dc.contributorMurcia, Hugo
dc.contributorDayana Schonwalder P
dc.creatorSánchez Torres, Laura
dc.date2022-08-10T22:24:20Z
dc.date2022-08-10T22:24:20Z
dc.date2022-08-10
dc.date.accessioned2023-09-06T18:24:38Z
dc.date.available2023-09-06T18:24:38Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/17914
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8696889
dc.descriptionspa:El Campo Volcánico Monogenético Samaná corresponde al vulcanismo más septentrional de la cadena volcánica de Los Andes y se encuentra localizado en el departamento de Caldas, Colombia, en la Cordillera Central. Este campo alberga al menos siete volcanes entre efusivos (domos de lava Pela Huevos, Piamonte, Morrón y Guadalupe), explosivos (maar San Diego y cono de toba El Escondido) y un edificio volcánico sin definir (Norcasia). La ubicación del campo está por encima de los 5°N en donde se ha propuesto un cambio en el ángulo de subducción de la placa Nazca bajo la Suramericana. En esta zona la subducción se ha evidenciado que es plana y por ende no volcanogénica; a pesar de esto, este trabajo evidencia que el vulcanismo es más común. Este estudio, utiliza técnicas de petrografía, química mineral, química de roca total, estimaciones geotermobarométricas, con el objetivo de caracterizar composicionalmente los volcanes, así como análisis geocronológicos de los volcanes del Campo Volcánico Monogenético Samaná para reconstruir su evolución geológica. Los análisis indican que todos los volcanes presentan rocas porfiríticas con masa fundamental vítrea y en algunos casos microcristalina y criptocristalina; también presentan comúnmente texturas glomeroporfiríticas y texturas de desequilibrio como zonación, textura en tamiz y bordes de reacción en los diferentes cristales. Mineralógicamente, se reconoció que plagioclasa (An26-74) y anfíbol (magensiohastingsita, tschermakita y en ocasiones magnesihornblenda), son las fases más abundantes. Piroxeno (Wo2-45 En41-76 Fs10-28) está presente en los volcanes Norcasia y Pela Huevos, mientras que olivino (Fo82-88) está presente en los volcanes Pela Huevos y Guadalupe. Biotita se reconoció en los volcanes San Diego, El Escondido, Morrón y Guadalupe, mientras que cuarzo solo se encontró en los volcanes San Diego y El Escondido. Óxidos de Fe-Ti (Usp7-99 Mag1-95 e Ilm64-91 Hem1-91) están presentes como fase menor en todos los volcanes. Químicamente, los volcanes son de composición andesítica a dacítica, de afinidad calco-alcalina, indicando ambientes típicos de subducción. A partir de los análisis geotermobarométricos, fue posible determinar que las condiciones de cristalización para plagioclasa fueron de 943 – 891°C y 0,8 – 0,14 GPa, para anfíbol de 987 – 810°C y 0,8 – 0,19 GPa, para piroxeno de 1192 – 1147 °C y 0,8 – 0,5 GPa y para óxidos de Fe-Ti de 871 – 687°C. Toda esta información permite sugerir múltiples procesos fisicoquímicos del magma en su ascenso a superficie, así como una evolución diferencial a partir de una fuente magmática en común para todos los volcanes. Cristalización fraccionada fue el principal proceso por el cual los magmas evolucionaron, tanto durante el ascenso como por estancamientos a niveles corticales. Las condiciones de cristalización de las diferentes fases establecen que piroxeno fue la primera fase en cristalizar (entre 32 y 19 km de profundidad), seguido de anfíbol y plagioclasa (entre 31 y 6 km de profundidad); los cristales de biotita y cuarzo se estima que se formaron a condiciones más superficiales, al igual que óxidos de Fe-Ti que corresponden a la última fase en cristalizar. El estancamiento de los magmas, favoreció también diferentes grados de asimilación de la roca caja. Adicionalmente, se propone que una zona de acumulación en la corteza media fue afectada por recargas magmáticas generando procesos de mezcla de magmas e incorporando antecristales de olivino. Es a partir de esta zona de estancamiento, que los magmas ascendieron a través de diferentes pulsos y de diferentes diques para formar cada uno de los volcanes monogenéticos del campo. Finalmente, las edades conocidas hasta el momento para algunos de los volcanes (153 – 16 ka) evidencian un carácter reciente y potencialmente activo del campo con fuertes implicaciones de amenaza para la región.
dc.descriptioneng:The Samaná Monogenetic Volcanic Field corresponds to the northernmost volcanism of the Andes volcanic chain and is located in the department of Caldas, Colombia, in the Central Cordillera. This field hosts at least seven volcanoes including effusive (Pela Huevos, Piamonte, Morrón and Guadalupe lava domes), explosives (San Diego maar and El Escondido tuff cone) and an undefined volcanic edifice (Norcasia). The location of the field is above 5°N where a change in the angle of subduction of the Nazca plate under the South American plate has been proposed. In this zone the subduction has been shown to be flat and therefore not volcanogenic. Despite this, this work shows that volcanism is common. This study uses techniques of petrography, mineral chemistry, whole-rock chemistry and geothermobarometric estimates, with the aim of compositionally characterizing the volcanoes; in addition, it uses geochronological analysis to reconstruct the geological evolution. The analyzes indicate that all the volcanoes present porphyritic rocks with a glassy groundmass and in some cases microcrystalline and cryptocrystalline; they also commonly present glomeroporphyritic textures and disequilibrium textures such as zoning, sieve texture and reaction rims in the different crystals. Mineralogically, plagioclase (An26-74) and amphibole (magensiohastingsite, tschermakite and sometimes magnesihornblende) were recognized as the most abundant phases. Pyroxene (Wo2-45 En41-76 Fs10-28) is present in the Norcasia and Pela Huevos volcanoes, while olivine (Fo82-88) is present in the Pela Huevos and Guadalupe volcanoes. Biotite was recognized in the San Diego, El Escondido, Morrón and Guadalupe volcanoes, while quartz was only found in the San Diego and El Escondido volcanoes. Fe-Ti oxides (Usp7-99 Mag1-95 and Ilm64-91 Hem1-91) are present as minor phase in all volcanoes. Chemically, the volcanoes are of andesitic to dacitic composition, with calc-alkaline affinity, indicating typical subduction environments. From the geothermobarometric analyses, it was possible to determine that the crystallization conditions for plagioclase were 943 – 891°C and 0.8 – 0.14 GPa, for amphibole 987 – 810°C and 0.8 – 0.19 GPa, for pyroxene from 1192 – 1147 °C and 0.8 – 0.5 GPa and for Fe-Ti oxides from 871 – 687 °C. All this information allows us to suggest multiple physicochemical processes of the magma in its ascent to the surface, as well as a differential evolution from a common magmatic source for all the volcanoes. Fractional crystallization was the main process by which magmas evolved, both during ascent and by stagnation at crustal levels. The crystallization conditions of the different phases establish that pyroxene was the first phase to crystallize (between 32 and 19 km depth), followed by amphibole and plagioclase (between 31 and 6 km depth); biotite and quartz crystals are estimated to have formed under more superficial conditions, as well as Fe-Ti oxides that correspond to the last phase to crystallize. The stagnation of the magmas also favored different degrees of assimilation of the host rock. Additionally, it is proposed that an accumulation zone in the middle crust was affected by magmatic recharges, generating magma mixing processes and incorporating olivine antecrystals. It is from this stagnation zone that the magmas rise through different pulses and different dikes to form each of the monogenetic volcanoes in the field. Finally, the ages known to date for some of the volcanoes (153-16 ka) show a recent and potentially active nature of the field with strong hazard implications for the region.
dc.descriptionIntroducción 1.1/ Objetivos 2/ Objetivo general.2 Objetivos/ específicos 2/ Marco geológico-estructural 2.1/ Marco tectónico 2.2/ Magmatismo 2.3/ Geología estructural 2.4/ Litología 2.5/ Campo Volcánico Monogenético Samaná (CVMS) 2.5.1 Volcán San Diego 2.5.2/ Volcán Norcasia 2.5.3/ Volcán El Escondido 2.5.4/ Volcán Pela Huevos 2.5.5/ Volcán Morrón 2.5.6/ Volcán Piamonte 2.5.7/ Volcán Guadalupe 3/ Marco teórico3.1/ Campos volcánicos monogenéticos 3.2/ Sistemas de alimentación magmático en vulcanismo monogenético 4/ Metodología 4.1/ Trabajo de campo y muestreo 4.2/ Petrografía 4.3/ Química mineral 4.4/ Química de roca total 4.5/ Datación C14 5/ Resultados 5.1/ Descripción macroscópica 5.2. Petrografía 5.2.1/ Plagioclasa 5.2.2/ Anfíbol 5.2.3/ Piroxeno y olivino 5.2.4/ Biotita y cuarzo 5.3/ Química mineral 5.3.1/ Plagioclasa 5.3.2/ AnfíbolOlivino 5.3.5/ Biotita 5.3.6/ Óxidos de Fe-Ti0 5.4/ Química de roca total5.5/ Edad 6/ Discusión 6.1/ Interpretación de texturas 6.2/ Geotermobarometría 6.2.1/ Olivino5 6.2.2/ Piroxeno 6.2.2.1/ Ortopiroxeno 6.2.2.2/ Clinopiroxeno 6.2.2.3/ Dos piroxenos6.2.3/ Plagioclasa 6.2.4/Anfíbol 6.2.4.1/ Presión y temperatura 6.2.4.2/ Fugacidad de oxígeno 6.2.4.3/ Contenido de Agua 6.2.5/ Óxidos de Fe-Ti6.3/ Evolución magmática 6.3.1/ Cristalización fraccionada 6.3.1.1/ Piroxeno y plagioclasa 6.3.1.2/ Anfíbol6.3.1.3/ Biotita y cuarzo 6.3.1.4/ Óxidos de Fe-Ti 6.3.1.5/ Consideraciones finales6.3.2./Asimilación cortical 6.3.2.1/ ¿Xenocristales? 6.3.2.2 /Variaciones químicas6.3.3/ Mezcla de magmas 6.3.3.1/ Características petrográficas 6.3.3.2/ Variaciones químicas 6.3.4/ Consideraciones finales 6.4/ Modelo del sistema de alimentación magmático del CVMS 6.5/ Implicaciones de amenaza 6.5.1/ Consideraciones petrológicas2 6.5.2/ Consideraciones espaciales y estructurales 6.5.3/ Consideraciones temporales 6.5.4/ Consideraciones de estilos eruptivos 6.5.5/ Consideraciones finales7/Conclusiones 8/ Referencias
dc.descriptionMaestría
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherManizales
dc.publisherMaestría en Ciencias de la Tierra
dc.relationAlbert, H., Costa, F. & Martí, J. (2016). Years to weeks of seismic unrest and magmatic intrusions precede monogenetic eruption. Geology, 44, 211-214.
dc.relationAndersen, D.J & Lindsley, D.H. (1985). New (and final!) models for the Timagnetite/ilmenite geothermometer and oxygen barometer. Abstract AGU 1985 Spring Meeting Eos Transactions American Geophysical Union, 66, 416
dc.relationAndrews, B.J., Gardner, J.E. & Housh, T.B. (2008). Repeated recharge, assimilation, and hybridization in magma erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts. Journal of Volcanology and Geothermal Research, 175, 415-426.
dc.relationAng, P.S., Bebbington, M.S., Lindsay, J.M. & Jenkins, S.F. (2020). From eruptions scenarios to probabilistic volcanic hazard analysis: An example of the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 397, 106871.
dc.relationAoki, K.I. & Shiba, I. (1973). Pyroxenes from lherzolite inclusions of Itinome-gata, Japan. Lithos, 6, 41-51.
dc.relationBacon, C.R. & Hirschmann, M.M. (1988). Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. American Mineralogist, 73, 57-61.
dc.relationBarrero, D. & Vesga, C.J. (1976a). Mapa geológico del Cuadrángulo K-9 Armero y mitad sur del Cuadrángulo J-9 La Dorada. Escala1:100.000. Bogotá, INGEOMINAS
dc.relationBarrero, D. & Vesga, C.J. (1976b). Geología de la Plancha 207 Honda. Escala 1: 100.000. Bogotá, INGEOMINAS.
dc.relationBartolini, S. (2014). Volcanic hazard assessment in monogenetic volcanic fields. Doctoral dissertations, Universitat de Barcelona, 413p
dc.relationBartolini, S., Bolós, X., Martí, J., Pedra, E.R. & Planagumá, L. (2015). Hazard assessment at the quaternary La Garrotxa volcanic field (NE Iberia). Natural Hazards,78, 1349-1367.
dc.relationBebbington, M.S. & Cronin, S.J. (2011). Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bulletin of Volcanology, 73, 55-72.
dc.relationBecerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J.M. & Galindo, I. (2014). Longterm volcanic Hazard assessment on El Hierro (Canary Islands). Natural Hazards and Eath System Sciences, 14, 1853-1870
dc.relationBeltrán, M., Matiz, C., Torres, R. & Ordoñez, M. (2017). Batimetría Laguna de San Diego. XVI Congreso Colombiano de Geología. Agosto 28 – septiembre 01. Santa Marta, Colombia, 1929-1934.
dc.relationBerlo, K., Blundy, J., Turner, S. & Hawkesworth, C. (2007). Textural and chemical variation in plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens, USA. Contributions to Mineralogy and Petrology, 89, 1-16.
dc.relationBerman, R.G. (1988). Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445-522.
dc.relationBest, M.G. (2003). Igneous and Metamorphic Petrology, Second Edition. Blackell Science Ltd, 758p
dc.relationBlanco-Quintero, I.F., García-Casco, A., Toro, L.M., Moreno, M., Ruiz, E.C., Vinasco, C.J. & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, easterns flank of the Central Cordillera, Colombia). International Geology Reviws, 56, 1852-1872.
dc.relationBlundy, J.D. & Wood, B.J. (1991). Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55, 193-209
dc.relationBohórquez, O.P., Monsalve, M.L., Velandia, F., Gil, F. & Mora, H. (2005). Marco tectónico de la cadena volcánica más septentrional de la Cordillera Central de Colombia. Boletín de Geología, 27, 55-79.
dc.relationBolós, X., Martí, J., Becerril, J., Planagumá, L., Grosse, P. & Bardecabusson, S. (2015). Volcano-structural analysis of La Garrotxa Volcanic Field (NE Iberia): Implications for the plumbing systems. Tectonophysics, 642, 58-70.
dc.relationBorrero, C., Murcia, H., Agustín-Flores, J., Arboleda, M.T. & Giraldo, A.M. (2017). Pyroclastic deposits of San Diego Maar, central Colombia: an example of a silicic magmarelated monogenetic eruption in a hard substrate. Geological Society of London. Special Publications, 446, 361-374.
dc.relationBotero-Gómez, L.A., Osorio, P., Murcia, H., Borrero, C. & Grajales, J. (2018). Campo Volcánico Monogenético Villamaría – Termales, Cordillera Central, Andes colombianos (Parte I): Características morfológicas y relaciones temporales. Boletín de Geología, 40, 85- 102.
dc.relationBrowne, B.L., Eichelberger, J.C., Patino, L.C., Vogel, T.A., Uto, K. & Hoshizumi, H. (2006). Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan. Journal of Volcanology and Geothermal Research, 154, 103-106
dc.relationBucchi, F., Lara, L.E. & Gutiérrez, F. (2015). The Carrán-Los Venados volcanic field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting. Journal of Volcanology and Geothermal Research, 307,70-81.
dc.relationBurchardt, S. & Galland, O. (2016). Studying volcanic plumbing systems – multidisciplinary approaches to a multifaceted problem. En: Németh, K. (Ed.). Updates in Volcanology From Volcano Modelling to Volcano Geology, 25-53.
dc.relationBurchardt, S. (2018). Introduction to volcanic and igneous plumbing systems- Devoloping a discipline and common cocepts. En: Burcharcht, S. (Ed.). Volcanic and Igneous Plumbing System. El Sevier, 1-12.
dc.relationCañón-Tapia, E. (2016). Reappraisal of the significance of volcanic fields. Journal of Volcanology and Geothermal Research, 310, 26-38
dc.relationCarmichael, I.S. (1967). The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contributions to Mineralogy and Petrology, 14, 36-64.
dc.relationCarmichael, I.S. (1991). The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology, 106, 129-141.
dc.relationCashman, K.V. & Sparks, R.S.J. (2013). How volcanoes work; A 25 year perspective. Geological Survey American Bulletin, 125, 664-690.
dc.relationCastro, J.M. & Dingwell, D.B. (2009). Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature, 461, 780-783.
dc.relationCavell, D.E. (2020). Petrogenesis of Colombian arc volcanoes: A regional Study. Doctoral dissertations, University of Birmingham, 418p.
dc.relationCediel, F., Shaw, R.P. &Cáceres, C. (2003). Tectonic assembly of the northern Andean block. En: Bartolini, C., Buffler, R.T. & Blickwede, J. (Eds.). The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics. AAPG Memoir, 79, 815-848
dc.relationConnor, C.B. & Connor, L.J. (2009). Estimating Spatial density with kernel methods. En: Connor, C.B., Chapman, N.A. & Connor, L.J. (Eds.). Volcanic and tectonic hazard assessment for nuclear facilities, 346-368.
dc.relationConnor, C.B. & Conway, F.M. (2000). Basaltic Volcanic Fields. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of Volcanoes, Academic Press, 331-343.
dc.relationCoote, A. & Shane, P. (2018). Open-system magmatic behavior beneath monogenetic volcanoes revealed by the geochemistry, texture and thermobarometry of clinopyroxene, Kaikohe-Bay of Islands volcanic field (New Zealand). Journal of Volcanology and Geothermal Research, 368, 51-62.
dc.relationCoote, A.C. & Shane, P. (2016). Crystal origins and magmatic system beneath Ngauruhoe volcano (New Zealand) revealed by plagioclase textures and compositions. Lithos, 260, 107- 119.
dc.relationCortes, J.A. (2017a). "CFU," https://vhub.org/resources/cfu
dc.relationCortes, J.A. (2017b). "CFU-PINGU," https://vhub.org/resources/cfupingu.
dc.relationCortés, M., Angelier, J. & Colletta, B. (2005). Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): Implications on plate kinematics of the South Caribbean region. Tectonics, 24(1)
dc.relationCox, K., Bell, J. & Pankhurst, R. (1979). The interpretation of igneous rocks. London. George Allen and Ltd, 450p.
dc.relationDavidson, J.P. Ferguson, K.M., Colucci, M.T. & Dungan, M.A. (1988). The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S. Chile: multicomponent sources and open system evolution. Contributions to Mineralogy and Petrology, 100, 429-445.
dc.relationDe Angelis, S.H., Larsen, J. & Coombs, M. (2013). Pre-eruptive magmatic conditions at Augustine Volcano, Alaska, 2006: evidence from amphibole geochemistry and textures. Journal of Petrology, 54, 1939-1961.
dc.relationDe Silva, S. & Lindsay, J.M. (2015). Primary volcanic landforms. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of volcanoes (2nd edition), Academic Press, El Sevier, USA, 273-297
dc.relationDeer, W.A., Howie, R.A. & Zussman, J. (1992). An introduction to rock forming minerals, 2 nd edition. Longman Group UK Limited, 528p.
dc.relationDrake, M.J. & Weill, D.F. (1975). Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochimica et Cosmochimica Acta, 39, 689-712.
dc.relationEggler, D.H. (1972). Amphibole stability in H2O-undersaturated calc-alkaline melts. Earth and Planetary Science Letters, 15, 28-34.
dc.relationErrázuriz-Henao, C., Gómez-Truena, A., Duque-Trujillo, J. & Weber, M. (2019). The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombia Andes. Lithos, 336, 151-168.
dc.relationFeeley, T.C. & Sharp, Z.D. (1996). Chemical and hydrogen isotopic evidence for in situ dehydrogenation of biotite in silicic magma chamber. Geology, 24, 1021-1021.
dc.relationFeininger, T., Barrero, D., Castro, N., Ramírez, O., Lozano, H. & Vesga, C.J. (1970). Mapa geológico de Colombia. Oriente de Antioquia, cuadrángulo I-9 y parte de los cuadrángulos H-9, H-10, I-10, J-9 y J-10. Memoria explicativa. Escala 1:100.000. Bogotá, INGEOMINAS, 192p.
dc.relationFelpeto, A., Martí, J. & Ortiz, R. (2007). Automatic GIS-based system for volcanic hazard assessment. Journal of Volcanology and Geothermal Research, 166, 106-116.
dc.relationFoster, M.D. (1960). Interpretation if the composition of trioctahedral micas. US Geological Survey. Professional Paper, 354-B, 1-49.
dc.relationGardner, J.E., Rutherford, M., Carey, S. & Sigurdsson, H. (1995). Experimental constraints on pre-eruptive water contents and changing magma storage prior to explosive eruptions of Mount St. Helens volcano. Bulletin of Volcanology, 57, 1-17.
dc.relationGhiorso, M.S. & Gualda, G.A. (2015). Chemical thermodynamics and the study of magmas. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of volcanoes (2nd edition), Academic Press, El Sevier, USA, 143-161.
dc.relationGiacomoni, P.P., Ferlito, C., Coltorti, M., Bonadiman, C. & Lanzafame, G. (2014). Plagioclase as archive of magma ascent dynamics on “open Conduit” volcanoes: the 2001- 2006 eruptive period at Mt. Etna. Earth Science Reviews, 138, 371-393
dc.relationGill, J.B. (1981). Orogenic Andesites and Plate Tectonics. Berlín. Springer, 370p.
dc.relationGill, R. (2011). Igneous rocks and processes: a practical guide. John Wiley & Sons, 472p.
dc.relationGómez-Tapias, J., Nivia, A., Montes, N.E., Almanza, M.F., Alcárcel, F.A. & Madrid, C.A. (2015). Notas explicativas: Mapa Geológico de Colombia. En: Gómez-Tapias, J. & Almanza, M.F. (Eds.). Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 33, 9-33
dc.relationGonzález, H. (1993). Mapa geológico de Caldas. Escala 1:250.000. Memoria explicativa. Bogotá, INGEOMINAS, 62p.
dc.relationGonzález, H. (1980). Geología de las planchas 167 (Sonsón) y 187 (Salamina). Memoria explicativa. Bogotá, INGEOMINAS, 176p.
dc.relationGonzález, H. (1989). Análisis de las nomenclaturas estratigráficas de las rocas metamórficas (litodema A), al este del límite oriental de la zona de Fallas Romeral, Cordillera central, Colombia. Informe interno. Medellín. INGEOMINAS, 21p.
dc.relationGonzález, P.D. (2008). Textura de los cuerpos ígneos. En. Llambías, E.J. & D’Eramo, J. (Eds.). Geología de los cuerpos ígneos. Asociación Geológica Argentina. Serie B: Didáctica y complementaria. Facultad de ciencias naturales, Universidad Nacional de Salta, 171-197.
dc.relationGreen, T.H. (1980). Island arc and continent-building magmatism – A review of petrogenic models based on experimental petrology and geochemistry. Tectonophysics, 63, 367,385
dc.relationGroove, T.L. & Till, C.B. (2015). Melting the Earth´s Upper Mantle. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of volcanoes (2nd edition), Academic Press, El Sevier, USA, 35-47.
dc.relationGroove, T.L., Baker, M.B. & Kinzler, R.J. (1984). Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry. Geochimica et Cosmochimica Acta, 48, 2113-2121.
dc.relationHasenaka, T. & Carmichael, I.S. (1985). The cinder cones of Michoacán – Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25, 105-124.
dc.relationHogan, J.P. (1993). Monomineralic glomerocrysts: textural evidence for mineral resorptions during crystallization of igneous rocks. The Journal of Geology, 101, 531-540
dc.relationHuebner, J.S. & Sato, M. (1970). The oxygen fugacity relationships of manganese oxide and nickel oxide buffers. American Mineralogist, 55, 934-952
dc.relationHuebner, J.S. (1971). Buffering techniques for hydrostatic systems at elevated pressures. En Research Techniques for high pressure and high temperature. Berlin, Heidelberg. Springer, 123-177.
dc.relationIdárraga-García, J., Kendall, J.M. & Vargas, C.A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemisty, Geophysics, Geosystems, 17, 3655-3673
dc.relationIrvine, T.N.J. & Baragar, W.R.A.F. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8, 523-548.
dc.relationJanoušek, V., Farrow, C.M. & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Tollkit (GCDkit). Journal of Petrology, 47, 1255-1259
dc.relationJeffery, A.J., Gertisser, R., Troll, V.R., Jolis, E.M., Dahren, B., Harris, C. & Chadwick, J.P. (2013). The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contributions to Mineralogy and Petrology, 166, 275- 308.
dc.relationJerram, D.A. & Bryan, S.E. (2015). Plumbing Systems of Shallow level intrusive complexes. En: Breitkreuz, C. & Rocchi, S. (Eds.). Physical Geology of Shallow Magmatic Systems. Springer, Cham, 39-60
dc.relationKeiding, J.K. & Sigmarsson, O. (2012). Geotermobarometry of the 2010 Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing systems. Journal of Geophysical Research: Solid Earth, 117, B9.
dc.relationKereszturi, G. & Németh, K. (2012). Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. En: Németh, K. (Ed.). Updates in Volcanology – New Advances in Understanding Volcanic Systems. InTech, 3-88.
dc.relationKiss, B., Harangi, S., Ntaflos, T., Mason, P.R. & Pál-Molnár, E. (2014). Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians). Contributions to Mineralogy and Petrology, 167, 986
dc.relationKugaenko, Y. & Volynets, A.O. (2019). Magmatic plumbing systems of the monogenetic volcanic fields: A case study of Tolbachinsky Dol, Kamchatka. Journal of Volcanology and Geothermal Research, 383, 63-76.
dc.relationLange, R.A., Frey, H.M. & Hector, J. (2009). A thermodynamic model for the plagioclaseliquid hygrometer/thermometer. American Mineralogist, 94, 494-506.
dc.relationLe Bast, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750.
dc.relationLeake, B.E., Wolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D. & Linthout, K. (1997). Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineralogical magazine, 61, 295-310.
dc.relationLeal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: a tectonomagmatic approach. Doctoral dissertation, Universitat de Barcelona, 1000p.
dc.relationLeal-Mejía, H., Shaw, R.P. & Draper, J.C.M. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. En: Cediel, F. & Shaw, R.P. (Eds.). Geology and Tectonics of Northwestern South American. Frontiers in Earth Sciences, 253-410.
dc.relationLepage, L.D. (2003). ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computers & Geosciences, 29, 673-678
dc.relationLondoño, J.M. (2016). Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes. Journal of Volcanology and Geothermal Research, 324, 156-168.
dc.relationLonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404, 237-264
dc.relationLoomis, T.P. (1982). Numerical simulations of crystallization processes of plagioclase in complex melts: the origin of major and oscillatory zoning in plagioclase. Contributions to Mineralogy and Petrology, 81, 219-229.
dc.relationMagill, C.R., McAneney, K.J. & Smith, I.E.M. (2005). Probabilistic assessment of vent locations for the next Auckland volcanic field event. Mathematical Geology, 37, 227-242.
dc.relationMaksimov, A.P. (2009). The influence of water on the temperature of amphibole stability in melts. Journal of Volcanology and Seismology, 3, 27-33
dc.relationMarín-Cerón, M.I., Leal-Mejía, H., Bernet, M. & Mesa-García, J. (2019). Late Cenozoic to modern-day volcanism in the northern Andes: a geochronological, petrographical, and 118 geochemical review. En: Cediel, F. & Shaw, R.P. (Eds.). Geology and Tectonics of Northwestern South American. Frontiers in Earth Sciences, 603-648.
dc.relationMarrero, J.M., García, A., Berrocoso, M., Llinares, Á., Rodríguez-Losada, A. & Ortiz, R. (2019). Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: the example of La Palma (Canary Islands). Journal of Applied, Volcanology, 8, 6.
dc.relationMartel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J.L. & Traineau, H. (1999). Effects of fO2 and H2O in andesite phase relations between 2 and 4 kbar. Journal of Geophysical Research: Solid Earth, 104, 29-453.
dc.relationMartí, J. & Felpeto, A. (2010). Methodology for the computation of volcanic susceptibility: an example for mafic and felsic eruptions on Tenerife (Canary Islands). Journal of Volcanology and Geothermal Research, 195, 69-77.
dc.relationMartí, J. (2017). Assessing Volcanic Hazard: A Review. Oxford Handbooks Online. 73p.
dc.relationMartí, J., López, C., Bartolini, S., Becerril, L. & Geyer, A. (2016). Stress controls of monogenetic volcanism: a review. Frontiers in Earth Science, 4, 106.
dc.relationMaya, M. & González, H. (1995). Unidades litodémicas en la Cordillera Central de Colombia. Boletín geológico, 35, 44-57.
dc.relationMaya, M. (2001). Distribución, facies y edad de las rocas metamórficas en Colombia. Bogotá, Colombia. INGEOMINAS, 59p
dc.relationMcGee, L.E. & Smith, I.E. (2016). Interpreting chemical compositions of small scale basaltic systems: a review. Journal of Volcanology and Geothermal Research, 325, 45-60.
dc.relationMolloy, C., Shane, P. & Augustinus, P. (2009). Eruption recurrence rates in a basaltic volcanic field bases on tephra layers in maar sediments: implications for hazards in the Auckland volcanic field. Geological Society of America Bulletin, 121, 1666-1677
dc.relationMonfaredi, B., Masoudi, F., Tabakh, S.A., Shaker, A.F. & Halama, R. (2009). Magmatic interation as recorded in texture and composition of plagioclase phenocrysts from the Sirjan area, Urumieh-Dokhtar magmatic arc, Iran. Journal of Sciences Islamic Republic of Iran, 20, 243-251.
dc.relationMonsalve, M.L., Ortiz, I.D. & Norini, G. (2019). El Escondido, a newly identified silicic Quaternary volcano in the NE region of the northern volcanic segment (Central Cordillera if Colombia). Journal of Volcanology and Geothermal Research, 383, 47-62.
dc.relationMora, J.A., Oncken, O., Le Breton, E., Ibáñez-Mejía, M., Faccenna, C., Veloza, G. & Mesa, A. (2017). Linking Late Cretaceous to Eocene tectonostratigraphy of the San Jacinto fold belt of NW Colombia with Caribbean Plateau collision and flat subduction. Tectonics, 36, 2599-2629
dc.relationMorimoto, N. (1989). Nomenclature of pyroxenes. Mineralogical Journal, 14, 198-221
dc.relationMurcia, H., Borrero, C. & Németh, K. (2019). Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes volcanic province. Journal of Volcanology and Geothermal Research, 383, 77-87.
dc.relationMyers, J. & Eugster, H.P. (1983). The system Fe-Si-O: Oxygen buffer calibrations to 1500 K. Contributions to Mineralogy and Petrology, 82, 75-90
dc.relationNakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et cosmochimica acta, 38, 757-77
dc.relationNelson, S.T. & Montana, A. (1992). Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineralogist, 77, 1242-1249
dc.relationNémeth, K. (2010). Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. En: Cañón-Tapia, E. & Szakács, A. (Eds.). What is a volcano? Geological Society of America. Special Papers, 470, 43-66.
dc.relationNieto-Torres, A. & Martín del Pozo, A.L. (2019). Spatio-temporal hazard assessment of a monogenetic volcanic flied, near México City. Journal of Volcanology and Geothermal Research, 371, 46-58.
dc.relationNimis, P. & Taylor, W.R. (2000). Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology, 139, 541-554.
dc.relationO´Neill, H.S.C. & Pownceby, M.I. (1993). Thermodynamic data from redox reactions at high temperature. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for Fe-FeO, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffer and new data for the W-WO2 buffer. Contributions to Mineralogy and Petrology, 114, 296-314
dc.relationPanjasawatwong, Y., Danyushevsky, L.V., Crawford, A.J. & Harris, K.L. (1995). An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology, 118, 420-432.
dc.relationPearce, J.A & Norry, M.J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Minerology and Petrology, 69, 33-47.
dc.relationPearce, J.A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. En; Hawkesworth, C. & Norry M. (Eds.). Continental basalts and mantle xenoliths. Shiva Publication, Nantwich, Cheshire, England, 230-249.
dc.relationPearce, T.H. & Kolisnik, A.M. (1990). Observations of plagioclase zoning using interference imaging. Earth Science Reviews, 29, 9-26.
dc.relationPecerillo, A. & Taylor, S.R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.
dc.relationPennington, W.D. (1981). Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, 86, 10753- 10770
dc.relationPerfit, M., Saunders, A. & Fornari, D. (1982). Phase chemistry, fractional crystallization, and magma mixing in the basalts from the Gulf of California, deep-sea drilling project LEG-64. Initial Reports of the Deep Sea Drilling project, 64, 649-666.
dc.relationPutirka, K.D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61-120.
dc.relationPutirka, K.D. (2017). Geothermometry and geobarometry. Encyclopedia of Geochemistry, 1-18.
dc.relationRahman, S. & MacKenzie, W.S. (1969). The crystallization of ternary feldspars: a study from natural rocks. American Mineralogy, Journal of Science, 267, 391-406
dc.relationRhodes, J.M., Dungan, M.A., Blanchard, D.P. & Long, P.E. (1979). Magma mixing at midocean ridges: evidence from basalts drilled near 22N on the Mid-Atlantic Ridge. Tectonophysics, 55, 35-61
dc.relationRidolfi, F. & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometic empirical equations valid up to 1130 °C and 2,2 GPa, Contributions to Mineralogy and Petrology, 163, 877-895
dc.relationRidolfi, F., Puerini, M., Renzulli, A., Menna, M. & Toulkeridis, T. (2008). The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of Volcanology and Geothermal Research, 176, 94-106.
dc.relationRidolfi, F., Renzulli, A. & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160,45-66
dc.relationRobertson, K.G., Lage, A.F. & Ceballos, J.L. (2002). Geomorfología volcánica, actividad reciente y clasificación en Colombia. Cuadernos de Geografía, Revista Colombiana de Geografía, 11, 37-76.
dc.relationRoeder, P.L. & Emilse, R. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275-289.
dc.relationRollinson, H.R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Routledge, Harlow, Essex, England, 352p.
dc.relationRomick, J.D., Kay, S.M. & Kay, R.W. (1992). The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite Tephra from the central Aleutians, Alaska. Contributions to Mineralogy and Petrology, 112, 101-118.
dc.relationRueda-Gutiérrez, J.B. (2019). Aportes al conocimiento del Magmatismo de la Cordillera Central en su Flanco Oriental; Área geotérmica de San Diego, Samaná, Caldas. Boletín de Geología, 41, 45-70
dc.relationRutherford, M.J. & Hill, P.M. (1993). Magma ascent rates from amphibole breakdown study applied to the 1980-1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98, 19667-19685.
dc.relationSánchez-Torres, L. (2017). Caracterización de los productos volcánicos del volcán El Escondido y propuesta de un modelo evolutivo. (Tesis de pregrado). Programa de Geología, Universidad de Caldas, Colombia. 104p.
dc.relationSánchez-Torres, L., Toro, A., Murcia, H., Borrero, C., Delgado, R. & Gómez-Arango, J. (2019). El Escondido tuff cone (38 ka): a hidden history of monogenetic eruptions in the northernmost volcanic chain in the Colombian Andes. Bulletin of Volcanology, 81, 71.
dc.relationSchumacher, J.C. (1997). Appendix 2: the estimation of ferric iron in electron microprobe analysis of amphiboles. Mineralogical Magazine, 61, 312-321
dc.relationSen, G. (2014). Petrology. Springer, 371p.
dc.relationShcherbakov, V.D., Plechov, P.Y., Izbekov, P.E. & Shipman, J.S. (2010). Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 16, 83-99.
dc.relationSiebe, C., Rodríquez-Lara, V., Schaaf, P. & Abrams, M. (2004). Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalpa and Chichinautzin scoria cones, south of Mexico City. Journal of Volcanology and Geothermal Researh, 130, 197-226
dc.relationSmith, I.E.M. & Németh, K. (2017). Source to surface model of monogenetic volcanism: a critical review. Geological Society of London, Special Publications, 446, 1-28.
dc.relationStormer, J.C. (1983). The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. American Mineralogist, 68, 586-594.
dc.relationSun, S.S. (1980). Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean island and island arcs. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 297, 409-445
dc.relationSutcliffe, R.H. (1989). Magma mixing in late Archean tonalitic and mafic rocks of the Lac des Iles area, western Superior province. Precambrian Research, 44, 81-101.
dc.relationSuter, F., Sartori, M., Neuwerth, R. & Gorin, G. (2008). Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia. Tectonophysics, 460, 134-157
dc.relationSyracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H. & Ammon, C.J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139-149.
dc.relationTaboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H. & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 195, 787-813.
dc.relationTepley III, F.J., Davidson, J.P. & Clynne, M.A. (1999). Magmatic interactions as recorded in plagioclases phenocrysts of Chaos Crags, Lassen Volcanic Center, California. Journal of Petrology, 40, 787-806. Tibaldi, A. (2015). Structure of
dc.relationTibaldi, A. (2015). Structure of volcano plumbing systems: A review of multi-parametric effects. Journal of Volcanology and Geothermal Research, 298, 85-135.
dc.relationTindle, A.G. & Webb, P.C. (1990). Formula Unit Calculations with optional calculates Li2O. 2Li2O and H2O calculations. European Journal of Mineralogy, 2, 595-610.
dc.relationToro, A. & Delgado, R. (2018). Volcán El Escondido (Samaná, Caldas, Colombia): Distribución de sus depósitos, características composicionales y texturales de los productos. (Tesis de pregrado). Programa de Geología, Universidad de Caldas, 86p
dc.relationToro, G. (1989). Caracterización del volcanismo de San Diego y estudio de los depósitos de San Diego (Caldas) y de Nariño (Antioquia), Colombia. V Congreso Colombiano de Geología. Agosto 14-1. Bucaramanga, Colombia, 24p.
dc.relationTsuchiyama, A. (1985). Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anortite, and origin of dusty plagioclase in andesites. Contributions to Mineralogy and Petrology, 89, 1-16
dc.relationUreña, M.A. & Mejía, M. (2019). Estructura interna del Batolito Antioqueño y cuerpos intrusivos aledaños a partir de tomografía sísmica 3D de velocidad. Tesis pregrado, Universidad de Caldas, 114p.
dc.relationValentine, G.A. & Greeg, T.K.P. (2008). Continental basaltic volcanoes – processes and problems. Journal of Volcanology and Geothermal Research, 177, 857-873.
dc.relationVance, J.A. & Gilreath, J.P. (1967). The effect of synneusis on phenocryst distribution patterns in some porphyritic igneous rocks. American Mineralogist Journal of Earth and Planetary Materials, 52, 529-536
dc.relationVargas, C.A. & Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc-Indenter with northwestern South America. Bulletin of the Seismological Society of America, 103, 2025-2046.
dc.relationVarol, E., Temel, A. & Gourgaud, A. (2008). Textural and compositional evidence for magma mixing in the evolution of the Camlidere Volcanic Rocks (Galatean Volcanic Province), Central Anatolia, Turkey. Turkish Journal of Earth Sciences, 17, 709-727.
dc.relationVarol, E., Temel, A., Yürür, T., Gourgaud, A. & Bellon, H. (2014). Petrogenesis of the Neogene bimodal magmatism of the Galatean Volcanic Province, Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 280, 14-29.
dc.relationViccaro, M., Giacomoni, P.P, Ferlito, C. & Cristofolini, R. (2010). Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116, 77-91
dc.relationViccaro, M., Giuffrida, M., Nicotra, E. & Ozerov, A.Y. (2012). Magma Storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: inferences on the plumbing system geometry. Lithos, 140, 11-24.
dc.relationVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125, 875-896.
dc.relationVinasco, C.J., Cordani, U.G., González, H., Weber, M. & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triasic granitic gneises and granitoids of the Colombia Central Andes. Journal of South American Earth Sciences, 21, 355-371.
dc.relationWagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L.F., Monsalve, G., Cardona, A. & Becker, T.W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44, 6616-6623.
dc.relationWallace, P.J., Plank, T., Edmonds, M. & Hauri, E.H. (2015). Volatiles in magmas. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J. (Eds.). Encyclopedia of volcanoes (2nd edition), Academic Press, El Sevier, USA, 163-183.
dc.relationWhite, W.M. (1998). Geochemistry, 712p.
dc.relationWhitney, D.L. & Evans, B.W. (2010). Abbreviation for names of rock-forming minerals. American mineralogist, 95, 185-187.
dc.relationWilkinson, J.F.G. & Taylor, S.R. (1981). Trace element fractionation trends of tholeiitic magma at moderate pressure: Evidence from an Al-spinel ultramafic-mafic inclusion suite. Contributions to Mineralogy and Petrology, 75, 225-233.
dc.relationWilliams, H.M., Nielsen, S.G., Renac, C., Griffin, W.L., O´Reilly, S.Y., McCammon, C.A. & Halliday, A.N. (2009). Fractionation of oxygen and iron isotopes by partial melting processes: implications for the interpretation of stable isotope signatures in mafic rocks. Earth and Planetary Science Letters, 283, 156-166.
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.subjectVulcanismo monogenético silíceo
dc.subjectErupciones monogenéticas efusivas
dc.subjectEstancamiento de magma
dc.subject. Campos monogenéticos de larga vida
dc.subjectEvolución magmática compleja
dc.subjectSilicic monogenetic volcanism
dc.subjectEffusive monogenetic eruptions
dc.subjectMagma stagnation
dc.subjectLong-lived monogenetic fields
dc.subjectComplex magma evolution
dc.subjectCiencias de la tierra
dc.subjectGeomagnetismo
dc.titleCaracterísticas geológicas del Campo Volcánico Monogenético Samaná: Implicaciones en su evolución magmática
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/updatedVersion


Este ítem pertenece a la siguiente institución