dc.contributor | Carmona Ramírez, Jorge Uriel | |
dc.contributor | Jorge Uriel Carmona Ramírez | |
dc.contributor | Catalina López Villegas | |
dc.contributor | Terapia Regenerativa (Categoría A1) | |
dc.creator | Gallego Mejia, Miller | |
dc.date | 2022-11-02T17:34:39Z | |
dc.date | 2022-11-02T17:34:39Z | |
dc.date | 2022-11-04 | |
dc.date.accessioned | 2023-09-06T18:22:04Z | |
dc.date.available | 2023-09-06T18:22:04Z | |
dc.identifier | https://repositorio.ucaldas.edu.co/handle/ucaldas/18164 | |
dc.identifier | Universidad de Caldas | |
dc.identifier | Repositorio Universidad de Caldas | |
dc.identifier | https://repositorio.ucaldas.edu.co/mydspace | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8696165 | |
dc.description | Ilustracions, gráficas | |
dc.description | spa:Antecedentes: hay escasos estudios in vitro que indiquen los mecanismos básicos por los que el
plasma rico en plaquetas (PRP) es útil en el tratamiento clínico de perros con OA de origen
natural. Métodos: los explantes de cartílago y membrana sinovial de seis perros fueron desafiados
con LPS y cultivados durante 48 h con gel pobre en plaquetas y sobrenadantes de gel rico en
plaquetas (PPGS y PRGS) en concentraciones del 25% y 50%, respectivamente. Los explantes de
tejido desafiados con LPS fueron co-cultivados durante 48 h y los medios de cultivo fueron
muestreados a 1 y 48 h para la determinación, por ELISA, de IL-1, IL-10, ácido hialuronico, TGF1 y PDGF-BB. Resultados: Las concentraciones de IL-1 fueron significativamente mayores en
los grupos de explantes de tejido cultivados con PRGS al 50% y PPGS al 25% a las 48 h en
comparación con el resto de los grupos experimentales en cualquier momento. La IL-10 y la HA
presentaron concentraciones similares en todos los grupos valorados en cualquier momento. El
TGF-1 y el PDGF-BB presentaron mayores concentraciones en los medios de cultivo de los
explantes de tejido cultivados con PPGS y PRGS al 50%, que disminuyeron con el tiempo.
Conclusiones: Tanto el PPGS como el PRGS a ambas concentraciones mostraron un efecto
biológico limitado en los explantes de cartílago y membrana sinovial en co-cultivo con LPS e
incluso el PPGS al 25% y el PRGS al 50% mostraron un efecto pro inflamatorio en estos tejidos
a las 48h. | |
dc.description | eng:Background: There are few in vitro studies indicating the basic mechanisms by which
platelet-rich plasma (PRP) is useful in the clinical treatment of dogs with naturally
occurring OA. Methods: cartilage and synovial membrane explants from six dogs were
challenged with LPS and cultured for 48 h with platelet-poor gel and platelet-rich gel
supernatants (PPGS and PRGS) at concentrations of 25% and 50%, respectively. Tissue
explants challenged with LPS were co-cultured for 48 h and culture media were sampled
at 1 and 48 h for ELISA determination of IL-1, IL-10, hyaluronic acid, TGF-1 and PDGFBB. Results: IL-1 concentrations were significantly higher in the groups of tissue explants
cultured with PRGS at 50% and PPGS at 25% at 48 h compared to the rest of the
experimental groups at any time. IL-10 and HA showed similar concentrations in all
assessed groups at any one time. TGF-1 and PDGF-BB had higher concentrations in the
culture media of tissue explants grown with PPGS and PRGS at 50%, which decreased
over time. Conclusions: Both PPGS and PRGS at both concentrations showed a limited
biological effect in cartilage and synovial membrane explants in co-culture with LPS and
even PPGS at 25% and PRGS at 50% showed a pro-inflammatory effect on these tissues
at 48h. | |
dc.description | LISTA DE ABREVIATURAS/ INTRODUCCIÓN/ PLANTEAMIENTO DEL PROBLEMA / MATERIALES Y MÉTODOS / Animales/ Extracción de sangre y procesamiento de los hemocomponentes / Obtención de plasma rico en plaquetas y plasma / Recolección de cartílago y membrana sinovial/ Cultivo conjunto de explantes de tejido in vitro y diseño del estudio / Figura 1. Diseño y metodología del estudio. HA, ácido hialuronico; IL, interleucina; LPS, lipopolisacárido; PLT, plaqueta; PDGF-BB: isoforma BB del factor de crecimiento derivado de las plaquetas; PPP/PPGS: sobrenadante de plasma pobre en plaquetas/gel pobre en plaquetas; PRP/PRGS: sobrenadante de plasma rico en plaquetas/gel rico en plaquetas; TGF-1: factor de crecimiento transformante beta 1; WBC: glóbulos blancos.12 Medición de citoquinas, ácido hialuronico y factores de crecimiento/ Análisis estadístico / RESULTADOS / Recuentos celulares en sangre total y hemoderivados/ Figura 2. Concentraciones celulares en sangre total y hemoderivados. (a) Concentraciones medias (sd) de plaquetas en sangre total, PRP y PPP (b) Concentraciones medias (sd) de leucocitos en sangre total, PRP y PPP. a-c= diferentes letras minúsculas representan diferencias significativas (P 0,05) entre los hemocomponentes para la concentración de plaquetas y leucocitos. Acrónimos como en la figura 1. / Concentraciones de factores de crecimiento, citocinas e ácido hialuronico en los sobrenadantes del gel rico en plaquetas y del gel pobre en plaquetas/ Concentraciones de factores de crecimiento, citocinas e ácido hialuronico en los medios de cultivo a 1 y 48h/ Figura 3. Concentraciones de biomoléculas en ambos hemocomponentes, el sobrenadante de gel pobre en plaquetas (PPGS) y el sobrenadante de gel rico en plaquetas (PRGS). (a) Concentraciones medias (± d.s.) de interleucina 1 beta (IL-1) en PPGS y PRGS (b) Concentraciones medias (± d.s.) de interleucina 10 (IL-1) en PPGS y PRGS. (c) Concentraciones medias (± d.s.) de hialuronano (HA) en PPGS y PRGS. (d) Media (± d.s.) de las concentraciones del factor de crecimiento transformante beta 1 (TGF-1) en PPGS y PRGS. (e) Concentraciones medias (± d.s.) de la isoforma BB del factor de crecimiento derivado de las plaquetas (PDGF-BB) en PPGS y PRGS. a= las letras minúsculas diferentes representan diferencias significativas (P 0,05) entre los hemocomponentes para las biomoléculas. Acrónimos como en la figura 1. / (b)/ 4 Figura 4. Concentraciones de Citoquinas en los medios de cultivo de los grupos experimentales a la hora y a las 48 horas (a) (a) media (± s.d) concentraciones de IL-1β (pg/ml) (b) Media (± s.d) Concentraciones de IL-10 (pg/ml). a-c= letras minúsculas diferentes representan diferencias significativas (P< 0,01) entre los grupos de experimentación en cada momento independiente. A-B= las diferentes letras mayúsculas representan diferencias significativas (P< 0,01) entre los grupos de experimentación en cada momento independiente. A-B= las diferentes letras mayúsculas representan diferencias significativas (P | |
dc.description | Maestría | |
dc.description | Magister en Ciencias Veterinarias | |
dc.description | Medicina Regenerativa en pequeños animales | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.language | spa | |
dc.publisher | Facultad de Ciencias Agropecuarias | |
dc.publisher | Manizales | |
dc.publisher | Maestría en Ciencias Veterinarias | |
dc.relation | 1. Anderson, K.L., et al., Prevalence, duration and risk factors for appendicular osteoarthritis in a UK dog population under primary veterinary care. Sci Rep, 2018. 8(1): p. 5641. | |
dc.relation | 2. Mehana, E.E., A.F. Khafaga, and S.S. El-Blehi, The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci, 2019. 234: p. 116786. | |
dc.relation | 3. Cimino Brown, D., What can we learn from osteoarthritis pain in companion animals? Clin Exp Rheumatol, 2017. 35 Suppl 107(5): p. 53-58. | |
dc.relation | 4. Johnston, S.A., Osteoarthritis. Joint anatomy, physiology, and pathobiology. Vet Clin North Am Small Anim Pract, 1997. 27(4): p. 699-723. | |
dc.relation | 5. DG, O.N., et al., Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. PLoS One, 2014. 9(3): p. e90501. | |
dc.relation | 6. Clements, D.N., et al., Genetic basis of secondary osteoarthritis in dogs with joint dysplasia. Am J Vet Res, 2006. 67(5): p. 909-18 | |
dc.relation | 7. Bhathal, A., et al., Glucosamine and chondroitin use in canines for osteoarthritis: A review. Open Vet J, 2017. 7(1): p. 36-49. | |
dc.relation | 8. Black, L.L., et al., Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther, 2008. 9(3): p. 192-200. | |
dc.relation | 9. Kim, S.E., et al., Intra-Articular Umbilical Cord Derived Mesenchymal Stem Cell Therapy for Chronic Elbow Osteoarthritis in Dogs: A Double-Blinded, PlaceboControlled Clinical Trial. Front Vet Sci, 2019. 6: p. 474. | |
dc.relation | 10. Maki, C.B., et al., Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study. Front Vet Sci, 2020. 7: p. 570. | |
dc.relation | 11. Pavarotti, G.S., et al., Evaluation of a Single Intra-Articular Injection of Autologous Adipose Tissue for the Treatment of Osteoarthritis: A Prospective Clinical Study in Dogs. Vet Comp Orthop Traumatol, 2020. 33(4): p. 258-266. | |
dc.relation | 12. Srzentić Dražilov, S., et al., The use of canine mesenchymal stem cells for the autologous treatment of osteoarthritis. Acta Vet Hung, 2018. 66(3): p. 376-389. | |
dc.relation | 13. Catarino, J., et al., Treatment of canine osteoarthritis with allogeneic platelet-rich plasma: review of five cases. Open Vet J, 2020. 10(2): p. 226-231. | |
dc.relation | 14. Cuervo, B., et al., Objective Comparison between Platelet Rich Plasma Alone and in Combination with Physical Therapy in Dogs with Osteoarthritis Caused by Hip Dysplasia. Animals (Basel), 2020. 10(2). | |
dc.relation | 15. Venator, K.P., et al., Assessment of a Single Intra-Articular Stifle Injection of Pure Platelet Rich Plasma on Symmetry Indices in Dogs with Unilateral or Bilateral Stifle Osteoarthritis from Long-Term Medically Managed Cranial Cruciate Ligament Disease. Vet Med (Auckl), 2020. 11: p. 31-38. | |
dc.relation | 16. Vilar, J.M., et al., Effect of leukocyte-reduced platelet-rich plasma on osteoarthritis caused by cranial cruciate ligament rupture: A canine gait analysis model. PLoS One, 2018. 13(3): p. e0194752. | |
dc.relation | 17. Silva, R.F., J.U. Carmona, and C.M. Rezende, Intra-articular injections of autologous platelet concentrates in dogs with surgical reparation of cranial cruciate ligament rupture: a pilot study. Vet Comp Orthop Traumatol, 2013. 26(4): p. 285-90. | |
dc.relation | 18. 2000 Report of the AVMA Panel on Euthanasia. J Am Vet Med Assoc, 2001. 218(5): p. 669-96. | |
dc.relation | 19. Congress, C., Law by which the possession and registration of potentially dangerous dogs is regulated., in Official Bulletin of the State, C. Congress, Editor. 2002: Bogotá D.C. p. 4. | |
dc.relation | 20. Carmona, J.U., et al., In vitro effects of platelet-rich gel supernatants on histology and chondrocyte apoptosis scores, hyaluronan release and gene expression of equine 25 cartilage explants challenged with lipopolysaccharide. BMC Vet Res, 2016. 12(1): p. 135 | |
dc.relation | 21. Carmona, J.U., et al., Proinflammatory and Anabolic Gene Expression Effects of PlateletRich Gel Supernatants on Equine Synovial Membrane Explants Challenged with Lipopolysaccharide. Vet Med Int, 2017. 2017: p. 6059485. | |
dc.relation | 22. Moreira, M.L., et al., Cross-reactivity of commercially available anti-human monoclonal antibodies with canine cytokines: establishment of a reliable panel to detect the functional profile of peripheral blood lymphocytes by intracytoplasmic staining. Acta Vet Scand, 2015. 57(1): p. 51. | |
dc.relation | 23. Manning, A.M., et al., Cloning of a canine cDNA homologous to the human transforming growth factor-beta 1-encoding gene. Gene, 1995. 155(2): p. 307-8. | |
dc.relation | 24. Franklin, S.P., et al., Influence of Cellular Composition and Exogenous Activation on Growth Factor and Cytokine Concentrations in Canine Platelet-Rich Plasmas. Front Vet Sci, 2017. 4: p. 40 | |
dc.relation | 25. Silva, R.F., J.U. Carmona, and C.M. Rezende, Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates. BMC Vet Res, 2012. 8: p. 121 | |
dc.relation | 26. Gossan, N., R. Boot-Handford, and Q.J. Meng, Ageing and osteoarthritis: a circadian rhythm connection. Biogerontology, 2015. 16(2): p. 209-19. | |
dc.relation | 27. Wojdasiewicz, P., A. Poniatowski Ł, and D. Szukiewicz, The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm, 2014. 2014: p. 561459 | |
dc.relation | 28. Finnson, K.W., et al., TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed), 2012. 4: p. 251-68. | |
dc.relation | 29. Martel-Pelletier, J., et al., Osteoarthritis. Nat Rev Dis Primers, 2016. 2: p. 16072. | |
dc.relation | 30. Wang, T. and C. He, Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev, 2018. 44: p. 38-50. | |
dc.relation | 31. Montaseri, A., et al., IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One, 2011. 6(12): p. e28663 | |
dc.relation | 32. Conaghan, P.G., et al., Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol, 2019. 15(6): p. 355-363. | |
dc.relation | 33. Kuroki, K., J.L. Cook, and J.M. Kreeger, Mechanisms of action and potential uses of hyaluronan in dogs with osteoarthritis. J Am Vet Med Assoc, 2002. 221(7): p. 944-50. | |
dc.relation | 34. Barreto, G., et al., Lumican is upregulated in osteoarthritis and contributes to TLR4- induced pro-inflammatory activation of cartilage degradation and macrophage polarization. Osteoarthritis Cartilage, 2020. 28(1): p. 92-101 | |
dc.relation | 35. Li, X., et al., Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation: In vivo and in vitro verification. J Ethnopharmacol, 2020. 249: p. 112390. | |
dc.relation | 36. Li, Y., et al., Piperine mediates LPS induced inflammatory and catabolic effects in rat intervertebral disc. Int J Clin Exp Pathol, 2015. 8(6): p. 6203-13. | |
dc.relation | 37. Hartog, A., et al., The multicomponent phytopharmaceutical SKI306X inhibits in vitro cartilage degradation and the production of inflammatory mediators. Phytomedicine, 2008. 15(5): p. 313-20. | |
dc.relation | 38. Hu, H., et al., Ginkgolide B exerts anti-inflammatory and chondroprotective activity in LPS-induced chondrocytes. Adv Clin Exp Med, 2018. 27(7): p. 913-920 | |
dc.relation | 39. Ríos, D.L., et al., Effects over time of two platelet gel supernatants on growth factor, cytokine and hyaluronan concentrations in normal synovial membrane explants challenged with lipopolysaccharide. BMC Musculoskelet Disord, 2015. 16: p. 153. | |
dc.relation | 40. Ríos, D.L., C. López, and J.U. Carmona, Evaluation of the anti-inflammatory effects of two platelet-rich gel supernatants in an in vitro system of cartilage inflammation. Cytokine, 2015. 76(2): p. 505-513. | |
dc.relation | 41. Zeddou, M., Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity's Involvement and Herbal Treatment. Evid Based Complement Alternat Med, 2019. 2019: p. 2037484. | |
dc.relation | 42. Dohan Ehrenfest, D.M., et al., Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J, 2014. 4(1): p. 3-9. | |
dc.relation | 43. Araya, N., et al., Intra-articular Injection of Pure Platelet-Rich Plasma Is the Most Effective Treatment for Joint Pain by Modulating Synovial Inflammation and Calcitonin Gene-Related Peptide Expression in a Rat Arthritis Model. Am J Sports Med, 2020. 48(8): p. 2004-2012. | |
dc.relation | 44. Kazemi, D. and A. Fakhrjou, Leukocyte and Platelet Rich Plasma (L-PRP) Versus Leukocyte and Platelet Rich Fibrin (L-PRF) For Articular Cartilage Repair of the Knee: A Comparative Evaluation in an Animal Model. Iran Red Crescent Med J, 2015. 17(10): p. e19594. | |
dc.relation | 45. Sundman, E.A., et al., The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med, 2014. 42(1): p. 35-41. | |
dc.relation | 46. Castillo-Franz, C., et al., Anti-inflammatory effects of two platelet-rich gel supernatants in an in vitro system of ligament desmitis. Muscles Ligaments Tendons J, 2019. 9(4): p. 506-516. | |
dc.relation | 47. Mariani, E., et al., Leukocyte-Rich Platelet-Rich Plasma Injections Do Not Up-Modulate Intra-Articular Pro-Inflammatory Cytokines in the Osteoarthritic Knee. PLoS One, 2016. 11(6): p. e0156137. | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | http://purl.org/coar/access_right/c_14cb | |
dc.subject | Fisiología animal | |
dc.subject | Osteopatías | |
dc.subject | Pure platelet-rich plasma | |
dc.subject | Degenerative joint disease | |
dc.subject | Growth factors, cytokines | |
dc.subject | Hyaluronic acid | |
dc.subject | In vitro system | |
dc.title | Evaluación de los efectos in vitro de gel rico en plaquetas autólogo en explantes de cartílago y membrana sinovial de caninos desafiados con lipopolisacarido | |
dc.type | Trabajo de grado - Maestría | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | https://purl.org/redcol/resource_type/TM | |
dc.type | info:eu-repo/semantics/publishedVersion | |