dc.contributor | Prieto Castañeda, Natalia | |
dc.contributor | Taborda-Ocampo, Gonzalo | |
dc.contributor | Grupo de Investigación en Cromatografía y Técnicas Afines (Categoría A1) | |
dc.creator | Ospina Rodríguez, Sergio Andrés | |
dc.date | 2021-10-19T16:32:41Z | |
dc.date | 2022-06-26 | |
dc.date | 2021-10-19T16:32:41Z | |
dc.date | 2021-10-16 | |
dc.date.accessioned | 2023-09-06T18:24:25Z | |
dc.date.available | 2023-09-06T18:24:25Z | |
dc.identifier | https://repositorio.ucaldas.edu.co/handle/ucaldas/17166 | |
dc.identifier | Universidad de Caldas | |
dc.identifier | Repositorio Institucional Universidad de Caldas | |
dc.identifier | https://repositorio.ucaldas.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8696834 | |
dc.description | Ilustraciones, fotos | |
dc.description | spa:El avance en el seguimiento de sustancias ambientales de forma “On-Site” ha ido aumentando en los últimos años, sin embargo, no todos los parámetros pueden ser medidos en tiempo real y se requieren largos tiempos para el tratamiento y análisis de las muestras. La gran variedad de sustancias contaminantes del medio ambiente implican exhaustivas etapas de tratamiento acompañado de técnicas instrumentales de altos costos que no permiten la detección en el sitio de estudio ni posibilitan el seguimiento de la normativa ambiental vigente en el país, reduciendo la prevención oportuna de las consecuencias que éstos múltiples contaminantes pueden generar a corto plazo. Generalmente, se llevan a cabo análisis de compuestos halogenados, plaguicidas y metales pesados mediante diversas técnicas analíticas como la cromatografía liquida de alta eficiencia (HPLC) y la cromatografía de gases (GC) asociadas con técnicas de extracción y micro extracción en fase líquida (LPE, LMPE) y fase sólida (SPE, SPME), las técnicas cromatográficas de gases y líquida acoplada a espectrometría de masas (GC-MS) y (HPLC-MS) respectivamente; las técnicas tándem como (GC-MS/MS), que aunque presentan buenas respuestas y bajos límites en la detección de múltiples contaminantes no permiten analizar los efectos tóxicos que estos generan en los organismos vivos. Para contrarrestar estas dificultades se han venido desarrollando dispositivos analíticos que conservan la robustez de las técnicas tradicionales pero que posibilitan el análisis oportuno de diversas sustancias contaminantes en tiempo real y a muy bajos límites de detección. Es así como el desarrollo de biosensores ha presentado un gran avance en los últimos años. Los biosensores son dispositivos de carácter analítico conformados por un elemento de reconocimiento biológico (ERB) acoplado a un mecanismo de detección electrónico que interpreta los cambios fisicoquímicos presentados entre el analito y el ERB en tiempo real. El desarrollo de estos biosensores viene acompañado por modificaciones del elemento transductor con materiales que permitan mejorar la fijación de los ERB sin que se pierda su actividad bioquímica. Diversos son los transductores empleados en el desarrollo de estos dispositivos, sin embargo, los biosensores de base electroquímica, surgen como una gran oportunidad para realizar análisis altamente específicos, con mínima preparación de muestra y con altas posibilidades de miniaturización. La mayoría de trabajos en el desarrollo de biosensores electroquímicos se centran en la utilización de materiales orgánicos o inorgánicos como polímeros sintéticos u óxidos metálicos que aunque le brindan alta sensibilidad de respuesta a estos dispositivos, pueden presentar problemas de estabilidad y biocompatibilidad con los elementos biológicos de reconocimiento (ERB) que se estén empleando además de los altos costos de producción. Por otro lado, los materiales inorgánicos ricos en silicatos se han ido presentando como una alternativa en el desarrollo de estos sistemas dados los bajos costos de producción, la capacidad que tienen estos materiales para ser modificados con otras sustancias, la alta sensibilidad, la estabilidad y la bioafinidad que presentan éstos con los ERB. En la presente tesis de Maestría se intercaló la arcilla Montmorillonita con diferentes compuestos orgánicos (dimetilamina, quitosano, hexadeciltrimetilamonio y líquidos iónicos de metilimidazolio) para generar matrices de inmovilización de células bacterianas de Escherichia Coli y la enzima acetilcolinesterasa aplicadas a la detección de plaguicidas organofosforados (Clorpirifos) y organoclorados (3,5-Diclorofenol). Se realizaron estudios electroquímicos para medir la respuesta de los biosensores a partir de las técnicas voltamperometria cíclica (VC) y cronoamperometría (CA). Con éstas, se analizaron variables como la bioafinidad, temperatura de inmovilización, tiempo de incubación, carga bacteriana, la selectividad y sensibilidad de los dispositivos. Los resultados obtenidos a partir de las técnicas electroquímicas fueron respaldados con técnicas espectroscópicas, microscópicas y pruebas cualitativas de laboratorio encontrando una alta compatibilidad entre los ERB empleados y arcillas modificadas con líquidos iónicos. El enfoque aquí presentado representa una nueva perspectiva hacia la utilización de arcillas modificadas con líquidos iónicos en el desarrollo de biosensores de alta biocompatibilidad, sensibilidad y de bajo costo. | |
dc.description | eng:Advances in the monitoring of environmental substances in an “On-Site” way have been increasing in recent years, however, not all parameters can be measured in real time and long times are required for the treatment and analysis of the samples. The great variety of polluting substances in the environment involve exhaustive treatment stages accompanied by high-cost instrumental techniques that do not allow detection at the study site or allow the monitoring of current environmental regulations in the country, minimizing the timely prevention of consequences that these multiple pollutants can generate in the short term. Generally, analyzes of halogenated compounds, pesticides and heavy metals are carried out using various analytical techniques such as high performance liquid chromatography (HPLC) and gas chromatography (GC) associated with liquid phase extraction and micro extraction (LPE) techniques. , LMPE) and solid phase (SPE, SPME), gas and liquid chromatographic techniques coupled to mass spectrometry (GC-MS) and (HPLC-MS) respectively; tandem techniques such as (GC-MS / MS), which, although they present good responses and low limits in the detection of multiple pollutants, do not allow analyzing the toxic effects that these generate in living organisms. To counteract these difficulties, analytical devices have been developed that preserve the robustness of traditional techniques but that allow the timely analysis of various polluting substances in real time and at very low detection limits. This is how the development of biosensors has presented a great advance in recent years. Biosensors are analytical devices made up of a biological recognition element (ERB) coupled to an electronic detection mechanism that interprets the physicochemical changes presented between the analyte and the ERB in real time. The development of these biosensors is accompanied by modifications of the transducer element with materials that make it possible to improve the fixation of ERBs without losing their biochemical activity. The transducers used in the development of these devices are diverse, however, electrochemical-based biosensors appear as a great opportunity to perform highly specific analyzes, with minimal sample preparation and with high miniaturization possibilities. Most of the work in the development of electrochemical biosensors focuses on the use of organic or inorganic materials such as synthetic polymers or metal oxides that, although they provide high response sensitivity to these devices, can present stability and biocompatibility problems with the biological elements of recognition (ERB) that are being employed in addition to the high production costs. On the other hand, inorganic materials rich in silicates have been presented as an alternative in the development of these systems given the low production costs, the ability of these materials to be modified with other substances, high sensitivity, stability and the bioaffinity that these present with ERBs. In this Master's thesis, Montmorillonite clay was interspersed with different organic compounds (dimethylamine, chitosan, hexadecyltrimethylammonium and ionic methylimidazolium liquids) to generate immobilization matrices for bacterial cells of Escherichia Coli and the enzyme acetylcholinesterase applied to the detection of pesticides Chlorpyrifos) and organochlorines (3,5-Dichlorophenol). Electrochemical studies were carried out to measure the response of the biosensors using cyclic voltammetry (VC) and chronoamperometry (CA) techniques. With these, variables such as bioaffinity, immobilization temperature, incubation time, bacterial load, selectivity and sensitivity of the devices are analyzed. The results obtained from the electrochemical techniques were supported with spectroscopic and microscopic techniques and qualitative laboratory tests, finding a high compatibility between the ERBs used and clays modified with ionic liquids. The approach presented here represents a new perspective towards the use of clays modified with ionic liquids in the development of biosensors of high biocompatibility, sensitivity and low cost. | |
dc.description | 1.Resumen / 1.1 Abstract / 2.Agradecimientos / 3.Abreviatura / 6. Planteamiento del problema / 6.1 Justificación / 6.2 Pregunta de investigación / 7.Objetivos / 7.1 Objetivo general / 7.2 Objetivos específicos / Bibliografía / Marco teórico / 8.1 Toxicidad de compuestos utilizados en la agricultura / 8.1.1 Plaguicidas, breve clasificación / 8.1.2 Efecto de los plaguicidas en el medio ambiente / 8.1.3 Efecto de los plaguicidas en la salud / 8.1.4 Intoxicación por organofosforados / 8.1.5 Intoxicación por organoclorados / 8.2 Sensores y biosensores en la detección de compuestos / 8.2.1 Sensores físicos y químicos / 8.2.2 Biosensores / 8.2.3 Electroquímica en la detección de compuestos contaminantes / 8.3 Sistemas de detección electroquímica / 8.3.1 Celdas de análisis electroquímicos / 8.4 Sistemas Amperométricos / 8.4.1 Técnicas de detección comúnmente aplicadas / 8.5 Biosensores basados en enzimas / 8.5.1 Biosensores basados en la inhibición de la enzima acetilcolinesterasa (AchE) / 8.6 Biosensores basados en células microbianas / 8.6.1 Biosensores basados en Escherichia Coli (E.coli) / 8.7 Transductores electroquímicos / 8.7.1 Tipos de electrodos utilizados en la detección de sustancias / 8.7.2 Electrodos serigrafiados / 8.7.3 Modificación de los elementos transductores / 8.8 Materiales arcillosos en los procesos de modificación de electrodos / 8.8.1 Clasificación de las arcillas / 8.8.2 Caracterización del material arcilloso / 8.8.3 Aplicaciones de la Montmorillonita / 8.8.4 Aplicaciones de las matrices arcillosas en el desarrollo de biosensores / Bibliografía / Materiales y métodos / 9.1 Preparación del soporte arcilloso para la inmovilización de los ERB / 9.2 Desarrollo de biosensor enzimático / 9.2.1 Biosensor basado en la enzima acetilcolinesterasa (AchE) / 9.2.2 Prueba de actividad enzimática / 9.2.4 Procesos de inmovilización del biosensor enzimático / 9.2.5 Medidas electroquímicas / 9.2.6 Pruebas de bioafinidad / 9.2.7 Temperatura de inmovilización / 9.2.8 Selectividad / 9.2.9 Repetibilidad de los biosensores enzimáticos / 9.2.10 Sensibilidad del biosensor enzimático / 9.3 Desarrollo de biosensor bacteriano / 9.3.1 Biosensor basado en células bacterianas de Escherichia Coli / 9.3.2 Preparación del cultivo bacteriano / 9.3.3 Procesos de inmovilización del biosensor bacteriano / 9.3.4 Medidas electroquímicas / 9.3.5 Pruebas de bioafinidad / 9.3.6 Optimización del biosensor / 9.3.7 Análisis del pH de adsorción / 9.3.8 Análisis de carga bacteriana / 9.3.9 Análisis microscópico / 9.3.10 Sensibilidad del biosensor bacteriano / Bibliografía / Caracterización de las arcillas empleadas como soporte de inmovilización / 10.1 Resultados de la caracterización / 10.1.1 Espectros infrarrojos de las arcillas modificadas / 10.1.2 Análisis por difracción de rayos X (DRX) / 10.1.3 Punto de carga cero (PZC) / Resultados y discusión del biosensor enzimático / 10.2 Desarrollo del biosensor enzimático / 10.2.1 Actividad enzimática / 10.2.2 Respuestas electroquímicas / 10.2.3 Modificación de los electrodos / 10.2.4 Protocolo de inmovilización / 10.2.5 Pruebas de actividad enzimática / 10.2.6 Estabilidad enzimática en las arcillas / 10.2.7 Temperatura de inmovilización / 10.2.8 Selectividad / 10.2.9 Reproducibilidad entre los biosensores / 10.2.10 Tiempo de incubación / 10.2.11 Sensibilidad / 10.2.12 Porcentaje de inhibición / Bibliografía / Resultados y discusiones del biosensor bacteriano / 10.3 Desarrollo del biosensor bacteriano / 10.3.1 Prueba de protocolos / 10.3.2 Estabilidad microbiana en arcillas / 10.3.3 Pruebas de Carga bacteriana / 10.3.4 Pruebas de pH / 10.3.5 Pruebas de caracterización / 10.3.6 Pruebas de viabilidad celular / 10.3.7 Pruebas de sensibilidad / Bibliografía / 11. Conclusiones / 12. Recomendaciones / 13. Tendencias / Productos de investigación | |
dc.description | Maestría | |
dc.description | Magister en Química | |
dc.description | Química Analítica | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.language | spa | |
dc.publisher | Facultad de Ciencias Exactas y Naturales | |
dc.publisher | Manizales | |
dc.publisher | Maestría en Química | |
dc.relation | M.D.A Y.D S. MADS, “Resolución 631 de 2015,” D. Of. No. 49.486 18 abril 2015, vol. 2015, no. 49, p. 73, 2015 | |
dc.relation | Z. Hu, M. Zhang, and Y. Tian, “Screening and analysis of small molecular peptides in urine of gestational diabetes mellitus,” Clin. Chim. Acta, vol. 502, pp. 174–182, Mar. 2020. | |
dc.relation | M.-S. Chae, Y. K. Yoo, J. Kim, T. G. Kim, and K. S. Hwang, “Graphene-based enzyme-modified field- effect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment,” Sensors Actuators B Chem., vol. 272, pp. 448–458, Nov. 2018. | |
dc.relation | J.J. Liu, Z.X. Ni, Z.H. Diao, Y.-X. Hu, and X.-R. Xu, “Contamination level, chemical fraction and ecological risk of heavy metals in sediments from Daya Bay, South China Sea,” Mar. Pollut. Bull., vol. 128, pp. 132–139, Mar. 2018. | |
dc.relation | M. Gür; S, Yerlikaya; N, Sener; S, Özkinali; M.C Baloglu; H, Gökce & I. Sener “Antiproliferativeantimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds,” J. Mol. Struct., vol. 1219, p. 128570, Nov. 2020. | |
dc.relation | X. Cetó, N. H. Voelcker, and B. Prieto-Simón, “Bioelectronic tongues: New trends and applications in water and food analysis,” Biosens. Bioelectron., vol. 79, pp. 608–626, May 2016. | |
dc.relation | P. Chen, D. Pan, and Z. Mao, “Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter,” Opt. Laser Technol., vol. 64, pp. 213– 219, Dec. 2014. | |
dc.relation | T. Boontongto and R. Burakham, “Evaluation of metal-organic framework NH2-MIL-101(Fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples,” Heliyon, vol. 5, no. 11, p. e02848, Nov. 2019. | |
dc.relation | E. Gionfriddo, D. Gruszecka, X. Li, and J. Pawliszyn, “Direct-immersion SPME in soy milk for pesticide analysis at trace levels by means of a matrix-compatible coating,” Talanta, p. 120746, Jan. 2020. | |
dc.relation | C. Mendieta, N. Ortega, N. Solano-Cueva, and J. Figueroa, “Metodología para la Determinación de Pesticidas Organoclorados mediante Cromatografía de Gases Acoplado Espectrometría de Masas y Detector de Captura de Electrones,” Rev. Politécnica, vol. 40, no. 1, pp. 21–28, 2017. | |
dc.relation | P. R. Haddad and J. P. Quirino, “Simultaneous electrophoretic concentration and separation of herbicides in beer prior to stacking capillary electrophoresis UV and liquid chromatography – mass spectrometry,” vol 37 pp. 1122–1128, 2016. | |
dc.relation | H. Li; Z, Jiang; X, Cao, H, Su; H, Shao; F, Jin & J, Wang “Simultaneous determination of three pesticide adjuvant residues in plant-derived agro- products using liquid chromatography-tandem mass spectrometry,” J. Chromatogr. A, vol 1528, pp 53-60, 2017. | |
dc.relation | R. Bravo; W.J, Driskell; R.D Jr, Whitehead; L.L, Needham & D.B, Barr “Quantitation of Dialkyl Phosphate Metabolites of Organophosphate Pesticides in Human Urine Using GC-MS-MS with Isotopic Internal Standards,” vol. 26, no. August, pp. 245–252, 2002. | |
dc.relation | D. Sahoo, A. Mandal, T. Mitra, K. Chakraborty, M. Bardhan, and A. K. Dasgupta, “Nanosensing of Pesticides by Zinc Oxide Quantum Dot : An Optical and Electrochemical Approach for the Detection of Pesticides in Water,” vol 66; no 3, pp414-423, 2018. | |
dc.relation | Z. H. Al Mubarak, R. Ramesh, L. Liu, and S. Krishnan, “Surface plasmon resonance imaging of gold– small molecule interactions is influenced by refractive index and chemical structures,” J. Colloid Interface Sci., vol. 460, pp. 209–213, Dec. 2015. | |
dc.relation | A. Valencia, R. S. Castaño, A. Sánchez, and M. Bonilla, “Gestión de la contaminación ambiental cuestión de corresponsabilidad,” Rev. Ing., vol. unknown, no. 30, pp. 90–99, 2009. | |
dc.relation | Campos Sánchez, “Sensores electroquímicos tipo lengua electrónica voltamétrica aplicados al control medioambiental y a la industria alimentaria,” p. 260, 2013. | |
dc.relation | A. L. Ahmad, N. F. C. Lah, and L. S. Chun, “Hybrid molecular imprinted polymer (MIP) electrode for pesticide detection of electrochemical sensor,” J. Phys. Sci., vol. 29, pp. 33–40, 2018. | |
dc.relation | S. Gäberlein, M. Knoll, F. Spener, and C. Zaborosch, “Disposable potentiometric enzyme sensor for direct determination of organophosphorus insecticides,” Analyst, vol. 125, no. 12, pp. 2274–2279, 2000. | |
dc.relation | A. Gómez Arroyo, Sandra.; Martínez-Valenzuela, Carmen.; Carbajal-López, Yolanda.; MartínezArroyo, R. Calderón-Segura, María Elena.; Villalobos-Pietrini, and S. M. Waliszewski, “Riesgo genotóxico por la exposición ocupacional a plaguicidas en américa latina” Rev. Int. Contam. Ambient., vol. 29, no. 1, pp. 159– 180, 2013 | |
dc.relation | J. A. Buendía and G. J. Restrepo Chavarriaga, “Costo de la intoxicación por Paraquat en Colombia,” Value Heal. Reg. Issues, vol. 20, pp. 110–114, 2019. | |
dc.relation | C. B. S. Roepcke, S. B. Muench, H. Schulze, T. Bachmann, R. D. Schmid, and B. Hauer, “Analysis of phosphorothionate pesticides using a chloroperoxidase pretreatment and acetylcholinesterase biosensor detection,” J. Agric. Food Chem., vol. 58, no. 15, pp. 8748–8756, 2010. | |
dc.relation | J. Zhao, H. Guo, J. Li, A. J. Bandodkar, and J. A. Rogers, “Body-Interfaced Chemical Sensors for Noninvasive Monitoring and Analysis of Biofluids,” Trends Chem., vol. 1, no. 6, pp. 559–571, Sep. 2019. | |
dc.relation | M. L. Yola, “Electrochemical activity enhancement of monodisperse boron nitride quantum dots on graphene oxide: Its application for simultaneous detection of organophosphate pesticides in real samples,” J. Mol. Liq., vol. 277, pp. 50–57, Mar. 2019. | |
dc.relation | M. T. Beleno Cabarcas, M. Stoytcheva, R. Zlatev, G. Montero, Z. Velkova, and V. Gochev, “Chitosan Nanocomposite Modified OPH-Based Amperometric Sensor for Organophosphorus Pesticides Determination,” Curr. Anal. Chem., vol. 14, no. 1, pp. 75–82, 2017. 21 | |
dc.relation | H. Wang, X. J. Wang, J. F. Zhao, and L. Chen, “Toxicity assessment of heavy metals and organic compounds using CellSense biosensor with E.coli,” Chinese Chem. Lett., vol. 19, no. 2, pp. 211–214, 2008. | |
dc.relation | O. de las N. U. para la A. y la Alimentación, Código internacional de conducta para la distribución y utilización de plaguicidas. 2003. | |
dc.relation | A. H. Dawson et al., “Acute human lethal toxicity of agricultural pesticides: A prospective cohort study,” PLoS Med., vol. 7, no. 10, 2010. | |
dc.relation | Alza Camacho, W.R., Chaparro Acuña, S.P., & Garcia Colmenares, J.M “Estimación del riesgo de contaminación de fuentes hídricas de pesticidas ( Mancozeb y Carbofuran ) en Ventaquemada ,” Acta agronómica vol. 65, pp. 368–374, 2016. | |
dc.relation | E. M. Abdullat, M. S. Hadidi, N. Alhadidi, T. S. AL-Nsour, and K. A. Hadidi, “Agricultural and horticultural pesticides fatal poisoning; The Jordanian experience 1999-2002,” J. Clin. Forensic Med., vol. 13, no. 6–8, pp. 304–307, 2006. | |
dc.relation | L. M. Cruz Aquino and M. D. Placencia Medina, “Characteristics of occupational pesticide poisoning in agricultural workers treated at the Hospital Barra Cajatambo 2008-2017.,” Horiz. Médico, vol. 19, no. 2, pp. 39–48, 2019. | |
dc.relation | C. Hurtado Clavijo and M. Gutíerrez de Salazar, “Enfoque del paciente con intoxicación aguda por plaguicidas organofosforados,” Rev. Fac. Med. Univ. Nac. Colomb., vol. 53, no. 4, pp. 244–258, 2005. | |
dc.relation | C. Mendieta, N. Ortega, N. Solano-Cueva, and J. Figueroa, “Metodología para la Determinación de Pesticidas Organoclorados mediante Cromatografía de Gases Acoplado Espectrometría de Masas y Detector de Captura de Electrones,” Rev. Politécnica, vol. 40, no. 1, pp. 21–28, 2017. | |
dc.relation | M. F. Cavieres F, “Exposición a pesticidas y toxicidad reproductiva y del desarrollo en humanos. Análisis de la evidencia epidemiológica y experimental,” Rev. Med. Chil., vol. 132, no. 7, pp. 873–879, 2004. | |
dc.relation | P. Guzmán, R. Guevara, J. Olguín, and O. Mancilla, “Perspectiva campesina , intoxicaciones por plaguicidas y uso de agroquímicos,” Rev. Idesia, vol. 34, no. 3, pp. 69–80, 2016. | |
dc.relation | M. E. Varona; Diaz, S.M.,Briceño, L.,Sánchez-Infante, C. I.,Torres, C. H., Palma, R.M & Idrovo, A.J “Determinantes sociales de la intoxicación por plaguicidas entre cultivadores de arroz en Colombia,” Rev. Salud Publica, vol. 18, no. 4, pp. 617–629, 2016. | |
dc.relation | J. A. e Ortega García; JF, Tortajada; A.C, Cones; E.A, Valiente; E.C, Gaudiza; J.G, Castell & M.C, Calvo “Environmental neurotoxins. Pesticides: Adverse effects on the fetal and postnatal nervous system [Neurotóxicos medioambientales (I). Pesticidas: Efectos adversos en el sistema nervioso fetal y posnatal],” Acta Pediatr. Esp., vol. 63, no. 4, pp. 140–149, 2005. | |
dc.relation | Z. Hugh Fan, “Chemical Sensors and Microfluidics,” J. Biosens. Bioelectron., vol. 04, no. 01, pp. 1–2, 2013. | |
dc.relation | Samridhi, K. Singh, and P. A. Alvi, “Finite element analysis of polysilicon based MEMS temperature- pressure sensor,” Mater. Today Proc., Vol. 27, pp 280-283, 2019. | |
dc.relation | A. Kumaravel and M. Chandrasekaran, “Electrochemical Determination of Chlorpyrifos on a Nano- TiO2/Cellulose Acetate Composite Modified Glassy Carbon Electrode,” J. Agric. Food Chem., vol. 63, no. 27, pp. 6150–6156, 2015. | |
dc.relation | S. Kaushik, A. Pandey, U. K. Tiwari, and R. K. Sinha, “A label-free fiber optic biosensor for Salmonella Typhimurium detection,” Opt. Fiber Technol., vol. 46, pp. 95–103, 2018. | |
dc.relation | A. Kumaravel and M. Chandrasekaran, “Electrochemical Determination of Chlorpyrifos on a Nano- TiO2 / Cellulose Acetate Composite Modi fi ed Glassy Carbon Electrode,” Journal of agricultural and food chemistry, vol. 63, no 27, p. 6150-6156,2015. | |
dc.relation | Y. Cong, Q. Xu, H. Feng, and D. Shen, “Efficient electrochemically active biofilm denitrification and bacteria consortium analysis,” Bioresour. Technol., vol. 132, pp. 24–27, 2013. | |
dc.relation | Onder. S., Dafferner, A.J., Schopfer, L.M., Xiao, G., Yerramalla, U., Tacal, O., & Lockridge “Monoclonal Antibody That Recognizes Diethoxyphosphotyrosine-Modified Proteins and Peptides Independent of Surrounding Amino Acids,” Chem. Res. Toxicol., vol. 30, no. 12, pp. 2218–2228, 2017. | |
dc.relation | ] C. B. S. Roepcke, S. B. Muench, H. Schulze, T. Bachmann, R. D. Schmid, and B. Hauer, “Analysis of phosphorothionate pesticides using a chloroperoxidase pretreatment and acetylcholinesterase biosensor detection,” J. Agric. Food Chem., vol. 58, no. 15, pp. 8748–8756, 2010. | |
dc.relation | Zhou, L., Liu, C., Sun, Z., Mao, H., Zhang, L., Yu, X., & Chen, X, “Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis,”Biosens. Bioelectron., vol. 137, pp. 140–147, 2019. | |
dc.relation | H. Manoharan, P. Kalita, S. Gupta, and V. V. R. Sai, “Plasmonic biosensors for bacterial endotoxin detection on biomimetic C-18 supported fiber optic probes,” Biosens. Bioelectron., vol. 129, pp. 79– 86, 2019. | |
dc.relation | D. Chen, J. Fu, Z. Liu, Y. Guo, X. Sun, and X. Wang, “A Simple Acetylcholinesterase Biosensor Based on Ionic Liquid / Multiwalled Carbon Nanotubes-Modified Screen- Printed Electrode for Rapid Detecting Chlorpyrifos,” Int. J, Electrochem. Sci vol. 12, pp. 9465–9477, 2017. | |
dc.relation | Hondred, JA, Breger, JC, Alves, NJ, Trammell, SA, Walper, SA, Medintz & Claussen “Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates,” ACS applied materials & interfaces, vol. 10, no 13, p. 11125- 11134, 2018. | |
dc.relation | Ocampo, A., Grajales, M.J., March, C., & Montoya, Á “Inmunosensor piezoeléctrico para la detección del metabolito 3,5,6- tricloro-2-piridinol del plaguicida clorpirifos,” Revista EIA. vol- 8, pp. 127–136, 2011 | |
dc.relation | P. Halkare, N. Punjabi, J. Wangchuk, A. Nair, K. Kondabagil, and S. Mukherji, “Bacteria functionalized gold nanoparticle matrix based fiber-optic sensor for monitoring heavy metal pollution in water,” Sensors Actuators B Chem., vol. 281, pp. 643–651, 2019. | |
dc.relation | Wang, X., Cheng, M., Yang, Q., Wei, H., Xia., Wang, L., & Huang, X. “A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress,” Sci. Total Environ., vol. 697, p. 134097, 2019. | |
dc.relation | L. Gonzalez Olias, P. J. Cameron, and M. Di Lorenzo, “Effect of Electrode Properties on the Performance of a Photosynthetic Microbial Fuel Cell for Atrazine Detection,” Front. Energy Res., vol. 7, no. October, pp. 1–11, 2019. | |
dc.relation | A. Kaur and N. Verma, “Electrochemical Biosensor for Monitoring Insulin in Normal Individuals and Diabetic Mellitus Patients,” Eur. J. Exp. Biol., vol. 2, no. 2, pp. 389–395, 2012. | |
dc.relation | S. Y. Chen, W. Wei, B. C. Yin, Y. Tong, J. Lu, and B. C. Ye, “Development of a Highly Sensitive Whole- Cell Biosensor for Arsenite Detection through Engineered Promoter Modifications,” ACS Synth. Biol., vol. 8, no. 10, pp. 2295–2302, 2019. | |
dc.relation | Luo, Z., Wang, Y., Lu, X., Chen, J., Wei, F., Huang, Z., & Duan, Y. “Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme,” Anal. Chim. Acta, vol. 984, pp. 177–184, 2017. | |
dc.relation | Zhao, Z. Yang, H., Deng, S., Dong, Y., Yan, B., Zhang, K., & He, Q. “Intrinsic conformation response-leveraged aptamer probe based on aggregation- induced emission dyes for aflatoxin B1 detection,” Dye. Pigment., vol. 171, p. 107767, 2019. | |
dc.relation | C., Wang.Qian, J., Wang, K., Hua, M., Liu, Q., Hao, N., & Huang, X, “Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels,” ACS Appl. Mater. Interfaces, vol. 7, no. 48, pp. 26865– 26873, 2015. | |
dc.relation | ] H. K. Kordasht, M. H. Moosavy, M. Hasanzadeh, J. Soleymani, and A. Mokhtarzadeh, “Determination of aflatoxin M1 using an aptamer-based biosensor immobilized on the surface of dendritic fibrous nano-silica functionalized by amine groups,” Anal. Methods, vol. 11, no. 30, pp. 3910– 3919, 2019. | |
dc.relation | Y. Qi, F.-R. Xiu, M. Zheng, and B. Li, “A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: Sensitivity, selectivity and mechanism,” Biosens. Bioelectron., vol. 83, pp. 243–249, 2016. | |
dc.relation | Z. Shang, Y. Xu, Y. Gu, Y. Wang, D. Wei, and L. Zhan, “A Rapid Detection of Pesticide Residue Based on Piezoelectric Biosensor,” Procedia Eng., vol. 15, pp. 4480–4485, 2011. | |
dc.relation | H. Shahar, L. L. Tan, G. C. Ta, and L. Y. Heng, “Detection of halogenated hydrocarbon pollutants using enzymatic reflectance biosensor,” Sensors Actuators B Chem., vol. 281, pp. 80–89, 2019. | |
dc.relation | ] P. Raghu, T. Madhusudana Reddy, B. E. Kumara Swamy, B. N. Chandrashekar, K. Reddaiah, and M. Sreedhar, “Development of AChE biosensor for the determination of methyl parathion and monocrotophos in water and fruit samples: A cyclic voltammetric study,” J. Electroanal. Chem., vol. 665, pp. 76–82,. 2012 | |
dc.relation | N. Xu., Bai, J., Peng, Y., Qie, Z., Liu, Z, Tang, H., & Ning, B “Pretreatment-free detection of diazepam in beverages based on a thermometric biosensor,” Sensors Actuators B Chem., vol. 241, pp. 504–512, Mar. 2017. | |
dc.relation | Z. Yu, G. Zhao, M. Liu, Y. Lei, and M. Li, “Fabrication of a novel atrazine biosensor and its subpart-per-trillion levels sensitive performance,” Environ. Sci. Technol., vol. 44, no. 20, pp. 7878– 7883, 2010 | |
dc.relation | P. M. Ndangili, A. M. Jijana, P. G. L. Baker, and E. I. Iwuoha, “3-Mercaptopropionic acid capped ZnSe quantum dot-cytochrome P450 3A4 enzyme biotransducer for 17β-estradiol,” J. Electroanal. Chem., vol. 653, no. 1–2, pp. 67–74, Apr. 2011. | |
dc.relation | H. Dzudzevic Cancar et al., “A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides,” ACS Appl. Mater. Interfaces, vol. 8, no. 12, pp. 8058–8067, 2016. | |
dc.relation | L. E. Z. Garc and C. Garc, “Los biosensores electroquímicos : herramientas de la analítica y del diagnóstico clínico,” Monográfias de la Real Academia Nacional de Farmacia pp. 197–222. | |
dc.relation | H.-B. Xu, R.-F. Ye, S.-Y. Yang, R. Li, and X. Yang, “Electrochemical DNA nano-biosensor for the detection of genotoxins in water samples,” Chinese Chem. Lett., vol. 25, no. 1, pp. 29–34, Jan. 2014. | |
dc.relation | ] P. He, V. Oncescu, S. Lee, I. Choi, and D. Erickson, “Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors,” Anal. Chim. Acta, vol. 759, pp. 74–80, Jan. 2013. | |
dc.relation | J. Li, W. Fu, J. Bao, Z. Wang, and Z. Dai, “Fluorescence Regulation of Copper Nanoclusters via DNA Template Manipulation toward Design of a High Signal-to-Noise Ratio Biosensor,” ACS Appl. Mater. Interfaces, vol. 10, no. 8, pp. 6965–6971, 2018. | |
dc.relation | H. Wang, Y. Liu, and G. Liu, “Electrochemical Biosensor Using DNA Embedded Phosphorothioate Modified RNA for Mercury Ion Determination,” ACS Sensors, vol. 3, no. 3, pp. 624– 631, 2018. | |
dc.relation | B. Chocarro-Ruiz., Herranz, S., Gavela, A.F., Sanchís, J., Farré, M., Marco, M.P., & Lechuga, L.M “Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater,” Biosens. Bioelectron., vol. 117, pp. 47–52, 2018. | |
dc.relation | W. Wei, X. Zong, X. Wang, L. Yin, Y. Pu, and S. Liu, “A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen/platinum doped silica sol–gel film modified screenprinted carbon electrode,” Food Chem., vol. 135, no. 3, pp. 888–892, 2012. | |
dc.relation | H. Yang, R. Yuan, Y. Chai, and Y. Zhuo, “Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for detection of human chorionic gonadotrophin,” Colloids Surfaces B Biointerfaces, vol. 82, no. 2, pp. 463–469, 2011. | |
dc.relation | D. A. Fernández-Benavides, L. Cervera-Chiner, Y. Jiménez, O. A. de Fuentes, A. Montoya, and J. Muñoz-Saldaña, “A novel bismuth-based lead-free piezoelectric transducer immunosensor for carbaryl quantification,” Sensors Actuators B Chem., vol. 285, pp. 423–430, 2019. | |
dc.relation | ] V. Serafín, L. Agüí, P. Yáñez-Sedeño, and J. M. Pingarrón, “Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes– poly(pyrrole propionic acid) hybrids,” Biosens. Bioelectron., vol. 52, pp. 98–104, 2014. | |
dc.relation | Y. Guo., Liu, R., Liu, Y., Xiang, D., Liu, Y., Gui, W., & Zhu, G “A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples,” Sci. Total Environ., vol. 613–614, pp. 783–791, 2018 | |
dc.relation | A. Ramanaviciene, N. German, A. Kausaite-Minkstimiene, J. Voronovic, J. Kirlyte, and A. Ramanavicius, “Comparative study of surface plasmon resonance, electrochemical and electroassisted chemiluminescence methods based immunosensor for the determination of antibodies against human growth hormone,” Biosens. Bioelectron., vol. 36, no. 1, pp. 48–55, Jun. 2012. | |
dc.relation | P. T. Chu, C. S. Lin, W. J. Chen, C. F. Chen, and H. W. Wen, “Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles,” J. Agric. Food Chem., vol. 60, no. 26, pp. 6483–6492, 2012. | |
dc.relation | A. L. Ahmad, N. F. C. Lah, and L. S. Chun, “Hybrid molecular imprinted polymer (MIP) electrode for pesticide detection of electrochemical sensor,” J. Phys. Sci., vol. 29, pp. 33–40, 2018. | |
dc.relation | A. M. Shrivastav, S. P. Usha, and B. D. Gupta, “Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting,” Biosens. Bioelectron., vol. 79, pp. 150–157, May 2016. | |
dc.relation | H. Sun and Y. Fung, “Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements,” Anal. Chim. Acta, vol. 576, no. 1, pp. 67– 76, Aug. 2006. | |
dc.relation | Q. Shi, Y. Teng, Y. Zhang, and W. Liu, “Rapid detection of organophosphorus pesticide residue on Prussian blue modi fi ed dual-channel screen-printed electrodes combing with portable potentiostat,” Chinese Chem. Lett. vol. 29, no 9, p. 1379-1382, 2017. | |
dc.relation | W. R. Alza-camacho, “Determinación voltamétrica de paraquat y glifosato en aguas superficiales Voltammetric Quantification of Paraquat and Glyphosate in Surface Waters Determinação voltamétrica de paraquato e glifosato em águas superficiais,” Rev. Ciencia y Tecnología Agropecuaria vol. 17, no. 3, pp. 331–345, 2016. | |
dc.relation | ] N. Abramova, A. Bratov, and F. J. Gil, “Sensor impedimétrico para la detección de bacterias patogénicas mediante péptidos antimicrobianos,” Biomecánica, vol. 24, pp. 32–38, 2018. | |
dc.relation | M. Pohanka et al., “Electrochemical biosensor based on acetylcholinesterase and indoxylacetate for assay of neurotoxic compounds represented by paraoxon,” Int. J. Electrochem. Sci., vol. 7, no. 1, pp. 50–57, 2012. | |
dc.relation | F. W. P. Ribeiro, C. P. Sousa, S. Morais, P. de Lima-Neto, and A. N. Correia, “Sensing of formetanate pesticide in fruits with a boron-doped diamond electrode,” Microchem. J., vol. 142, pp. 24–29, Nov. 2018. | |
dc.relation | D. J. E. Costa, J. C. S. Santos, F. A. C. Sanches-Brandão, W. F. Ribeiro, G. R. Salazar-Banda, and M. C. U. Araujo, “Boron-doped diamond electrode acting as a voltammetric sensor for the detection of methomyl pesticide,” J. Electroanal. Chem., vol. 789, pp. 100–107, Mar. 2017. | |
dc.relation | S. Cosnier, C. Mousty, X. Cui, X. Yang, and S. Dong, “Specific determination of As(V) by an acid phosphatase-polyphenol oxidase biosensor,” Anal. Chem., vol. 78, no. 14, pp. 4985–4989, 2006. | |
dc.relation | A. Samphao, P. Suebsanoh, Y. Wongsa, B. Pekec, J. Jitchareon, and K. Kalcher, “Alkaline phosphatase inhibition-based amperometric biosensor for the detection of carbofuran,” Int. J. Electrochem. Sci., vol. 8, no. 3, pp. 3254–3264, 2013. | |
dc.relation | R. Maallah, “Electrochemical Sensor Based on the Clay- Carbone Paste Electrode Modified by Bacteria-Polymer for Elimination of Phenol,” Am. J. Biomed. Sci. Res., vol. 4, no. 5, pp. 379–383, 2019. | |
dc.relation | Q. T. Hua, N. Ruecha, Y. Hiruta, and D. Citterio, “Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis,” Anal. Methods, vol. 11, no. 27, pp. 3439–3445, 2019. | |
dc.relation | Z. Q. Gong, A. N. A. Sujari, and S. Ab Ghani, “Electrochemical fabrication, characterization and application of carboxylic multi-walled carbon nanotube modified composite pencil graphite electrodes,” Electrochim. Acta, vol. 65, pp. 257–265, 2012. | |
dc.relation | H. Borah, S. Gogoi, S. Kalita, and P. Puzari, “A broad spectrum amperometric pesticide biosensor based on glutathione S-transferase immobilized on graphene oxide-gelatin matrix,” J. Electroanal. Chem., vol. 828, pp. 116–123, 2018. | |
dc.relation | N. E. Virolainen, M. G. Pikkemaat, J. W. A. Elferink, and M. T. Karp, “Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria,” J. Agric. Food Chem., vol. 56, no. 23, pp. 11065–11070, 2008. | |
dc.relation | J. Dong, J. Hou, J. Jiang, and S. Ai, “Innovative approach for the electrochemical detection of non- electroactive organophosphorus pesticides using oxime as electroactive probe,” Anal. Chim. Acta, vol. 885, pp. 92–97, Jul. 2015 | |
dc.relation | B. Köksoy, D. Akyüz, A. Şenocak, M. Durmuş, and E. Demirbas, “Sensitive, simple and fast voltammetric determination of pesticides in juice samples by novel BODIPY-phthalocyanine-SWCNT hybrid platform,” Food Chem. Toxicol., vol. 147, p. 111886, Jan. 2021. | |
dc.relation | H. Wang, Z. Ma, and H. Han, “A novel impedance enhancer for amperometric biosensor based ultrasensitive detection of matrix metalloproteinase-2,” Bioelectrochemistry, vol. 130, p. 107324, Dec. 2019. | |
dc.relation | P. Mulchandani, C. M. Hangarter, Y. Lei, W. Chen, and A. Mulchandani, “Amperometric microbial biosensor for p -nitrophenol using Moraxella sp . -modified carbon paste electrode,” Biosensors and Bioelectronics vol. 21, pp. 523–527, 2005. | |
dc.relation | P. Raghu, T. M. Reddy, B. E. K. Swamy, B. N. Chandrashekar, K. Reddaiah, and M. Sreedhar, “Development of AChE biosensor for the determination of methyl parathion and monocrotophos in water and fruit samples : A cyclic voltammetric study,” J. Electroanal. Chem., vol. 665, pp. 76–82, 2012. | |
dc.relation | N. Chauhan and C. S. Pundir, “Analytica Chimica Acta An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles / multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides,” Anal. Chim. Acta, vol. 701, no. 1, pp. 66–74, 2011 | |
dc.relation | N. Vigués, F. Pujol-Vila, J. Macanás, M. Muñoz, X. Muñoz-Berbel, and J. Mas, “Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation,” Talanta, vol. 206, no. July 2019, p. 120192, 2020. | |
dc.relation | Ş. Sarioǧlan, “A comparison study on conductive poly(3,4-ethylenedioxythiophene) nanocomposites synthesized with clay type montmorillonite and organophilic montmorillonite,” Part. Sci. Technol., vol. 30, no. 1, pp. 68–80, 2012. | |
dc.relation | Q. Lang, L. Han, C. Hou, F. Wang, and A. Liu, “Talanta A sensitive acetylcholinesterase biosensor based on gold nanorods modi fi ed electrode for detection of organophosphate pesticide,” Talanta, vol. 156–157, pp. 34–41, 2016. | |
dc.relation | F. Pujol-Vila., Dietvorst, J., Gall-Mas, L., Díaz-Gonzáles, M., Vigués, N., Mas, J., & Moñuz-Berbel, X “Bioelectrochromic hydrogel for fast antibiotic-susceptibility testing,” J. Colloid Interface Sci., vol. 511, pp. 251–258, 2018. | |
dc.relation | D. Pan, Y. Gu, H. Lan, Y. Sun, and H. Gao, “Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A,” Anal. Chim. Acta, vol. 853, pp. 297–302, Jan. 2015. | |
dc.relation | S. Yuan, W. Chen, and S. Hu, “Simultaneous determination of cadmium (II) and lead (II) with clay nanoparticles and anthraquinone complexly modified glassy carbon electrode,” Talanta, vol. 64, no. 4, pp. 922–928, Nov. 2004. | |
dc.relation | T. Hunde, M. Berhe, A. Tadese, M. Tirfu, and A. Woldu, “Nano Fe3O 4 – Graphite Paste Modified Electrochemical Sensor for Phosphatic Pesticide -Chlorpyrifos,” Momona Ethiopian Journal of Science vol. 9, no. 1, pp. 76–89, 2017. | |
dc.relation | H. F. Cui, W. W. Wu, M. M. Li, X. Song, Y. Lv, and T. T. Zhang, “A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides,” Biosens. Bioelectron., vol. 99, no. pp. 223–229, 2018. | |
dc.relation | F. Arduini, A. Amine, D. Moscone, and G. Palleschi, “Biosensors based on cholinesterase inhibition for insecticides , nerve agents and aflatoxin B 1 detection ( review ),” Microchimica Acta, vol. 170, no 3-4, p. 193-214, 2010. | |
dc.relation | L. R. Cedillo et al., “Aplicaciones de las Enzimas Inmovilizadas Application of Immobilized Enzymes,” Revista Científica de la Universidad Autónoma de Coahuila no. 11, pp. 1–9, 2014. | |
dc.relation | M. Stoytcheva, R. Zlatev, G. Montero, Z. Velkova, and V. Gochev, “Bi-enzyme Electrochemical Sensor for Selective Determination of Organophosphorus Pesticides with Phenolic Leaving Groups,” Electroanalysis, vol. 29, no. 11, pp. 2526–2532, 2017. | |
dc.relation | C. Edwards, S. Duanghathaipornsuk, M. Goltz, S. Kanel, and D. S. Kim, “Peptide Nanotube Encapsulated Enzyme Biosensor for Vapor Phase Detection of Malathion, an Organophosphorus Compound,” Sensors. vol. 19, no 18, p. 3856. | |
dc.relation | X. Wang, X. Lu, L. Wu, and J. Chen, “Direct Electrochemical Tyrosinase Biosensor based on Mesoporous Carbon and Co3O4 Nanorods for the Rapid Detection of Phenolic Pollutants,” ChemElectroChem, vol. 1, no. 4, pp. 808–816, 2014. | |
dc.relation | M. T. Beleno Cabarcas, M. Stoytcheva, R. Zlatev, G. Montero, Z. Velkova, and V. Gochev, “Chitosan Nanocomposite Modified OPH-Based Amperometric Sensor for Organophosphorus Pesticides Determination,” Curr. Anal. Chem., vol. 14, no. 1, pp. 75–82, 2017. | |
dc.relation | A. Kaffash, H. R. Zare, and K. Rostami, “Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode,” Anal. Methods, vol. 10, no. 23, pp. 2731–2739, 2018. | |
dc.relation | N. K. Mogha, V. Sahu, M. Sharma, R. K. Sharma, and D. T. Masram, “Biocompatible ZrO2- reduced graphene oxide immobilized AChE biosensor for chlorpyrifos detection,” Mater. Des., vol. 111, pp. 312–320, Dec. 2016. | |
dc.relation | X. Wu, X. Zhong, Y. Chai, and R. Yuan, “Electrochemiluminescence acetylcholine biosensor based on biofunctional AMs-AChE-ChO biocomposite and electrodeposited graphene-Au-chitosan nanocomposite,” Electrochim. Acta, vol. 147, pp. 735–742, Nov. 2014. | |
dc.relation | S. P. Sharma, L. N. S. Tomar, J. Acharya, A. Chaturvedi, M. V. S. Suryanarayan, and R. Jain, “Acetylcholinesterase inhibition-based biosensor for amperometric detection of Sarin using singlewalled carbon nanotube-modified ferrule graphite electrode,” Sensors Actuators B Chem., vol. 166– 167, pp. 616–623, May 2012. | |
dc.relation | M. Mukherjee, C. Nandhini, and P. Bhatt, “Colorimetric and chemiluminescence based enzyme linked apta-sorbent assay (ELASA) for ochratoxin A detection,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 244, p. 118875, Jan. 2021 | |
dc.relation | Z. Lu., Dang, Y., Dai, C., Zhang, Y., Zou, P., Du, H., & Wang, Y. “Hollow MnFeO oxide derived from MOF@MOF with multiple enzyme-like activities for multifunction colorimetric assay of biomolecules and Hg2+,” J. Hazard. Mater., vol. 403, p. 123979, Feb. 2021. | |
dc.relation | N. M. King, K. M. Elkins, and D. J. Nelson, “Reactivity of the invariant cysteine of silver hake parvalbumin (Isoform B) with dithionitrobenzoate (DTNB) and the effect of differing buffer species on reactivity,” J. Inorg. Biochem., vol. 76, no. 3–4, pp. 175–185, Sep. 1999. | |
dc.relation | D. Dingova, J. Leroy, A. Check, V. Garaj, E. Krejci, and A. Hrabovska, “Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay,” Anal. Biochem., vol. 462, pp. 67–75, Oct. 2014 | |
dc.relation | S. Timur, “Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes,” Electrochemistry Communications vol. 9, pp. 1810–1815, 2007. | |
dc.relation | D. Chen, H. Feng, and J. Li, “Graphene Oxide : Preparation , Functionalization , and Electrochemical Applications,” Chemical reviews 2012.vol 112, pp 6027-6053 | |
dc.relation | R. Peng, A. Offenhäusser, Y. Ermolenko, and Y. Mourzina, “Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media,” Sensors Actuators, B Chem., vol. 321, p. 128437, Oct. 2020. | |
dc.relation | P. J. Lamas-Ardisana, G. Martínez-Paredes, L. Añorga, and H. J. Grande, “Glucose biosensor based on disposable electrochemical paper-based transducers fully fabricated by screen-printing,” Biosens. Bioelectron., vol. 109, pp. 8–12, Jun. 2018. | |
dc.relation | S. Campuzano, “Presente y futuro de los biosensores microbianos electroquímicos,” vol. 107, pp. 350–357, 2011. | |
dc.relation | K. Catterall, D. Robertson, S. Hudson, P. R. Teasdale, D. T. Welsh, and R. John, “A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli,” Talanta, vol. 82, no. 2, pp. 751–757, Jul. 2010. | |
dc.relation | F. Pujol-Vila, N. Vigués, M. Díaz-González, X. Muñoz-Berbel, and J. Mas, “Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics,” Biosens. Bioelectron., vol. 67, pp. 272–279, 2015. | |
dc.relation | H. Ma, D. Yong, H. Kim, Z. Zhang, S. Ma, and X. Han, “A Ferricyanide-mediated Activated Sludge Bioassay for Determination of the Toxicity of Water,” Electroanalysis, vol. 28, no. 3, pp. 580– 587, 2016. | |
dc.relation | G. Sunantha and N. Vasudevan, “A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor,” Sci. Total Environ., vol 759, p. 143544, Nov. 2020. | |
dc.relation | E. Poikulainen, J. Tienaho, T. Sarjala, and V. Santala, “A panel of bioluminescent whole-cell bacterial biosensors for the screening for new antibacterial substances from natural extracts,” J. Microbiol. Methods, vol. 178, p. 106083, Nov. 2020. | |
dc.relation | M. Rabbani and Y. Dalman, “Fabrication of biosensors by bacterial printing on different carriers using a laser printer,” Bioprinting, vol. 20, p. e00099, Dec. 2020 | |
dc.relation | H. Wasito, A. Fatoni, D. Hermawan, and S. S. Susilowati, “Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water,” Ecotoxicol. Environ. Saf., vol. 170, pp. 205– 209, Apr. 2019. | |
dc.relation | N. Uria, E. Fiset, M. A. Pellitero, F. X. Muñoz, K. Rabaey, and F. J. de. Campo, “Immobilisation of electrochemically active bacteria on screen-printed electrodes for rapid in situ toxicity biosensing,” Environ. Sci. Ecotechnology, vol. 3, p. 100053, Jul. 2020. | |
dc.relation | Z. H. Al Mubarak, R. Ramesh, L. Liu, and S. Krishnan, “Surface plasmon resonance imaging of gold– small molecule interactions is influenced by refractive index and chemical structures,” J. Colloid Interface Sci., vol. 460, pp. 209–213, Dec. 2015. | |
dc.relation | J. Wang, M. Yokokawa, T. Satake, and H. Suzuki, “A micro IrOx potentiometric sensor for direct determination of organophosphate pesticides,” Sensors Actuators B Chem., vol. 220, pp. 859– 863, Dec. 2015. | |
dc.relation | S. Kurbanoglu, S. A. Ozkan, and A. Merkoçi, “Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications,” Biosens. Bioelectron., vol. 89, no. September 2016, pp. 886–898, 2017. | |
dc.relation | F. Mahzabeen et al., “Real-time point-of-care total protein measurement with a miniaturized optoelectronic biosensor and fast fluorescence-based assay,” Biosens. Bioelectron., vol 180. p. 112823, Nov. 2020 | |
dc.relation | S. Khumngern, R. Jirakunakorn, P. Thavarungkul, P. Kanatharana, and A. Numnuam, “A highly sensitive flow injection amperometric glucose biosensor using a gold nanoparticles/polytyramine/Prussian blue modified screen-printed carbon electrode,” Bioelectrochemistry, vol. 138, p. 107718, Apr. 2021 | |
dc.relation | S. Gäberlein, M. Knoll, F. Spener, and C. Zaborosch, “Disposable potentiometric enzyme sensor for direct determination of organophosphorus insecticides,” Analyst, vol. 125, no. 12, pp. 2274– 2279, 2000. | |
dc.relation | M. Sheliakina, V. Arkhypova, O. Soldatkin, O. Saiapina, B. Akata, and S. Dzyadevych, “Ureasebased ISFET biosensor for arginine determination,” Talanta, vol. 121, pp. 18–23, 2014. | |
dc.relation | M. S. P. López and B. López-Ruiz, “Inhibition biosensor based on calcium phosphate materials for detection of benzoic acid in aqueous and organic media,” Electroanalysis, vol. 23, no. 1, pp. 264– 271, 2011. | |
dc.relation | A. de Barros, C. J. L. Constantino, N. C. da Cruz, J. R. R. Bortoleto, and M. Ferreira, “High performance of electrochemical sensors based on LbL films of gold nanoparticles, polyaniline and sodium montmorillonite clay mineral for simultaneous detection of metal ions,” Electrochim. Acta, vol. 235, pp. 700–708, May 2017. | |
dc.relation | G. A. Zhylyak, S. V Dzyadevich, Y. I. Korpan, A. P. Soldatkin, and A. V El’skaya, “Application of urease conductometric biosensor for heavy-metal ion determination,” Sensors Actuators B Chem., vol. 24, no. 1, pp. 145–148, 1995. | |
dc.relation | O. O. Soldatkin, V. M. Peshkova, S. V Dzyadevych, A. P. Soldatkin, N. Jaffrezic-Renault, and A. V El’skaya, “Novel sucrose three-enzyme conductometric biosensor,” Mater. Sci. Eng. C, vol. 28, no. 5, pp. 959–964, 2008. | |
dc.relation | Pujol-Vila, F., Giménez-Gómez, P., Santamaria, N., Antúnez, B., Vigués, N., Díaz-González, M., & Muñoz-Berbel, X “Portable and miniaturized optofluidic analysis system with ambient light correction for fast in situ determination of environmental pollution,” Sensors Actuators, B Chem., vol. 222, pp. 55–62, 2016. | |
dc.relation | R. K. Mishra, R. B. Dominguez, S. Bhand, R. Muñoz, and J. L. Marty, “A novel automated flowbased biosensor for the determination of organophosphate pesticides in milk,” Biosens. Bioelectron., vol. 32, no. 1, pp. 56–61, 2012. | |
dc.relation | H. Zheng, Z. Yan, M. Wang, J. Chen, and X. Zhang, “Biosensor based on polyanilinepolyacrylonitrile- graphene hybrid assemblies for the determination of phenolic compounds in water samples,” J. Hazard. Mater., vol. 378, p. 120714, Oct. 2019. | |
dc.relation | M. Dequaire, C. Degrand, B. P. De Clermont-ferrand, and A. Landais, “Based on a Perfluorosulfonate- Coated Screen-Printed Electrode for the Determination of 2, 4- Dichlorophenoxyacetic Acid involving a magnetic particle-based solid phase and a,” Symp. A Q. J. Mod. Foreign Lit., vol. 71, no. 13, pp. 2571–2577, 1999. | |
dc.relation | Y. Lin, F. Lu, and J. Wang, “Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents,” Electroanalysis, vol. 16, no. 12, pp. 145–149, 2004. | |
dc.relation | F. Longobardi, M. Solfrizzo, D. Compagnone, M. Del Carlo, and A. Visconti, “Use of electrochemical biosensor and gas chromatography for determination of dichlorvos in wheat,” J. Agric. Food Chem., vol. 53, no. 24, pp. 9389–9394, 2005. | |
dc.relation | B. Bucur, D. Fournier, A. Danet, and J. L. Marty, “Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection,” Anal. Chim. Acta, vol. 562, no. 1, pp. 115–121, 2006. | |
dc.relation | G. Valdés-Ramírez, D. Fournier, M. T. Ramírez-Silva, and J. L. Marty, “Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin,” Talanta, vol. 74, no. 4, pp. 741–746, 2008. | |
dc.relation | A. Hildebrandt, R. Bragós, S. Lacorte, and J. L. Marty, “Performance of a portable biosensor for the analysis of organophosphorus and carbamate insecticides in water and food,” Sensors Actuators, B Chem., vol. 133, no. 1, pp. 195–201, 2008. | |
dc.relation | H. Li, J. Li, Z. Yang, Q. Xu, and X. Hu, “A novel photoelectrochemical sensor for the organophosphorus pesticide dichlofenthion based on nanometer-sized titania coupled with a screenprinted electrode,” Anal. Chem., vol. 83, no. 13, pp. 5290–5295, 2011. | |
dc.relation | F. Marinho, S. Y. Neto, and R. De C, “Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles.” | |
dc.relation | C. Núñez, J. J. Triviño, and V. Arancibia, “A electrochemical biosensor for As(III) detection based on the catalytic activity of Alcaligenes faecalis immobilized on a gold nanoparticle–modified screen– printed carbon electrode,” Talanta, vol. 223, p. 121702, Feb. 2021. | |
dc.relation | C. Erkmen, S. Kurbanoglu, and B. Uslu, “Fabrication of poly(3,4-ethylenedioxythiophene)- iridium oxide nanocomposite based Tyrosinase biosensor for the dual detection of catechol and azinphos methyl,” Sensors Actuators, B Chem., vol. 316, p. 128121, Aug. 2020. | |
dc.relation | T. M. B. F. Oliveira et al., “Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification,” Talanta, vol. 106, pp. 137–143, Mar. 2013. | |
dc.relation | W. da Silva, M. E. Ghica, and C. M. A. Brett, “Choline oxidase inhibition biosensor based on poly(brilliant cresyl blue) – deep eutectic solvent / carbon nanotube modified electrode for dichlorvos organophosphorus pesticide,” Sensors Actuators, B Chem., vol. 298, p. 126862, Nov. 2019. | |
dc.relation | Huixiang, W., Danqun, H., Yanan, Z., Na, M., Jingzhou, H., Miao, L., & Changjun, H. “A nonenzymatic electro-chemical sensor for organophosphorus nerve agents mimics and pesticides detection,” Sensors Actuators, B Chem., vol. 252, pp. 1118–1124, Nov. 2017. | |
dc.relation | N. Kaur, H. Thakur, and N. Prabhakar, “Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate,” J. Electroanal. Chem., vol. 775, pp. 121–128, Aug. 2016. | |
dc.relation | A. M. Santos et al., “Voltammetric determination of ethinylestradiol using screen-printed electrode modified with functionalized graphene, graphene quantum dots and magnetic nanoparticles coated with molecularly imprinted polymers,” Talanta, vol. 224, p. 121804, Mar. 2021. | |
dc.relation | D. Chen et al., “Electrochemical acetylcholinesterase biosensor based on multi-walled carbon nanotubes/dicyclohexyl phthalate modified screen-printed electrode for detection of chlorpyrifos,” J. Electroanal. Chem., vol. 801, pp. 185–191, Sep. 2017. 59 | |
dc.relation | F. Arduini, S. Guidone, A. Amine, G. Palleschi, and D. Moscone, “Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection,” Sensors Actuators, B Chem., vol. 179, pp. 201–208, 2013. | |
dc.relation | M. A. Alonso-Lomillo, O. Domínguez-Renedo, L. Ferreira-Gonçalves, and M. J. Arcos-Martínez, “Sensitive enzyme-biosensor based on screen-printed electrodes for Ochratoxin A,” Biosens. Bioelectron., vol. 25, no. 6, pp. 1333–1337, Feb. 2010. | |
dc.relation | R. Jirakunakorn, S. Khumngern, J. Choosang, P. Thavarungkul, P. Kanatharana, and A. Numnuam, “Uric acid enzyme biosensor based on a screen-printed electrode coated with Prussian blue and modified with chitosan-graphene composite cryogel,” Microchem. J., vol. 154, p. 104624, May 2020. | |
dc.relation | M. Piano, S. Serban, R. Pittson, G. A. Drago, and J. P. Hart, “Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s BlueReinecke salt, coated with lactate dehydrogenase and NAD+,” Talanta, vol. 82, no. 1, pp. 34–37, Jun. 2010. | |
dc.relation | M. Piano, S. Serban, N. Biddle, R. Pittson, G. A. Drago, and J. P. Hart, “A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola’s BlueReinecke salt coated with glucose dehydrogenase, for the measurement of glucose,” Anal. Biochem., vol. 396, no. 2, pp. 269–274, Jan. 2010. | |
dc.relation | D. Alonso and G. Quijano, “Desarrollo de electrodos modificados con matrices de sílice para posibles aplicaciones en sensores y biosensores electroquímicos,” 2015. | |
dc.relation | G. Yu, W. Wu, Q. Zhao, X. Wei, and Q. Lu, “Biosensors and Bioelectronics Ef fi cient immobilization of acetylcholinesterase onto amino functio- nalized carbon nanotubes for the fabrication of high sensitive orga- nophosphorus pesticides biosensors,” Biosens. Bioelectron., vol. 68, pp. 288–294, 2015. | |
dc.relation | T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang, and M. Wei, “Two-dimensional nanomaterials: fascinating materials in biomedical field,” Sci. Bull., vol. 64, no. 22, pp. 1707–1727, 2019. | |
dc.relation | K. El Bourakadi., Merghoub, N., Fardioui, M., Mekhzoum, M. E. M., Kadmiri, I. M., Essassi, E. M., & Bouhfid, R “Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio- nanocomposite films: Mechanical, morphological and antimicrobial properties,” Compos. Part B Eng., vol. 172, pp. 103–110, Sep. 2019. | |
dc.relation | J. C. de Almeida, A. de Barros, I. Odone Mazali, and M. Ferreira, “Influence of gold nanostructures incorporated into sodium montmorillonite clay based on LbL films for detection of metal traces ions,” Appl. Surf. Sci., vol. 507, p. 144972, Mar. 2020. | |
dc.relation | N. C. de Lucena, C. M. Miyazaki, F. M. Shimizu, C. J. L. Constantino, and M. Ferreira, “Layerby-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine,” Appl. Surf. Sci., vol. 436, pp. 957–966, Apr. 2018. | |
dc.relation | Q. Fan, D. Shan, H. Xue, Y. He, and S. Cosnier, “Amperometric phenol biosensor based on laponite clay – chitosan nanocomposite matrix,” Biosensor and Bioelectronics vol. 22, pp. 816–821, 2007. | |
dc.relation | H. L. Tcheumi, I. K. Tonle, E. Ngameni, and A. Walcarius, “Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode,” Talanta, vol. 81, no. 3, pp. 972–979, May 2010. | |
dc.relation | S. Firdoz, F. Ma, X. Yue, Z. Dai, A. Kumar, and B. Jiang, “A novel amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of carbaryl pesticide in water,” Talanta, vol. 83, no. 1, pp. 269–273, Nov. 2010. | |
dc.relation | D. Du, X. Ye, J. Cai, J. Liu, and A. Zhang, “Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates,” Biosens. Bioelectron., vol. 25, no. 11, pp. 2503–2508, Jul. 2010. | |
dc.relation | D. Du, M. Wang, J. Cai, and A. Zhang, “Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide,” Sensors Actuators B Chem., vol. 146, no. 1, pp. 337–341, Apr. 2010. | |
dc.relation | L.-G. Zamfir, L. Rotariu, and C. Bala, “A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel,” Biosens. Bioelectron., vol. 26, no. 8, pp. 3692– 3695, Apr. 2011. | |
dc.relation | R. R. Dutta and P. Puzari, “Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode,” Biosens. Bioelectron., vol. 52, pp. 166–172, Feb. 2014. | |
dc.relation | Y. Zhang, M. A. Arugula, M. Wales, J. Wild, and A. L. Simonian, “A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non- organophosphrus pesticides,” Biosens. Bioelectron., vol. 67, pp. 287–295, May 2015. | |
dc.relation | N. Xia., Zhang, Y., Chang, K., Gai, X., Jing, Y., Li, S., & Qu, G “Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos,” J. Electroanal. Chem., vol. 746, pp. 68–74, Jun. 2015. | |
dc.relation | Q. Lang, L. Han, C. Hou, F. Wang, and A. Liu, “A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide,” Talanta, vol. 156– 157, pp. 34–41, Aug. 2016. | |
dc.relation | N. Kaur, H. Thakur, R. Kumar, and N. Prabhakar, “An electrochemical sensor modified with poly(3,4- ethylenedioxythiophene)-wrapped multi-walled carbon nanotubes for enzyme inhibitionbased determination of organophosphates,” Microchim. Acta, vol. 183, no. 7, pp. 2307–2315, 2016. | |
dc.relation | T. Sarkar, N. Narayanan, and P. Rathee, “Polymer – Clay Nanocomposite-Based Acetylcholine esterase Biosensor for Organophosphorous Pesticide Detection,” Int. J. Environ. Res., 2017. | |
dc.relation | L. Zhou, X. Zhang, L. Ma, J. Gao, and Y. Jiang, “Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection,” Biochem. Eng. J., vol. 128, pp. 243–249, Dec. 2017. | |
dc.relation | T. B. Ha, H. T. Le, H. A. H. Cao, and N. T. Binh, “Electro-Immobilization of Acetylcholinesterase Using Polydopamine for Carbaryl Microsensor,” Journal of Electronic Materials, vol. 47, no 2, p. 1686- 1693. 2018 | |
dc.relation | E. Mahmoudi, H. Fakhri, A. Hajian, A. Afkhami, and H. Bagheri, “High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metalorganic framework sensing platforms,” Bioelectrochemistry, vol. 130, p. 107348, Dec. 2019. | |
dc.relation | A. Maghear,Tertiş, M., Fritea, L., Marian, I. O., Indrea, E., Walcarius, A., & Săndulescu, R. “Tetrabutylammonium-modified clay film electrodes: Characterization and application to the detection of metal ions,” Talanta, vol. 125, pp. 36–44, Jul. 2014. | |
dc.relation | Y. T. Yaman, O. Akbal, and S. Abaci, “Development of clay-protein based composite nanoparticles modified single-used sensor platform for electrochemical cytosensing application,” Biosens. Bioelectron., vol. 132, pp. 230–237, May 2019. | |
dc.relation | P. Andrea and H. Aguirre, “Arcilla pilarizada con Al-Fe como catalizador para la oxidación de un colorante empleado en la industria de alimentos Pillared clay with Al-Fe as catalyst for the oxidation of a dye used in food industry,” Departamento de ingeniería química, (Tesis de posgrado), 2019. | |
dc.relation | C. Mousty, “Sensors and biosensors based on clay-modified electrodes — new trends,” vol. 27, pp. 159–177, 2004. | |
dc.relation | Q. Wang, L. Peng, G. Li, P. Zhang, D. Li, and F. Huang, “Activity of Laccase Immobilized on TiO2 - Montmorillonite Complexes,” International Journal of Molecular Sciences, vol 14 no 6,pp. 12520– 12532, 2013. | |
dc.relation | Laguna, O.H., Molina, C.M, Moreno, S., & Molina, R “Naturaleza mineralógica de esmectitas provenientes de la formación Honda (Noreste del Tolima)”. Boletin de ciencias de la tierra. no 23 pp. 55–68, 2008. | |
dc.relation | B. Unal, E. E. Yalcinkaya, D. O. Demirkol, and S. Timur, “An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite,” Appl. Surf. Sci., vol. 444, pp. 542–551, Jun. 2018 | |
dc.relation | R. M. Apetrei and P. Camurlu, “The effect of montmorillonite functionalization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers,” Electrochim. Acta, vol. 353, p. 136484, Sep. 2020. | |
dc.relation | A. Diouf, S. Motia, N. El Alami El Hassani, N. El Bari, and B. Bouchikhi, “Development and characterization of an electrochemical biosensor for creatinine detection in human urine based on functional molecularly imprinted polymer,” J. Electroanal. Chem., vol. 788, pp. 44–53, Mar. 2017. | |
dc.relation | S. Soylemez, F. E. Kanik, S. Tarkuc, Y. A. Udum, and L. Toppare, “A sepiolite modified conducting polymer based biosensor,” Colloids Surfaces B Biointerfaces, vol. 111, pp. 549–555, Nov. 2013. | |
dc.relation | H. Karaer Yağmur and İ. Kaya, “Synthesis and characterization of new polymers derived from 2- methyl-m-phenylenediamine as an effective adsorbent for cationic dye removal,” Arab. J. Chem., vol. 13, no. 11, pp. 8183–8199, Nov. 2020. | |
dc.relation | A. Ahmed et al., “XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids,” J. Mol. Struct., vol. 1173, pp. 653–664, Dec. 2018. | |
dc.relation | R. R. Baby Suneetha, S. Kulandaivel, and C. Vedhi, “Synthesis, characterisation and electrochemical application of hybrid nanocomposites of polyaniline with novel clay mineral,” Mater. Today Proc., Sep. 2020. | |
dc.relation | L. A. Chungata, “Estudio Del Área Superficial Específica En La Caracterización De Los Catalizadores a Utilizarse En La Gasificación Catalítica Para La Producción De Hidrógeno,” (Tesis de posgrado) pp. 1–117, 2017. | |
dc.relation | H. Najafi, S. Farajfaed, S. Zolgharnian, S. H. Mosavi Mirak, N. Asasian-Kolur, and S. Sharifian, “A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes,” Process Safety and Environmental Protection, vol. 147. Institution of Chemical Engineers, pp. 8–36, 01-Mar-2021. | |
dc.relation | Phongphut, A., Chayasombat, B., Cass, A. E., Sirisuk, A., Phisalaphong, M., Prichanont, S., & Thanachayanont, C. “Clay/au nanoparticle composites as acetylcholinesterase carriers and modifiedelectrode materials: A comparative study,” Appl. Clay Sci., vol. 194, p. 105704, Sep. 2020. | |
dc.relation | F. Alberto, A. Villa, and A. H. Anaguano, “D eterminación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes Determination of the point of zero charge and,” Doctor, vol. 4, no. 2, pp. 27–36, 2013. | |
dc.relation | Jović-Jovičić, N., Mojović, M., Stanković, D., Nedić-Vasiljević, B., Milutinović-Nikolić, A., Banković, P., & Mojović, Z. “Characterization and electrochemical properties of organomodified and corresponding derived carbonized clay,” Electrochim. Acta, vol. 296, pp. 387–396, Feb. 2019. | |
dc.relation | H. Moussout, H. Ahlafi, M. Aazza, R. Chfaira, and C. Mounir, “Interfacial electrochemical properties of natural Moroccan Ghassoul (stevensite) clay in aqueous suspension,” Heliyon, vol. 6, no. 3, p. e03634, Mar. 2020. | |
dc.relation | Fiscal-Ladino, J. A., Obando-Ceballos, M., Rosero-Moreano, M., Montaño, D. F., Cardona, W., Giraldo, L. F., & Richter, P “Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction,” Anal. Chim. Acta, vol. 953, pp. 23–31, Feb. 2017. | |
dc.relation | C. H. Zhou, L. Cun Jun, W. P. Gates, T. T. Zhu, and Y. Wei Hua, “Co-intercalation of organic cations/amide molecules into montmorillonite with tunable hydrophobicity and swellability,” Appl. Clay Sci., vol. 179, p. 105157, Oct. 2019. | |
dc.relation | Magalhães, V. M., Mendes, G. P., Costa-Filho, J. D. B., Cohen, R., Partiti, C. S., Vianna, M. M., & Chiavone-Filho, O. “Clay-based catalyst synthesized for chemical oxidation of phenanthrene contaminated soil using hydrogen peroxide and persulfate,” J. Environ. Chem. Eng., p. 103568, Nov. 2019. | |
dc.relation | M. A. De León, M. Sergio, J. Bussi, G. B. O. de la Plata, and O. M. Alfano, “Heterogeneous photo- fenton process using iron-modified regional clays as catalysts: Photonic and quantum efficiencies,” Environ. Sci. Pollut. Res., vol. 26, no. 13, pp. 12720–12730, 2019. | |
dc.relation | H. L. Tcheumi, V. N. Tassontio, I. K. Tonle, and E. Ngameni, “Surface functionalization of smectite- type clay by facile polymerization of β-cyclodextrin using citric acid cross linker: Application as sensing material for the electrochemical determination of paraquat,” Appl. Clay Sci., vol. 173, pp. 97–106, Jun. 2019. | |
dc.relation | Batista, F. A., Nascimento, S. Q., Sousa, A. B., Junior, E. F., de Almeida Pereira, P. I., Fontenele, V. M., & Mendes, A. N “Synthesis, characterization and electrochemical properties of composites synthesized from silver-tannic acid hybrid nanoparticles and different clays,” Appl. Clay Sci., vol. 181, p. 105219, Nov. 2019. | |
dc.relation | I. F. Mac, G. I. Giraldo-gómez, and N. R. Sanabria-gonzález, “Characterization of Colombian Clay and Its Potential Use as Adsorbent,” The Scientific World Journal vol. 2018, pp. 15–17, 2018. | |
dc.relation | M. Chauhan, V. K. Saini, and S. Suthar, “Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure,” J. Clean. Prod., vol. 258, p. 120686, Jun. 2020. | |
dc.relation | P. Andrea and H. Aguirre, “Arcilla pilarizada con Al-Fe como catalizador para la oxidación de un colorante empleado en la industria de alimentos” Departamento de ingeniería química (Tesis de posgrado) 2019. | |
dc.relation | C. Gallo, P. Rizzo, and G. Guerra, “Intercalation compounds of a smectite clay with an ammonium salt biocide and their possible use for conservation of cultural heritage,” Heliyon, vol. 5, no. 12, p. e02991, Dec. 2019. | |
dc.relation | P. Borralleras, I. Segura, M. A. G. Aranda, and A. Aguado, “Absorption conformations in the intercalation process of polycarboxylate ether based superplasticizers into montmorillonite clay,” Constr. Build. Mater., vol. 236, p. 116657, Mar. 2020. | |
dc.relation | Fiscal-Ladino, J. A., Obando-Ceballos, M., Rosero-Moreano, M., Montaño, D. F., Cardona, W., Giraldo, L. F., & Richter, P “Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction,” Anal. Chim. Acta, vol. 953, pp. 23–31, Feb. 2017. | |
dc.relation | M. Seleci, D. Ag, E. Yalcinkaya, and O. Demirkol, “Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications,” RSC Advances, vol. 2 pp. 2112–2118, 2012 | |
dc.relation | T. Sarkar, N. Narayanan, and P. Rathee, “Polymer – Clay Nanocomposite-Based Acetylcholine esterase Biosensor for Organophosphorous Pesticide Detection,” Int. J. Environ. Res.vol. 11, no 5pp. 591-601, 2017. | |
dc.relation | M. A. Mohamed, E. S. M. E. Mahdy, A. E. H. M. Ghazy, N. M. Ibrahim, H. A. El-Mezayen, and M. M. E. Ghanem, “The activity of detoxifying enzymes in the infective juveniles of Heterorhabditis bacteriophora strains: Purification and characterization of two acetylcholinesterases,” Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol., vol. 180, pp. 11–22, Feb. 2016. | |
dc.relation | J. Forget, S. Livet, and F. Leboulenger, “Partial purification and characterization of acetylcholinesterase (AChE) from the estuarine copepod Eurytemora affinis (Poppe),” Comp. Biochem. Physiol. - C Toxicol. Pharmacol., vol. 132, no. 1, pp. 85–92, May 2002. | |
dc.relation | D. Dingova, J. Leroy, A. Check, V. Garaj, E. Krejci, and A. Hrabovska, “Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay,” Anal. Biochem., vol. 462, pp. 67–75, Oct. 2014. | |
dc.relation | M. Yang., y, Zhao., L. Wang, Pulsen, M., C.D, Simpson, F, Liu, & Y. Lin, “Simultaneous detection of dual biomarkers from humans exposed to organophosphorus pesticides by combination of immunochromatographic test strip and ellman assay,” Biosens. Bioelectron., vol. 104, pp. 39–44, May 2018. | |
dc.relation | J. Dong, X. Fan, F. Qiao, S. Ai, and H. Xin, “A novel protocol for ultra-trace detection of pesticides: Combined electrochemical reduction of Ellman’s reagent with acetylcholinesterase inhibition,” Anal. Chim. Acta, vol. 761, pp. 78–83, Jan. 2013. | |
dc.relation | J. Betancur, D. F. Morales, G. A. Peñuela, and J. B. Cano, “Detección de Clorpirifos en Leche usando un Biosensor Enzimático Amperométrico basado en Acetilcolinesterasa,” vol. 29, no. 6, pp. 113–122, 2018. | |
dc.relation | Q. T. Hua, N. Ruecha, Y. Hiruta, and D. Citterio, “Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis,” Anal. Methods, vol. 11, no. 27, pp. 3439–3445, 2019 | |
dc.relation | F. Arduini, S. Guidone, A. Amine, G. Palleschi, and D. Moscone, “Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection,” Sensors Actuators, B Chem., vol. 179, pp. 201–208, Mar. 2013. | |
dc.relation | D. Chan, M. M. Barsan, Y. Korpan, and C. M. A. Brett, “L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase,” Electrochim. Acta, vol. 231, pp. 209–215, Mar. 2017. | |
dc.relation | P. Conghaile, R. Kumar, M. L. Ferrer, and D. Leech, “Glucose oxidation by enzyme electrodes using genipin to crosslink chitosan, glucose oxidase and amine-containing osmium redox complexes,” Electrochem. commun., vol. 113, p. 106703, Apr. 2020. | |
dc.relation | B. W. Lu and W. C. Chen, “A disposable glucose biosensor based on drop-coating of screenprinted carbon electrodes with magnetic nanoparticles,” J. Magn. Magn. Mater., vol. 304, no. 1, pp. e400– e402, Sep. 2006. | |
dc.relation | Q. Lang, L. Han, C. Hou, F. Wang, and A. Liu, “A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide,” Talanta, vol. 156– 157, pp. 34–41, Aug. 2016. | |
dc.relation | A. Mulyasuryani and S. Prasetyawan, “Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides,” Analytcal chemistry insights. Vol 10, pp. 23–27, 2015. | |
dc.relation | N. Vigués, F. Pujol-Vila, A. Marquez-Maqueda, X. Muñoz-Berbel, and J. Mas, “Electroaddressable conductive alginate hydrogel for bacterial trapping and general toxicity determination,” Anal. Chim. Acta, vol. 1036, pp. 115–120, 2018. | |
dc.relation | F. Pujol-Vila, N. Vigués, M. Díaz-González, X. Muñoz-Berbel, and J. Mas, “Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics,” Biosens. Bioelectron., vol. 67, pp. 272–279, 2015. | |
dc.relation | N. Vigués, F. Pujol-Vila, J. Macanás, M. Muñoz, X. Muñoz-Berbel, and J. Mas, “Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation,” Talanta, vol. 206, p. 120192, 2020. | |
dc.relation | M. Boncler, M. Rózalski, U. Krajewska, A. Podswdek, and C. Watala, “Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells,” J. Pharmacol. Toxicol. Methods, vol. 69, no. 1, pp. 9–16, Jan. 2014. | |
dc.relation | A. Phumee et al., “Determination of anti-leishmanial drugs efficacy against Leishmania martiniquensis using a colorimetric assay,” Parasite Epidemiol. Control, vol. 9, p. e00143, May 2020. | |
dc.relation | N. Vigués, F. Pujol-Vila, J. Macanás, M. Muñoz, X. Muñoz-Berbel, and J. Mas, “Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation,” Talanta, vol. 206, no., p. 120192, 2020. | |
dc.relation | W. Zhao, S. L. Walker, Q. Huang, and P. Cai, “Adhesion of bacterial pathogens to soil colloidal particles: Influences of cell type, natural organic matter, and solution chemistry,” Water Res., vol. 53, pp. 35–46, 2014. | |
dc.relation | Z. Hong, X. Rong, P. Cai, W. Liang, and Q. Huang, “Effects of temperature, pH and salt concentrations on the adsorption of bacillus subtilis on soil clay minerals investigated by microcalorimetry,” Geomicrobiol. J., vol. 28, no. 8, pp. 686–691, 2011. | |
dc.relation | H. Wasito, A. Fatoni, D. Hermawan, and S. S. Susilowati, “Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water,” Ecotoxicol. Environ. Saf., vol. 170, pp. 205– 209, Apr. 2019. | |
dc.relation | M. Rabbani and Y. Dalman, “Fabrication of biosensors by bacterial printing on different carriers using a laser printer,” Bioprinting, vol. 20, p. e00099, Dec. 2020 | |
dc.relation | B. Unal, E. E. Yalcinkaya, D. O. Demirkol, and S. Timur, “An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite,” Appl. Surf. Sci., vol. 444, pp. 542–551, Jun. 2018. | |
dc.relation | Y. Li. J. Zhu., H. Zhang., W. Liu., J. Ge., J, Wu. & P. Wang “High sensitivity gram-negative bacteria biosensor based on a small-molecule modified surface plasmon resonance chip studied using a laser scanning confocal imaging-surface plasmon resonance system,” Sensors Actuators, B Chem., vol. 259, pp. 492–497, Apr. 2018 | |
dc.relation | M. Ma, P. Bordignon, G. P. Dotto, and S. Pelet, “Visualizing cellular heterogeneity by quantifying the dynamics of MAPK activity in live mammalian cells with synthetic fluorescent biosensors,” Heliyon, vol. 6, no. 12, p. e05574, Dec. 2020. | |
dc.relation | W. Hu, K. Murata, and D. Zhang, “Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater,” J. Environ. Sci. (China), vol. 51, pp. 202–213, Jan. 2017. | |
dc.relation | A. M. Nasrabadi, S. An, S. B. Kwon, and J. Hwang, “Investigation of live and dead status of airborne bacteria using UVAPS with LIVE/DEAD® BacLight Kit,” J. Aerosol Sci., vol. 115, pp. 181–189, Jan. 2018. | |
dc.relation | S. Machida, R. Guégan, and Y. Sugahara, “A kaolinite-tetrabutylphosphonium bromide intercalation compound as an effective intermediate for intercalation of bulky organophosphonium salts,” Appl. Clay Sci., vol. 206, p. 106038, Jun. 2021. | |
dc.relation | Martins, M. G., Martins, D. O., de Carvalho, B. L., Mercante, L. A., Soriano, S., Andruh, M., ... & Vaz, M. G. (2015). “Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds”. Journal of Solid State Chemistry, 228, 99-104.M | |
dc.relation | S. Lawchoochaisakul, P. Monvisade, and P. Siriphannon, “Cationic starch intercalated montmorillonite nanocomposites as natural based adsorbent for dye removal,” Carbohydr. Polym., vol. 253, p. 117230, Feb. 2021. | |
dc.relation | R. R. Baby Suneetha, S. Kulandaivel, and C. Vedhi, “Synthesis, characterisation and electrochemical application of hybrid nanocomposites of polyaniline with novel clay mineral,” Mater. Today Proc., Sep. 2020. | |
dc.relation | I. F. Mac, G. I. Giraldo-gómez, and N. R. Sanabria-gonzález, “Characterization of Colombian Clay and Its Potential Use as Adsorbent,” The Scientific World Journal vol. 2018, pp. 15–17, 2018. | |
dc.relation | F. B. Emre., M. Kesik., F.E Kanik, H, Z. Akpinar. E, Aslan-Gurel., R.M. Rossi & L. Toppare., “A benzimidazole-based conducting polymer and a PMMA-clay nanocomposite containing biosensor platform for glucose sensing,” Synth. Met., vol. 207, pp. 102–109, Jun. 2015. | |
dc.relation | K. El Bourakadi., N, Merghoub., M., Fardioui., M. E.M Mekhzoum., I.M. Kadmiri., E.M., Essasi & R. Bouhfid“Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio- nanocomposite films: Mechanical, morphological and antimicrobial properties,” Compos. Part B Eng., vol. 172, pp. 103–110, Sep. 2019. | |
dc.relation | N. H. Kim, S. V. Malhotra, and M. Xanthos, “Modification of cationic nanoclays with ionic liquids,” Microporous Mesoporous Mater., vol. 96, no. 1–3, pp. 29–35, Nov. 2006. | |
dc.relation | Fiscal-Ladino, J. A., Obando-Ceballos, M., Rosero-Moreano, M., Montaño, D. F., Cardona, W., Giraldo, L. F., & Richter, P “Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction,” Anal. Chim. Acta, vol. 953, pp. 23–31, Feb. 2017C.G, Centellegher “Evaluación de la capacidad de retención de aflatoxinas utilizando bentonitas comerciales de la Norpatagonia.” Tesis de licenciatura, Universidad Nacional del Comahue. 2019 | |
dc.relation | A. E. Navarro and B. P. Llanos, “Síntesis Y Caracterización De Arcillas Organofílicas Y Su Aplicación Como Adsorbentes Del Fenol,” Rev. la Soc. Química del Perú, vol. 74, no. 1, pp. 3–19, 2008. | |
dc.relation | M. Seleci, D. Ag, E. Yalcinkaya, and O. Demirkol, “Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications,” RSC Advances. vol 2 no 5 pp. 2112–2118, 2012 | |
dc.relation | T. Sarkar, N. Narayanan, and P. Rathee, “Polymer – Clay Nanocomposite-Based Acetylcholine esterase Biosensor for Organophosphorous Pesticide Detection,” Int. J. Environ. Res., 2017. | |
dc.relation | N. H. Voelcker, H. Haerudin, A. Pramono, D.S Kusuma, S.N. Jenie, C. Gibson“Preparation and Characterisation of Chitosan / Montmorillonite (MMT) Nanocomposite Systems,” International Journal of Technology. Vol 1 pp 65-73. March, 2010. | |
dc.relation | Y. T. Yaman, O. Akbal, and S. Abaci, “Development of clay-protein based composite nanoparticles modified single-used sensor platform for electrochemical cytosensing application,” Biosens. Bioelectron., vol. 132, pp. 230–237, May 2019. | |
dc.relation | Laguna, O.H., Molina, C.M, Moreno, S., & Molina, R “Naturaleza mineralógica de esmectitas provenientes de la formación Honda (Noreste del Tolima)”. Boletin de ciencias de la tierra. no 23 pp. 55– 68, 2008. | |
dc.relation | B. Biswas, L.N, Warr, E.F, Hilder., N. Goswamu., M. Rahman., J. G, Churchman & R. Naidu “Biocompatible functionalisation of nanoclays for improved environmental remediation,” Chem. Soc. Rev., vol. 48, no. 14, pp. 3740–3770, 2019 | |
dc.relation | H. Mao, Y. Huang, J. Luo, and M. Zhang, “Molecular simulation of polyether amines intercalation into Na-montmorillonite interlayer as clay-swelling inhibitors,” Appl. Clay Sci., vol. 202, p. 105991, Mar. 2021. | |
dc.relation | J. C. S. da Silva, D.B Franca, F. Rodrigues., D.M, Oliviera., P, TRigueiro, E.C, Silva Filho & M.G Fonseca “What happens when chitosan meets bentonite under microwave-assisted conditions? Claybased hybrid nanocomposites for dye adsorption,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 609, p. 125584, Jan. 2021 | |
dc.relation | B. D. Kevadiya., R.P Thumbar; M.M, Rajput, S, Rajkumar; H. Brambhatt, G.V, Joshi & H.C Bajaj “Montmorillonite/poly-(-caprolactone) composites as versatile layered material: Reservoirs for anticancer drug and controlled release property,” Eur. J. Pharm. Sci., vol. 47, no. 1, pp. 265–272, 2012. | |
dc.relation | M. Darder, M. Colilla, and E. Ruiz-Hitzky, “Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite,” Chem. Mater., vol. 15, no. 20, pp. 3774–3780, 2003. | |
dc.relation | J. Safari, M. Ahmadzadeh, and Z. Zarnegar, “Sonochemical synthesis of 3-methyl-4- arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay,” Catal. Commun., vol. 86, pp. 91–95, 2016. | |
dc.relation | H. Moussout, H. Ahlafi, M. Aazza, R. Chfaira, and C. Mounir, “Interfacial electrochemical properties of natural Moroccan Ghassoul (stevensite) clay in aqueous suspension,” Heliyon, vol. 6, no. 3, p. e03634, Mar. 2020. | |
dc.relation | N. Jović-Jovičić et al., “Characterization and electrochemical properties of organomodified and corresponding derived carbonized clay,” Electrochim. Acta, vol. 296, pp. 387–396, Feb. 2019. | |
dc.relation | D. Dingova, J. Leroy, A. Check, V. Garaj, E. Krejci, and A. Hrabovska, “Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay,” Anal. Biochem., vol. 462, pp. 67–75, Oct. 2014. | |
dc.relation | F. Andr and C. Castillo, “Estudio de la inhibición de la acetilcolinesterasa y la relación estructura - actividad de terpenoides aislados de organismos marinos del caribe colombiano,” Tesis de posgrado (Master). Departamento de química,2014. | |
dc.relation | A. J. Franjesevic, S. B. Sillart, J. M. Beck, S. Vyas, C. S. Callam, and C. M. Hadad, “Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase,”Chemistry ( Weinheim an der Berstrasse, Germany) vol 5, no 21, pp.5337, 2019. | |
dc.relation | J. Betancur, D. F. Morales, G. A. Peñuela, and J. B. Cano, “Detección de Clorpirifos en Leche usando un Biosensor Enzimático Amperométrico basado en Acetilcolinesterasa,” Información tecnología, vol. 29, no. 6, pp. 113–122, 2018. | |
dc.relation | Hondred, JA, Breger, JC, Alves, NJ, Trammell, SA, Walper, SA, Medintz & Claussen “Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates,” ACS applied materials & interfaces, vol. 10, no 13, p. 11125-11134, 2018. | |
dc.relation | Q. Lang, L. Han, C. Hou, F. Wang, and A. Liu, “A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide,” Talanta, vol. 156– 157, pp. 34–41, Aug. 2016 | |
dc.relation | B. M. Toro-osorio, “Niveles de colinesterasa sérica en caficultores del Departamento de Caldas, Colombia,”Revista de salud pública vol. 19, no. 3, pp. 318–324, 2017. | |
dc.relation | Y. Lin, F. Lu, and J. Wang, “Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents,” Electroanalysis, vol. 16, no. 12, pp. 145–149, 2004. | |
dc.relation | Q. T. Hua, N. Ruecha, Y. Hiruta, and D. Citterio, “Disposable electrochemical biosensor based on surface-modified screen-printed electrodes for organophosphorus pesticide analysis,” Anal. Methods, vol. 11, no. 27, pp. 3439–3445, 2019. | |
dc.relation | T. H. V. Kumar and A. K. Sundramoorthy, “Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites,” Anal. Chim. Acta, vol. 1074, pp. 131–141, 2019. | |
dc.relation | D. Alonso and G. Quijano, “Desarrollo de electrodos modificados con matrices de sílice para posibles aplicaciones en sensores y biosensores electroquímicos,” Universidad de Alicante, Tesis Doctoral, 2015. | |
dc.relation | Y. Zhang, M. A. Arugula, M. Wales, J. Wild, and A. L. Simonian, “A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and nonorganophosphrus pesticides,” Biosens. Bioelectron., vol. 67, pp. 287–295, May 2015. | |
dc.relation | B. Unal, E. E. Yalcinkaya, D. O. Demirkol, and S. Timur, “An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite,” Appl. Surf. Sci., vol. 444, pp. 542–551, Jun. 2018. | |
dc.relation | J. A. Goode, J. V. H. Rushworth, and P. A. Millner, “Biosensor Regeneration: A Review of Common Techniques and Outcomes,” Langmuir. Vol 31. no 23, pp 6267-6276, 2015. | |
dc.relation | Ş. Sarioǧlan, “A comparison study on conductive poly(3,4-ethylenedioxythiophene) nanocomposites synthesized with clay type montmorillonite and organophilic montmorillonite,” Part. Sci. Technol., vol. 30, no. 1, pp. 68–80, 2012. | |
dc.relation | S. Letaïef, P. Aranda, R. Fernández-Saavedra, J. C. Margeson, C. Detellier, and E. Ruiz-Hitzky, “Poly(3,4-ethylenedioxythiophene)-clay nanocomposites,” J. Mater. Chem., vol. 18, no. 19, pp. 2227– 2233, 2008. | |
dc.relation | H. L. Tcheumi, I. K. Tonle, E. Ngameni, and A. Walcarius, “Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode,” Talanta, vol. 81, no. 3, pp. 972–979, May 2010. | |
dc.relation | D. Songurtekin, E. E. Yalcinkaya, D. Ag, M. Seleci, D. O. Demirkol, and S. Timur, “Histidine modified montmorillonite: Laccase immobilization and application to flow injection analysis of phenols,” Appl. Clay Sci., vol. 86, pp. 64–69, Dec. 2013. | |
dc.relation | N. An, C. H. Zhou, X. Y. Zhuang, D. S. Tong, and W. H. Yu, “Immobilization of enzymes on clay minerals for biocatalysts and biosensors,” Appl. Clay Sci., vol. 114, pp. 283–296, Sep. 2015. | |
dc.relation | F. Arduini, S. Guidone, A. Amine, G. Palleschi, and D. Moscone, “Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection,” Sensors Actuators, B Chem., vol. 179, pp. 201–208, 2013. | |
dc.relation | O. Domínguez-Renedo, M. A. Alonso-Lomillo, P. Recio-Cebrián, and M. J. Arcos-Martínez, “Screen- printed acetylcholinesterase-based biosensors for inhibitive determination of permethrin,” Sci. Total Environ., vol. 426, pp. 346–350, Jun. 2012. | |
dc.relation | H. Yang, R. Yuan, Y. Chai, and Y. Zhuo, “Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for detection of human chorionic gonadotrophin,” Colloids Surfaces B Biointerfaces, vol. 82, no. 2, pp. 463–469, Feb. 2011. | |
dc.relation | L. Zhou, X. Zhang, L. Ma, J. Gao, and Y. Jiang, “Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection,” Biochem. Eng. J., vol. 128, pp. 243–249, Dec. 2017. | |
dc.relation | X. Jiaojiao, Z. Bin, W. Pengyun, L. Qing, S. Xin, and J. Rui, “Acetylcholinesterase biosensors based on ionic liquid functionalized carbon nanotubes and horseradish peroxidase for monocrotophos determination,” Bioprocess Biosyst. Eng., no. 0123456789, 2019. | |
dc.relation | Z. Dai, Y. Xiao, X. Yu, Z. Mai, X. Zhao, and X. Zou, “Biosensors and Bioelectronics Direct electrochemistry of myoglobin based on ionic liquid – clay composite films,” Biosensor and Bioelectronics vol. 24, no 6, pp. 1629–1634, 2009. | |
dc.relation | Y. Y. Yilmaz, E. E. Yalcinkaya, D. O. Demirkol, and S. Timur, “4-aminothiophenol-intercalated montmorillonite: Organic-inorganic hybrid material as an immobilization support for biosensors,” Sensors Actuators B Chem., vol. 307, p. 127665, 2020. | |
dc.relation | D. Chen, J. Fu, Z. Liu, Y. Guo, X. Sun, and X. Wang, “A Simple Acetylcholinesterase Biosensor Based on Ionic Liquid / Multiwalled Carbon Nanotubes-Modified Screen- Printed Electrode for Rapid Detecting Chlorpyrifos,” Internation Journal Electrochem. Sci vol. 12, pp. 9465–9477, 2017. | |
dc.relation | L.-G. Zamfir, L. Rotariu, and C. Bala, “A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel,” Biosens. Bioelectron., vol. 26, no. 8, pp. 3692– 3695, Apr. 2011. | |
dc.relation | LIU, Jing-fu; JIANG, Gui-bin; JÖNSSON, Jan Åke. Application of ionic liquids in analytical chemistry. TrAC Trends in Analytical Chemistry, 2005, vol. 24, no 1, p. 20-27. | |
dc.relation | M. Rosero-moreano, J. A. Fiscal-ladino, W. Cardona, L. F. Giraldo, P. Richter, and D. F. Monta, “Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction,” Analytical Chimica Acta vol. 953, pp. 23–31, 2017. | |
dc.relation | G. Yu, W. Wu, Q. Zhao, X. Wei, and Q. Lu, “Biosensors and Bioelectronics Efficient immobilization of acetylcholinesterase onto amino functio- nalized carbon nanotubes for the fabrication of high sensitive orga- nophosphorus pesticides biosensors,” Biosens. Bioelectron., vol. 68, pp. 288–294, 2015 | |
dc.relation | H. Muguruma, Biosensors : Enzyme Immobilization Chemistry. Encyclopedia of interfacil chemistr: Surface sciencie and electrochemistr, pp 64-71, Elsevier, 2018. | |
dc.relation | R. R. Dutta and P. Puzari, “Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode,” Biosens. Bioelectron., vol. 52, pp. 166–172, Feb. 2014. | |
dc.relation | N. Xia et al., “Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos,” J. Electroanal. Chem., vol. 746, pp. 68–74, Jun. 2015. | |
dc.relation | M. Pohanka, “Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds,”Chemical Paper, vol 69, no 1 pp 4-16. February, 2015. | |
dc.relation | J. Turan et al., “An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk,” Sensors Actuators B Chem., vol. 228, pp. 278–286, Jun. 2016. | |
dc.relation | C. S. Pundir, “Biosensors and Bioelectronics Bio-sensing of organophosphorus pesticides : A review,” Biosensor and Bioelectronic , vol. 140, pp 111348 May, 2019. | |
dc.relation | F. Garcıa Sánchez, A. Navas Dıá z, M. C. Ramos Peinado, and C. Belledone, “Free and sol–gel immobilized alkaline phosphatase-based biosensor for the determination of pesticides and inorganic compounds,” Anal. Chim. Acta, vol. 484, no. 1, pp. 45–51, 2003. | |
dc.relation | H. Borah, S. Gogoi, S. Kalita, and P. Puzari, “A broad spectrum amperometric pesticide biosensor based on glutathione S-transferase immobilized on graphene oxide-gelatin matrix,” J. Electroanal. Chem., vol. 828, pp. 116–123, 2018. | |
dc.relation | H. F. Cui, W. W. Wu, M. M. Li, X. Song, Y. Lv, and T. T. Zhang, “A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides,” Biosens. Bioelectron., vol. 99, no. May 2017, pp. 223–229, 2018. | |
dc.relation | S. P. Sharma, L. N. S. Tomar, J. Acharya, A. Chaturvedi, M. V. S. Suryanarayan, and R. Jain, “Acetylcholinesterase inhibition-based biosensor for amperometric detection of Sarin using singlewalled carbon nanotube-modified ferrule graphite electrode,” Sensors Actuators B Chem., vol. 166– 167, pp. 616–623, May 2012. | |
dc.relation | C. Mendieta, N. Ortega, N. Solano-Cueva, and J. Figueroa, “Metodología para la Determinación de Pesticidas Organoclorados mediante Cromatografía de Gases Acoplado Espectrometría de Masas y Detector de Captura de Electrones,” Rev. Politécnica, vol. 40, no. 1, pp. 21–28, 2017 | |
dc.relation | N. Chauhan, J. Narang, and U. Jain, “Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid),” J. Exp. Nanosci., vol. 11, no. 2, pp. 111–122, 2016. | |
dc.relation | D. Du, M. Wang, J. Cai, and A. Zhang, “Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide,” Sensors Actuators B Chem., vol. 146, no. 1, pp. 337–341, Apr. 2010. | |
dc.relation | T. Itsoponpan, C. Thanachayanont, and P. Hasin, “Sponge-like CuInS2 microspheres on reduced graphene oxide as an electrocatalyst to construct an immobilized acetylcholinesterase electrochemical biosensor for chlorpyrifos detection in vegetables,” Sensors Actuators, B Chem., vol. 337, p. 129775, Jun. 2021. | |
dc.relation | M. Guler, V. Turkoglu, and Z. Basi, “Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites,” Electrochim. Acta, vol. 240, pp. 129–135, Jun. 2017. | |
dc.relation | N. An, C. H. Zhou, X. Y. Zhuang, D. S. Tong, and W. H. Yu, “Immobilization of enzymes on clay minerals for biocatalysts and biosensors,” Appl. Clay Sci., vol. 114, pp. 283–296, Sep. 2015. | |
dc.relation | N. Vigués, F. Pujol-Vila, A. Marquez-Maqueda, X. Muñoz-Berbel, and J. Mas, “Electro-addressable conductive alginate hydrogel for bacterial trapping and general toxicity determination,” Anal. Chim. Acta, vol. 1036, pp. 115–120, 2018. | |
dc.relation | H. Bujdáková, V. Bujdáková., H, Majeková-Koscova., B, Gaálová, V, Bizovká, P, Bohác & J. Bujdák, “Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite,” Appl. Clay Sci., vol. 158, pp. 21–28, Jun. 2018. | |
dc.relation | A. Cornellas, L. Perez, F. Comelles, I. Ribosa, A. Manresa, and M. T. Garcia, “Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution,” J. Colloid Interface Sci., vol. 355, no. 1, pp. 164–171, Mar. 2011. | |
dc.relation | K. Catterall, D. Robertson, S. Hudson, P. R. Teasdale, D. T. Welsh, and R. John, “A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli,” Talanta, vol. 82, no. 2, pp. 751– 757, Jul. 2010. | |
dc.relation | M.-S. Chae, Y. K. Yoo, J. Kim, T. G. Kim, and K. S. Hwang, “Graphene-based enzyme-modified fieldeffect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment,” Sensors Actuators B Chem., vol. 272, pp. 448–458, Nov. 2018. | |
dc.relation | Z. Hong, X. Rong, P. Cai, W. Liang, and Q. Huang, “Effects of temperature, pH and salt concentrations on the adsorption of bacillus subtilis on soil clay minerals investigated by microcalorimetry,” Geomicrobiol. J., vol. 28, no. 8, pp. 686–691, 2011. | |
dc.relation | M. Su, F, Han; M, Wang; J, Ma; X, Wang, Z, Wang & Z, Li, “Clay-assisted protection of Enterobacter sp. from Pb (II) stress,” Ecotoxicol. Environ. Saf., vol. 208, p. 111704, Jan. 2021. | |
dc.relation | H. Du, W. Chen, P. Cai, X. Rong, X. Feng, and Q. Huang, “Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite,” Environ. Pollut., vol. 218, pp. 168–175, Nov. 2016. | |
dc.relation | W. Zhao, S. L. Walker, Q. Huang, and P. Cai, “Adhesion of bacterial pathogens to soil colloidal particles: Influences of cell type, natural organic matter, and solution chemistry,” Water Res., vol. 53, pp. 35–46, 2014. | |
dc.relation | D. Belén and C. Ec, “Biosensores y sistemas ópticos y de visión avanzados: su aplicación en la evaluación de la calidad de productos IV gama” Agrociencia Uruguay, vol 22, no 1, pp 13-25 pp. 13–25, 2018. | |
dc.relation | L. R. Cedillo, M.M.C, Hernández; A.S, Zapata; N, Balagurusamy & M.P.L, Escareño “Aplicaciones de las Enzimas Inmovilizadas Application of Immobilized Enzymes” Revista científia de la Universidad Autónoma de Coahuila.Vol 11, pp. 1–9, 2014. | |
dc.relation | J. Qian, J. Li, D. Fang, Y. Yu, and J. Zhi, “A disposable biofilm-modified amperometric biosensor for the sensitive determination of pesticide biotoxicity in water,” RSC Adv., vol. 4, no. 98, pp. 55473– 55482, 2014. | |
dc.relation | N. Vigués, F. Pujol-Vila, J. Macanás, M. Muñoz, X. Muñoz-Berbel, and J. Mas, “Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation,” Talanta, vol. 206, no. July 2019, p. 120192, 2020. | |
dc.relation | ALIMOVA, Alexandra, et al. Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation. Clays and Clay Minerals, 2009, vol. 57, no 2, p. 205-212. | |
dc.relation | MUELLER, Barbara. Experimental interactions between clay minerals and bacteria: a review. Pedosphere, 2015, vol. 25, no 6, p. 799-810. | |
dc.relation | SANTE, E. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. European Commission SANTE/11813/2017, 2015, p. 1-46. | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Biosensores | |
dc.subject | Montmorillonita | |
dc.subject | Arcilla | |
dc.subject | E.coli | |
dc.subject | Acetilcolinesterasa | |
dc.subject | Electroquímica | |
dc.subject | Compuesto químico | |
dc.title | Biosensores amperométricos basados en la inmovilización de Escherichia coli y acetilcolinesterasa en organoarcillas aplicados a la detección de 3,5-Diclorofenol y Clorpirifos. | |
dc.type | Trabajo de grado - Maestría | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:eu-repo/semantics/publishedVersion | |