloscirtus bogotensis group) from Ecuador: an example of community involvement for conservation. PeerJ 9: e11914.
dc.relationYang SJ, Dong HL, Lei FM. 2009. Phylogeography of regional fauna on the Tibetan Plateau: a review. Progress in Natural Science 19: 789–799.
dc.relationYu Y, Blair C, H XY. 2020. RASP 4: Ancestral state reconstruction tool FOR multiple genes and characters. Molecular Biology and Evolution 37: 604–606.
dc.relationZeisset I, Beebee TJC. 2008. Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity 10: 109–119.
dc.relationZhao C, Jiang J, Xie F, Li C, Zhao T. 2022. Assessment of Amphibians Vulnerability to Climate Change in China. Frontiers in Ecology and Evolution 10.
dc.relationZink RM, Barrowclough GF. 2008. Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology 17: 2107–2121.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectADN mitocondrial
dc.subjectDemografía histórica
dc.subjectEstructura genética histórica
dc.subjectModelamiento
dc.subjectPleistoceno
dc.subjectPlioceno
dc.subjectReserva río Ñambí.
dc.subjectLast Glacial Maximum
dc.subjectGenética animal
dc.titleHistoria evolutiva y estructura genética poblacional de Rhaebo Colomai (AMPHIBIA: BUFONIDAE), una especie amenazada de Colombia y Ecuador
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución