dc.contributorTaborda-Ocampo, Gonzalo
dc.contributorGrupo de Investigación en Cromatografía y Técnicas Afines (Categoría A1)
dc.creatorAguirre - López, Daniela Andrea
dc.date2022-10-24T20:40:15Z
dc.date2023-11-20
dc.date2022-10-24T20:40:15Z
dc.date2022-10-20
dc.date.accessioned2023-09-06T18:21:49Z
dc.date.available2023-09-06T18:21:49Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/18150
dc.identifierUniversidad de Caldas
dc.identifierRepositorio Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/mydspace
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8696097
dc.descriptionIlustraciones, gráficas
dc.descriptionspa:El presente documento recoje la revisión sistemática sobre el análisis de los compuestos orgánicos volátiles (VOCs) responsables de los aromas frutales en los últimos 20 años, se ha incluido la evolución histórica de los métodos analíticos empleados por los diferentes autores para dichos análisis. A través de los años se ha demostrado la importancia que reviste conocer la composición química del aroma en los frutos, para la industria agroalimentaria, teniendo en cuenta que este es un importante atributo de calidad y que además forma parte de sectores diferentes al alimentario como es el farmacéutico y otros sectores de manufactura. Dado que Colombia es un país biodiverso y con una gran variedad de frutas resulta muy apropiado tener está herramienta de consulta para los diferentes estudios en frutas tropicales. Desde el punto de vista de la fisiología vegetal los VOCs tienen una alta responsabilidad en la comunicación química de las plantas fungiendo como atractores de insectos en los procesos de polinización y como repelentes frente a las plagas y posibles depredadores. En los procesos de maduración y senescencia de los frutos, los VOCs desempeñan un papel importante como indicadores de los diferentes estados bioquímicos de maduración.
dc.descriptioneng:This document collects the systematic review on the analysis of volatile organic compounds (VOCs) responsible for fruit aromas in the last 20 years, including the historical evolution of the analytical methods used by the different authors for said analyses. Over the years, the importance of knowing the chemical composition of the aroma in the fruits has been demonstrated for the agri-food industry, taking into account that this is an important quality attribute and that it is also part of sectors other than food, such as the pharmaceutical and other manufacturing sectors. Since Colombia is a biodiverse country with a great variety of fruits, it is very appropriate to have this consultation tool for the different studies on tropical fruits. From the point of view of plant physiology, VOCs have a high responsibility in the chemical communication of plants, serving as insect attractors in pollination processes and as repellents against pests and possible predators. In the processes of ripening and senescence of fruits, VOCs play an important role as indicators of the different biochemical states of ripening. For this study, both Web of Science and Scopus databases were consulted using a search algorithm that included the following descriptors ((ALL= (gas chromatography)) AND ALL= (volatile organic compound)) AND ALL= (fruit and gas chromatography) once those results were obtained, they were tabulated in a matrix with a data processor to facilitate their analysis. The analysis of volatile compounds has been approached from the different analytical perspectives reported by the authors of this review, as well as from the VOCs and their sensory descriptors and attributes. This study is important because in addition to contributing to the quality attributes of the fruits, it allows the understanding between aroma and VOCs in the last 20 years. Included in the document is a description of the different technological advances that have made it possible to identify different approaches and trends in the analysis of fruit VOCs, specifically in automation and miniaturization of analytical methods, in the discovery of new solid phases for extraction, in the different couplings and configurations in gas chromatography and mass spectrometry, in the importance of the use of isotopic labeling, in the use of olfactometric techniques coupled to GC-MS, in the analysis of metabolites responsible for aroma by neural networks, in metabolomics, volatillomics and biochemical markers, as well as in the analysis of volatile organic compounds in the field.
dc.descriptionLISTA DE ABREVIATURAS/ RESUMEN/ INTRODUCCIÓN/ OBJETIVOS/ 1.1 OBJETIVO GENERAL/ 1.2 OBJETIVOS ESPECÍFICOS/ METODOLOGÍA/ 2.1 TIPO DE TRABAJO: MONOGRÁFICO/ 2.2 UNIDAD DE ANÁLISIS / 2.3 TÉCNICAS/ 2.3.1 Proceso de selección documental / 2.3.2 Refinación de búsqueda/ 2.4 INSTRUMENTOS/ 2.5 ETAPAS DE LA CONSTRUCCIÓN MONOGRÁFICA./ 2.5.1 Etapa 1 Sinopsis histórica del olor y aroma en frutas hasta del año 2000 / 2.5.2 Etapa 2 metodologías analíticas para el análisis de compuestos orgánicos volátiles responsables del aroma en frutas/ 2.5.3 Etapa 3. Elaboración de la matriz que compila los Compuestos Orgánicos Volátiles responsables del aroma de diferentes frutas, estableciendo las principales familias de compuestos químicos, las metodologías para su determinación y los descriptores de aroma. / 3. ANÁLISIS DE LOS COMPUESTOS ORGÁNICOS VOLÁTILES RESPONSABLES DE LOS AROMAS FRUTALES (GENERALIDADES)/ 4. SINOPSIS HISTÓRICA DEL OLOR Y AROMA ENLAS FRUTAS/ 5. SINOPSIS HISTÓRICA DE LAS TÉCNICAS EN LA IDENTIFICACIÓN DE VOCS/ 2.6.1 Década de 1940/ 2.6.2 Década de 1950/ 2.6.3 Década de 1960. / 2.6.4 Década de 1970/ 6. MÉTODOS Y HERRAMIENTAS PARA EL ESTUDIO DE COMPUESTOS ORGÁNICOS VOLÁTILES RESPONSABLES DEL AROMA EN FRUTAS. / 6.1 Valoración de la actividad de olor y técnicas olfatométricas/ 6.2 Técnicas de preparación de muestras para análisis de VOCs/ 6.2.1 MÉTODOS CLÁSICOS DE OBTENCIÓN DE VOCS / 6.2.1.1 Técnicas de extracción líquido-líquido./ 6.2.1.2 Extracción destilación simultánea SDE (Steam Distillation and Extraction)/ 6.2.2 Espacio de cabeza estático (HS) y Espacio de cabeza dinámico (DHS)/ 6.2.3 Técnicas de extracción y microextracción en fase sólida (SPE y SPME) / 6.2.4 Otras Técnicas de Microextracción / 6.3 TÉCNICAS DE SEPARACIÓN CROMATOGRÁFICA PARA EL ANÁLISIS DE COMPUESTOS ORGÁNICOS VOLÁTILES / 6.3.1 Cromatografía de Gases/ 4 6.3.2 Detectores empleados para análisis cromatográficos de VOCs/ 6.3.3 Cromatografía asociada con olfatometría/ 6.3.4 Cromatografía de Gases bidimensional/ 6.3.5 Cromatografía de gases acoplado a espectrometría de masas/ 6.3.6 Otras configuraciones y acoplamientos para análisis de VOCs en frutas. / 6.4 Evolución de las técnicas analíticas empleadas para el análisis de compuestos orgánicos volátiles responsables del aroma en frutas. / 7. Compuestos orgánicos volátiles responsables del aroma en frutas/ 8. Relación de VOCs y descriptores de aroma/ 9. Enfoques y tendencias de Compuestos Orgánicos Volátiles en frutas/ 9.2 Nuevas fases sólidas para microextracción/9.3 Acoplamientos en cromatografía de gases./ 9.4 Una valiosa herramienta denominada espectrometría de masas/ 9.5 Importancia de los isótopos/ 9.6 Cromatografia de gases & Olfatometría/ 9.7 Análisis de metabolitos responsables del aroma por redes neuronales/ 9.9 Análisis de los compuestos volátiles en campo/ 10. CONCLUSIONES/ REFERENCIAS.
dc.descriptionMaestría
dc.descriptionMagister en Química
dc.descriptionProfundización
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias Exactas y Naturales
dc.publisherManizales
dc.publisherMaestría en Química
dc.relationAcevedo, F. E. (2020). Ecología química de interacciones entre plantas, insectos y controladores naturales de plagas herbívoras. Cenicafé.
dc.relationAllwood, J. W., Cheung, W., Xu, Y., Mumm, R., De Vos, R. C., Deborde, C., & Goodacre, R. (2014). Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry, 99, 61-72.
dc.relationAmoore, John E., James W. Johnston, and Martin Rubin. 1964. “The Stereochemical Theory of Odor.” SCIENTIFIC AMERICAN: 42–49.
dc.relationAprea, E., Biasioli, F., & Gasperi, F. (2015). Volatile compounds of raspberry fruit: from analytical methods to biological role and sensory impact. Molecules, 20(2), 2445-2474.
dc.relationArn, H., & Acree, T. E. (1998). Flavornet: a database of aroma compounds based on odor potency in natural products. Developments in food science, 40, 27-28.
dc.relationArthur, Catherine L, and Janusz Pawliszyn. 1990. “Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers.” Anal. Chem. 62(19): 2145– 48.
dc.relationAugusto, F., Valente, A. L. P., dos Santos Tada, E., & Rivellino, S. R. (2000). Screening of Brazilian fruit aromas using solid-phase microextraction–gas chromatography–mass spectrometry. Journal of chromatography A, 873(1), 117- 127.
dc.relationAverbeck, M., & Schieberle, P. H. (2009). Characterisation of the key aroma compounds in a freshly reconstituted orange juice from concentrate. European Food Research and Technology, 229(4), 611-622.
dc.relationBaena-Pedroza, A., Londoño-Giraldo, L. M., & Taborda-Ocampo, G. (2020). Volatilome study of the feijoa fruit [Acca sellowiana (O. Berg) Burret.] with headspace solid phase microextraction and gas chromatography coupled with mass spectrometry. Food Chemistry, 328, 127109.
dc.relationBianchi, G., Provenzi, L., & Rizzolo, A. (2020). Evolution of volatile compounds in ‘Cuoredolce®’and ‘Rugby’mini‐watermelons (Citrullus lanatus (Thunb.) Matsumura and Nakai) in relation to ripening at harvest. Journal of the Science of Food and Agriculture, 100(3), 945-952.
dc.relationBiasoto, A. C. T., de Lemos Sampaio, K., Marques, E. J. N., & da Silva, M. A. A. P. (2015). Dynamics of the loss and emergence of volatile compounds during the concentration of cashew apple juice (Anacardium occidentale L.) and the impact on juice sensory quality. Food Research International, 69, 224-234.
dc.relationBicas, JL, Molina, G., Dionísio, AP, Barros, FFC, Wagner, R., Maróstica Jr, MR, & Pastore, GM (2011). Constituyentes volátiles de frutas exóticas de Brasil. Food Research International, 44 (7), 1843-1855.
dc.relationBonneau, A., Boulanger, R., Lebrun, M., Maraval, I., Valette, J., Guichard, É., & Gunata, Z. (2018). Impact of fruit texture on the release and perception of aroma compounds during in vivo consumption using fresh and processed mango fruits. Food chemistry, 239, 806-815.
dc.relationBuvé, C., Neckebroeck, B., Haenen, A., Kebede, B., Hendrickx, M., Grauwet, T., & Van Loey, A. (2018). Combining untargeted, targeted and sensory data to investigate the impact of storage on food volatiles: A case study on strawberry juice. Food Research International, 113, 382-391.
dc.relationCalín‐Sánchez, Á., Martínez, J. J., Vázquez‐Araújo, L., Burló, F., Melgarejo, P., & Carbonell‐Barrachina, Á. A. (2011). Volatile composition and sensory quality of Spanish pomegranates (Punica granatum L.). Journal of the Science of Food and Agriculture, 91(3), 586-592.
dc.relationCannon, R. J., Agyemang, D., Curto, N. L., Yusuf, A., Chen, M. Z., & Janczuk, A. J. (2015). In‐depth analysis of Ciflorette strawberries (Fragaria× ananassa ‘Ciflorette’) by multidimensional gas chromatography and gas chromatography‐olfactometry. Flavour and Fragrance Journal, 30(4), 302-319.
dc.relationCannon, R. J., Kazimierski, A., Curto, N. L., Li, J., Trinnaman, L., Janczuk, A. J., ... & Chen, M. Z. (2015). Identification, synthesis, and characterization of novel sulfurcontaining volatile compounds from the in-depth analysis of Lisbon lemon peels (Citrus limon L. Burm. f. cv. Lisbon). Journal of agricultural and food chemistry, 63(7), 1915-1931.
dc.relationCapobiango, M., Mastello, R. B., Chin, S. T., de Souza Oliveira, E., de Lourdes Cardeal, Z., & Marriott, P. J. (2015). Identification of aroma-active volatiles in banana Terra spirit using multidimensional gas chromatography with simultaneous mass spectrometry and olfactometry detection. Journal of Chromatography A, 1388, 227- 235.
dc.relationChen, L., Zhang, X., Jin, Q., Yang, L., Li, J., & Chen, F. (2015). Free and bound volatile chemicals in mulberry (Morus atropurpurea Roxb.). Journal of food science, 80(5), C975-C982.
dc.relationChen, X., Kilmartin, P. A., Fedrizzi, B., & Quek, S. Y. (2021). Elucidation of Endogenous Aroma Compounds in Tamarillo (Solanum betaceum) Using a Molecular Sensory Approach. Journal of Agricultural and Food Chemistry, 69(32), 9362-9375
dc.relationChen, Y., Yin, H., Wu, X., Shi, X., Qi, K., & Zhang, S. (2018). Comparative analysis of the volatile organic compounds in mature fruits of 12 Occidental pear (Pyrus communis L.) cultivars. Scientia Horticulturae, 240, 239-248.
dc.relationCheong, K. W., Tan, C. P., Mirhosseini, H., Hamid, N. S. A., Osman, A., & Basri, M. (2010). Equilibrium headspace analysis of volatile flavor compounds extracted from soursop (Annona muricata) using solid-phase microextraction. Food Research International, 43(5), 1267-1276.
dc.relationContreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., & GarcíaVillanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food research international, 44(7), 2047-2053.
dc.relationCorne, V., Maskavizan, A. J., Romano, M. S., Centurión, E., & García, M. D. C. (2019). Adsorción de cromo en materiales arcillosos funcionalizados con compuestos orgánicos.
dc.relationCorpas Iguarán, E., Taborda Ocampo, G. & Tapasco Alzate, O. Identificación de marcadores de compuestos volátiles durante la maduración y senescencia del lulo (Solanum quitoense Lam.). J Food Sci Technol 55, 437–442 (2018). https://doi.org/10.1007/s13197-017-2924-xx
dc.relationCorpas, E. J., Taborda, G., Tapasco, O. A., & Ortíz, A. (2016). Comparison between extraction methods to obtain volátiles from lulo (Solatium quitoense) pulp. Revista Colombiana de Química, 45(3), 12-21.
dc.relationCortina, P. R., Asis, R., Peralta, I. E., Asprelli, P. D., & Santiago, A. N. (2017). Determination of volatile organic compounds in Andean tomato landraces by headspace solid phase microextraction-gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 28, 30-41.
dc.relationCortina, P. R., Santiago, A. N., Sance, M. M., Peralta, I. E., Carrari, F., & Asis, R. (2018). Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits. Metabolomics, 14(5), 1- 15.
dc.relationCruz-López, L., Díaz-Díaz, B., & Rojas, J. C. (2016). Coffee volatiles induced after mechanical injury and beetle herbivory attract the coffee berry borer and two of its parasitoids. Arthropod-Plant Interactions, 10(2), 151-159.
dc.relationDe Clerck, C., & Borrero-Echeverry, F. (2018). Los volátiles microbianos y su potencial en el control biológico de fitopatógenos e insectos.
dc.relationDE FEYDEAU, Elisabeth. Perfumes, historia, antología, diccionario. Francia: Robert Laffont. 2011.
dc.relationDe Souza, M. P., Bataglion, G. A., da Silva, F. M., de Almeida, R. A., Paz, W. H., Nobre, T. A., ... & Koolen, H. H. (2016). Phenolic and aroma compositions of pitomba fruit (Talisia esculenta Radlk.) assessed by LC–MS/MS and HS-SPME/GC– MS. Food Research International, 83, 87-94.
dc.relationDeng, H., He, R., Long, M., Li, Y., Zheng, Y., Lin, L., ... & Xia, H. (2021). Comparison of the Fruit Volatile Profiles of Five Muscadine Grape Cultivars (Vitis rotundifolia Michx.) Using HS-SPME-GC/MS Combined With Multivariate Statistical Analysis. Frontiers in Plant Science, 2302.
dc.relationDeterre, S., Rega, B., Delarue, J., Decloux, M., Lebrun, M., & Giampaoli, P. (2012). Identification of key aroma compounds from bitter orange (Citrus aurantium L.) products: essential oil and macerate–distillate extract. Flavour and fragrance journal, 27(1), 77-88.
dc.relationDima, G., Tripodi, G., Condurso, C., & Verzera, A. (2014). Volatile constituents of mini-watermelon fruits. Journal of Essential Oil Research, 26(5), 323-327.
dc.relationDonadel, J. Z., Thewes, F. R., de Oliveira Anese, R., Schultz, E. E., Berghetti, M. R. P., Ludwig, V., ... & Wagner, R. (2019). Key volatile compounds of ‘Fuji Kiku’apples as affected by the storage conditions and shelf life: Correlation between volatile emission by intact fruit and juice extracted from the fruit. Food Research International, 125, 108625
dc.relationDong, J., Zhang, Y., Tang, X., Jin, W., & Han, Z. (2013). Differences in volatile ester composition between Fragaria× ananassa and F. vesca and implications for strawberry aroma patterns. Scientia Horticulturae, 150, 47-53.
dc.relationDong, T., Chen, X. J., Wang, M., Huang, Y. H., & Yi, G. J. (2014). Comparison of volatile aroma compounds in Dwarf Cavendish banana (Musa spp. AAA) grown under organic or traditional cultivation. The Journal of Horticultural Science and Biotechnology, 89(4), 441-447.
dc.relationDou, T. X., Shi, J. F., Li, Y., Bi, F. C., Gao, H. J., Hu, C. H., ... & Dong, T. (2020). Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Scientia Horticulturae, 265, 109214.
dc.relationDu, X., & Rouseff, R. (2014). Aroma active volatiles in four southern highbush blueberry cultivars determined by gas chromatography–olfactometry (GC-O) and gas chromatography–mass spectrometry (GC-MS). Journal of Agricultural and Food Chemistry, 62(20), 4537-4543.
dc.relationDu, X., Plotto, A., Baldwin, E., & Rouseff, R. (2011). Evaluation of volatiles from two subtropical strawberry cultivars using GC–olfactometry, GC-MS odor activity values, and sensory analysis. Journal of agricultural and food chemistry, 59(23), 12569- 12577.
dc.relationDu, X., Song, M., Baldwin, E., & Rouseff, R. (2015). Identification of sulphur volatiles and GC-olfactometry aroma profiling in two fresh tomato cultivars. Food Chemistry, 171, 306-314.
dc.relationElizalde‐González, M. P., & Segura‐Rivera, E. J. (2018). Volatile compounds in different parts of the fruit Psidium guajava L. cv.“Media China” identified at distinct phenological stages using HS‐SPME‐GC‐QTOF/MS. Phytochemical Analysis, 29(6), 649-660.
dc.relationElmassry, M. M., Kormod, L., Labib, R. M., & Farag, M. A. (2018). Metabolome based volatiles mapping of roasted umbelliferous fruits aroma via HS-SPME GC/MS and peroxide levels analyses. Journal of Chromatography B, 1099, 117-126
dc.relationFarag, M. A., Tawfike, A. F., Donia, M. S., Ehrlich, A., & Wessjohann, L. A. (2019). Influence of pickling process on Allium cepa and citrus limon metabolome as determined via mass spectrometry-based metabolomics. Molecules, 24(5), 928.
dc.relationFARINA, Johann M. Farina 1709 Eau de Cologne. Alemania, 1709. párr. 1.
dc.relationFarneti, B., Alarcón, A. A., Papasotiriou, F. G., Samudrala, D., Cristescu, S. M., Costa, G., ... & Woltering, E. J. (2015). Chilling-induced changes in aroma volatile profiles in tomato. Food and bioprocess technology, 8(7), 1442-1454.
dc.relationFarneti, B., Khomenko, I., Grisenti, M., Ajelli, M., Betta, E., Algarra, A. A., ... & Giongo, L. (2017). Exploring blueberry aroma complexity by chromatographic and direct-injection spectrometric techniques. Frontiers in plant science, 8, 617.
dc.relationFernández-Trujillo, J. P., Zarid, M., & Bueso, M. C. (2018). Methodology to remove strong outliers of non-climacteric melon fruit aroma at harvest obtained by HS-SPME GC-MS analysis. Separations, 5(2), 30.
dc.relationFerreira, D. D. F., Garruti, D. D. S., Barin, J. S., Cichoski, A. J., & Wagner, R. (2016). Characterization of Odor‐Active Compounds in Gabiroba Fruits (C ampomanesia xanthocarpa O. Berg). Journal of Food Quality, 39(2), 90-97.
dc.relationForero, D. P., Orrego, C. E., Peterson, D. G., & Osorio, C. (2015). Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food chemistry, 169, 85-91.
dc.relationFranchina, F. A., Zanella, D., Lazzari, E., Stefanuto, P. H., & Focant, J. F. (2020). Investigating aroma diversity combining purge‐and‐trap, comprehensive two‐ dimensional gas chromatography, and mass spectrometry. Journal of separation science, 43(9-10), 1790-1799.
dc.relationFredes, A., Sales, C., Barreda, M., Valcárcel, M., Roselló, S., & Beltrán, J. (2016). Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography– mass spectrometry determination. Food chemistry, 190, 689-700.
dc.relationGarcia, C. V., Quek, S. Y., Stevenson, R. J., & Winz, R. A. (2012). Characterisation of bound volatile compounds of a low flavour kiwifruit species: Actinidia eriantha. Food chemistry, 134(2), 655-661.
dc.relationGarcia, C. V., Stevenson, R. J., Atkinson, R. G., Winz, R. A., & Quek, S. Y. (2013). Changes in the bound aroma profiles of ‘Hayward’and ‘Hort16A’kiwifruit (Actinidia spp.) during ripening and GC-olfactometry analysis. Food chemistry, 137(1-4), 45- 54.
dc.relationGarcía, J. M., Prieto, L. J., Guevara, A., Malagon, D., & Osorio, C. (2016). Chemical studies of yellow tamarillo (Solanum betaceum Cav.) fruit flavor by using a molecular sensory approach. Molecules, 21(12), 1729.
dc.relationGarcía, Y. M., Rufini, J., Campos, M. P., Guedes, M. N., Augusti, R., & Melo, J. O. (2019). SPME fiber evaluation for volatile organic compounds extraction from acerola. Journal of the Brazilian Chemical Society, 30, 247-255.
dc.relationGenovese, A., Gambuti, A., Lamorte, S. A., & Moio, L. (2013). An extract procedure for studying the free and glycosilated aroma compounds in grapes. Food chemistry, 136(2), 822-834.
dc.relationGiannetti, V., Mariani, M. B., Mannino, P., & Marini, F. (2017). Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control, 78, 215-221.
dc.relationGoh, R. M. V., Lau, H., Liu, S. Q., Lassabliere, B., Guervilly, R., Sun, J., ... & Yu, B. (2019). Comparative analysis of pomelo volatiles using headspace-solid phase micro-extraction and solvent assisted flavour evaporation. LWT, 99, 328-345.
dc.relationGrimm, J. E., & Steinhaus, M. (2019). Characterization of the major odor-active compounds in jackfruit pulp. Journal of agricultural and food chemistry, 67(20), 5838- 5846.
dc.relationGuadayol, J. M., Baquero, T., & Caixach, J. (1997). Aplicación de las técnicas de espacio de cabeza a la extracción de los compuestos orgánicos volátiles de la oleorresina de pimentón.
dc.relationGuillot S., Peyvaty L., Bureau S., Boulanger R., Lepoutre J., Crouzet J., SchorrGalindo S. Aroma characterization of various apricot varieties using headspace– solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography– olfactometry. Food Chemistry. May (2006), 96(1): 147– 155.
dc.relationGuler, Z., Candir, E., Yetisir, H., Karaca, F., & Solmaz, I. (2014). Volatile organic compounds in watermelon (Citrullus lanatus) grafted onto 21 local and two commercial bottle gourd (Lagenaria siceraria) rootstocks. The Journal of Horticultural Science and Biotechnology, 89(4), 448-452.
dc.relationGuo, J., Yue, T., Yuan, Y., Sun, N., & Liu, P. (2020). Characterization of volatile and sensory profiles of apple juices to trace fruit origins and investigation of the relationship between the aroma properties and volatile constituents. LWT, 124, 109203.
dc.relationHabibi, F., Ramezanian, A., Guillén, F., Serrano, M., & Valero, D. (2020). Effect of Various Postharvest Treatment on Aroma Volatile Compounds of Blood Orange Fruit Exposed to Chilling Temperature After Long-Term Storage. Food and Bioprocess Technology, 13(12), 2054-2064.
dc.relationHempfling, K., Fastowski, O., Kopp, M., Pour Nikfardjam, M., & Engel, K. H. (2013). Analysis and sensory evaluation of gooseberry (Ribes uva crispa L.) volatiles. Journal of agricultural and food chemistry, 61(26), 6240-6249
dc.relationHenze, R. E., Baker, C. E., & Quackenbush, F. W. (1954). Fruit Storage Effects, Carbonyl Compounds in Apple Storage Volatiles. Journal of Agricultural and Food Chemistry, 2(22), 1118-1120.
dc.relationHou, J., Liang, L., & Wang, Y. (2020). Volatile composition changes in navel orange at different growth stages by HS-SPME–GC–MS. Food Research International, 136, 109333.
dc.relationHu, Bin, Man He, and Beibei Chen. 2014. “Novel Materials in Solid-Phase Microextraction and Related Sample Preparation Approaches.” Miniaturization in Sample Preparation: 88–190.
dc.relationJeleń, Henryk H., Małgorzata Majcher, and Mariusz Dziadas. 2012. “Microextraction Techniques in the Analysis of Food Flavor Compounds: A Review.” Analytica Chimica Acta 738: 13–26.
dc.relationJiménez, A. M., Sierra, C. A., Rodríguez-Pulido, F. J., González-Miret, M. L., Heredia, F. J., & Osorio, C. (2011). Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Research International, 44(7), 1912-1918.
dc.relationKang, W., Li, Y., Xu, Y., Jiang, W., & Tao, Y. (2012). Characterization of aroma compounds in Chinese bayberry (Myrica rubra Sieb. et Zucc.) by gas chromatography mass spectrometry (GC‐MS) and olfactometry (GC‐O). Journal of Food Science, 77(10), C1030-C1035.
dc.relationKASS-SIMON Gabriele; FARNES, Patricia y NASH, Deborah. Women of science: righting the record. Bloomington, Indiana: Indiana University Press. 1990. p. 301.
dc.relationKelebek, H., Selli, S., Gubbuk, H., & Gunes, E. (2015). Comparative evaluation of volatiles, phenolics, sugars, organic acids and antioxidant properties of Sel-42 and Tainung papaya varieties. Food chemistry, 173, 912-919
dc.relationKende, A., Portwood, D., Senior, A., Earll, M., Bolygo, E., & Seymour, M. (2010). Target list building for volatile metabolite profiling of fruit. Journal of Chromatography A, 1217(43), 6718-6723.
dc.relationKhalil, M. N., Fekry, M. I., & Farag, M. A. (2017). Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC–MS and chemometrics. Food chemistry, 217, 171-181.
dc.relationKoziel, J., Jia, M., Khaled, A., Noah, J., & Pawliszyn, J. (1999). Field air analysis with SPME device. Analytica chimica acta, 400(1-3), 153-162.
dc.relationKraujalytė V., Leitner E., Rimantas P. Characterization of Aronia melanocarpa Volatiles by Headspace-Solid-Phase Microextraction (HS-SPME), Simultaneous Distillation/Extraction (SDE), and Gas ChromatographyOlfactometry (GC-O) Methods. Journal of Agricultural and Food Chemistry. Apr (2013), 61(20): 4728- 4736.
dc.relationKraujalytė, V., Leitner, E., & Venskutonis, P. R. (2012). Chemical and sensory characterisation of aroma of Viburnum opulus fruits by solid phase microextractiongas chromatography–olfactometry. Food Chemistry, 132(2), 717-723.
dc.relationKuroki, R., Sakano, R., Hattori, S., & Morishita, S. (2021). Comparing odor-active compounds in three mango (Mangifera indica L.) cultivars by aroma extract dilution analysis and the method for evaluating odor interactions. Food Science and Technology Research, 27(1), 103-109.
dc.relationKushwaha, K., Saini, S. S., Waghmode, B., Gaid, M., Agrawal, P. K., Roy, P., & Sircar, D. (2021). Volatile components in papaya fruits are the non-invasive biomarkers to monitor the ripening stage and the nutritional value. European Food Research and Technology, 247(4), 907-919.
dc.relationLasekan, O., & See, N. S. (2015). Key volatile aroma compounds of three black velvet tamarind (Dialium) fruit species. Food chemistry, 168, 561-565.
dc.relationLasekan, O., Khatib, A., Juhari, H., Patiram, P., & Lasekan, S. (2013). Headspace solid-phase microextraction gas chromatography–mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum). Food chemistry, 141(3), 2089-2097.
dc.relationLee, B., Lin, P. C., soo Cha, H., Luo, J., & Chen, F. (2016). Characterization of volatile compounds in Cowart muscadine grape (Vitis rotundifolia) during ripening stages using GC-MS combined with principal component analysis. Food science and biotechnology, 25(5), 1319-1326.
dc.relationLee, B., Lin, P. C., soo Cha, H., Luo, J., & Chen, F. (2016). Characterization of volatile compounds in Cowart muscadine grape (Vitis rotundifolia) during ripening stages using GC-MS combined with principal component analysis. Food science and biotechnology, 25(5), 1319-1326.
dc.relationLeite Neta, M. T. S.., de Jesus, M. S., da Silva, J. L. A., Araujo, H. C. S., Sandes, R. D. D., Shanmugam, S., & Narain, N. (2019). Effect of spray drying on bioactive and volatile compounds in soursop (Annona muricata) fruit pulp. Food Research International, 124, 70-77.
dc.relationLEVEY, Martin. Early Arabic Pharmacology. Leiden: E.J. Brill. 1973.
dc.relationLi, C., Xin, M., Li, L., He, X., Yi, P., Tang, Y., ... & Li, Z. (2021). Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing. Food Chemistry, 355, 129685.
dc.relationLi, J., Fu, Y., Bao, X., Li, H., Zuo, J., Zhang, M., & Wang, J. (2020). Comparison and analysis of tomato flavor compounds using different extraction methods. Journal of Food Measurement and Characterization, 14(1), 465-475
dc.relationLi, K., Xia, Y., Li, F., Fan, Y. L., & Liu, T. X. (2020). COMPARATIVE ANALYSIS OF VOLATILE COMPOUNDS IN FIVE CITRUS CULTIVARS WITH HS-SPME-GCMS. Pakistan Journal of Agricultural Sciences, 57(4).
dc.relationLiu, X., Deng, J., Bi, J., Wu, X., & Zhang, B. (2019). Cultivar classification of cloudy apple juices from substandard fruits in China based on aroma profile analyzed by HS-SPME/GC-MS. LWT, 102, 304-309.
dc.relationLiu, Y., Bu, M., Gong, X., He, J., & Zhan, Y. (2021). Characterization of the volatile organic compounds produced from avocado during ripening by gas chromatography ion mobility spectrometry. Journal of the Science of Food and Agriculture, 101(2), 666-672.
dc.relationLiu, Y., Chen, S., Pu, Y., Muhammad, A. I., Hang, M., Liu, D., & Ye, T. (2019). Ultrasound-assisted thawing of mango pulp: Effect on thawing rate, sensory, and nutritional properties. Food chemistry, 286, 576-583.
dc.relationLiu, Y., He, C., & Song, H. (2018). Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Food Research International, 107, 119-129.
dc.relationLo Bianco, R., Farina, V., Indelicato, S. G., Filizzola, F., & Agozzino, P. (2010). Fruit physical, chemical and aromatic attributes of early, intermediate and late apricot cultivars. Journal of the Science of Food and Agriculture, 90(6), 1008-1019.
dc.relationLondoño-Giraldo, L. M., Bueno, M., Corpas-Iguarán, E., Taborda-Ocampo, G., & Cifuentes, A. (2021). HPLC-DAD-APCI-MS as a Tool for Carotenoid Assessment of Wild and Cultivated Cherry Tomatoes. Horticulturae, 7(9), 272.
dc.relationMacoris, M. S., Janzantti, N. S., Garruti, D. D. S., & Monteiro, M. (2011). Volatile compounds from organic and conventional passion fruit (Passiflora edulis F. Flavicarpa) pulp. Food Science and Technology, 31, 430-435
dc.relationMahattanatawee, Kanjana, Kevin L. Goodner, and Elizabeth a. Baldwin. 2005. “Volatile Constituents and Character Impact Compounds of Selected Florida’s Tropical Fruit.” Proc. Fla. State Hort. Soc. 118: 414–18.
dc.relationMahendran, T., Brennan, J. G., & Hariharan, G. (2019). Aroma volatiles components of ‘Fuerte’Avocado (Persea americana Mill.) stored under different modified atmospheric conditions. Journal of Essential Oil Research, 31(1), 34-42.
dc.relationMajcher, M. A., Scheibe, M., & Jeleń, H. H. (2020). Identification of Odor Active Compounds in Physalis peruviana L. Molecules, 25(2), 245.
dc.relationMajithia, D., Metrani, R., Dhowlaghar, N., Crosby, K. M., & Patil, B. S. (2021). Assessment and Classification of Volatile Profiles in Melon Breeding Lines Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Plants, 10(10), 2166.
dc.relationMarsili, R. (2001). Flavor, fragrance, and odor analysis (Vol. 115). CRC Press.
dc.relationMayr D., Ruth S., van Mark T. Evaluation of the influence of mastication on temporal aroma release of ripe and unripe bananas, using a model mouth system and gas chromatography-olfactometry. European Food Research and Technology. Oct (2003). 217(4): 291- 295
dc.relationMedina, S., Perestrelo, R., Pereira, R., & Câmara, J. S. (2020). Evaluation of Volatilomic Fingerprint from Apple Fruits to Ciders: A Useful Tool to Find Putative Biomarkers for Each Apple Variety. Foods, 9(12), 1830.
dc.relationMehta, P. K., de Sousa Galvão, M., Soares, A. C., Nogueira, J. P., & Narain, N. (2018). Volatile constituents of jambolan (Syzygium cumini L.) fruits at three maturation stages and optimization of HS-SPME GC-MS method using a central composite design. Food analytical methods, 11(3), 733-749.
dc.relationMelgarejo, P., Calín‐Sánchez, Á., Vázquez‐Araújo, L., Hernández, F., Martínez, J. J., Legua, P., & Carbonell‐Barrachina, Á. A. (2011). Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction. Journal of Food Science, 76(1), S114-S120.
dc.relationMiyazaki, T., Plotto, A., Baldwin, E. A., Reyes‐De‐Corcuera, J. I., & Gmitter Jr, F. G. (2012). Aroma characterization of tangerine hybrids by gas‐chromatography– olfactometry and sensory evaluation. Journal of the Science of Food and Agriculture, 92(4), 727-735.
dc.relationMiyazaki, T., Plotto, A., Goodner, K., & Gmitter Jr, F. G. (2011). Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance. Journal of the Science of Food and Agriculture, 91(3), 449-460.
dc.relationMiyazato, H., Hashimoto, S., & Hayashi, S. (2013). First identification of the odour‐ active unsaturated aliphatic acid (E)‐4‐methyl‐3‐hexenoic acid in yuzu (Citrus junos Sieb. ex Tanaka). Flavour and Fragrance Journal, 28(1), 62-69.
dc.relationMontaño, Diego & Rosero, Milton & Palma, Ricardo. (2020). Arcillas activadas para el blanqueamiento del aceite de palma y remoción del colorante azul índigo carmín del agua. Producción + Limpia. 14. 21-29. 10.22507/pml.v14n2a2.
dc.relationMontero‐Calderón, M., Rojas‐Graü, M. A., & Martín‐Belloso, O. (2010). Aroma profile and volatiles odor activity along gold cultivar pineapple flesh. Journal of food science, 75(9), S506-S512.
dc.relationMphahlele, R. R., Caleb, O. J., Fawole, O. A., & Opara, U. L. (2016). Effects of different maturity stages and growing locations on changes in chemical, biochemical and aroma volatile composition of ‘Wonderful’pomegranate juice. Journal of the Science of Food and Agriculture, 96(3), 1002-1009.
dc.relationMunafo Jr, J. P., Didzbalis, J., Schnell, R. J., Schieberle, P., & Steinhaus, M. (2014). Characterization of the major aroma-active compounds in mango (Mangifera indica L.) cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi by application of a comparative aroma extract dilution analysis. Journal of agricultural and food chemistry, 62(20), 4544-4551.
dc.relationMusharraf, S. G., Uddin, J., Siddiqui, A. J., & Akram, M. I. (2016). Quantification of aroma constituents of mango sap from different Pakistan mango cultivars using gas chromatography triple quadrupole mass spectrometry. Food chemistry, 196, 1355- 1360.
dc.relationMuto, A., Müller, C. T., Bruno, L., McGregor, L., Ferrante, A., Chiappetta, A. A. C., ... & Spadafora, N. D. (2020). Fruit volatilome profiling through GC× GC-ToF-MS and gene expression analyses reveal differences amongst peach cultivars in their response to cold storage. Scientific reports, 10(1), 1-16.
dc.relationMyers, M. J., Issenberg, P., & Wick, E. L. (1970). L-leucine as a precursor of isoamyl alcohol and isoamyl acetate, volatile aroma constituents of banana fruit discs. Phytochemistry, 9(8), 1693-1700.
dc.relationNajar, B., Marchioni, I., Ruffoni, B., Copetta, A., Pistelli, L., & Pistelli, L. (2019). Volatilomic analysis of four edible flowers from Agastache genus. Molecules, 24(24), 4480.
dc.relationNeiens, S. D., & Steinhaus, M. (2018). Odor-active compounds in the special flavor hops Huell Melon and Polaris. Journal of agricultural and food chemistry, 66(6), 1452-1460.
dc.relationNi, H., Hong, P., Ji, H. F., Sun, H., Chen, Y. H., Xiao, A. F., & Chen, F. (2015). Comparative analyses of aromas of fresh, naringinase‐treated and resin‐absorbed juices of pummelo by GC‐MS and sensory evaluation. Flavour and Fragrance Journal, 30(3), 245-253
dc.relationNiu, Y., Deng, J., Xiao, Z., & Zhu, J. (2021). Characterization of the major aromaactive compounds in peach (Prunus persica L. Batsch) by gas chromatography– olfactometry, flame photometric detection and molecular sensory science approaches. Food Research International, 147, 110457.
dc.relationNiu, Y., Wang, R., Xiao, Z., Zhu, J., Sun, X., & Wang, P. (2019). Characterization of ester odorants of apple juice by gas chromatography-olfactometry, quantitative measurements, odour threshold, aroma intensity and electronic nose. Food Research International, 120, 92-101.
dc.relationOcaña-González, Juan Antonio, Rut Fernández-Torres, Miguel Ángel Bello-López, and María Ramos-Payán. 2016. “New Developments in Microextraction Techniques in Bioanalysis. A Review.” Analytica Chimica Acta 905: 8–23. http://dx.doi.org/10.1016/j.aca.2015.10.041.
dc.relationOlbricht, K., & Ulrich, D. (2017, August). Domestication effects in European breeding history of strawberry demonstrated by aroma compound pattern. In VIII International Strawberry Symposium 1156 (pp. 61-68).
dc.relationPadilla-Jiménez, S. M., Angoa-Pérez, M. V., Mena-Violante, H. G., Oyoque-Salcedo, G., Montañez-Soto, J. L., & Oregel-Zamudio, E. (2021). Identification of Organic Volatile Markers Associated with Aroma during Maturation of Strawberry Fruits. Molecules, 26(2), 504.
dc.relationPadrón, Ma , Cristina Afonso-Olivares, Zoraida Sosa-Ferrera, and José SantanaRodríguez. 2014. “Microextraction Techniques Coupled to Liquid Chromatography with Mass Spectrometry for the Determination of Organic Micropollutants in Environmental Water Samples.” Molecules 19(7): 10320–49. http://www.mdpi.com/1420-3049/19/7/10320/.
dc.relationPang, X., Guo, X., Qin, Z., Yao, Y., Hu, X., & Wu, J. (2012). Identification of aromaactive compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. Journal of Agricultural and Food Chemistry, 60(17), 4179-4185
dc.relationPang, X., Zhang, Y., Qiu, J., Cao, J., Sun, Y., Li, H., & Kong, F. (2019). Coupled multidimensional GC and odor activity value calculation to identify off-odors in thermally processed muskmelon juice. Food chemistry, 301, 125307
dc.relationPardo‐García, A. I., Martínez‐Gil, A. M., López‐Córcoles, H., Zalacain, A., & Salinas, R. (2013). Effect of eugenol and guaiacol application on tomato aroma composition determined by headspace stir bar sorptive extraction. Journal of the Science of Food and Agriculture, 93(5), 1147-1155.
dc.relationPaz, W. H., de Almeida, R. A., Braga, N. A., da Silva, F. M., Acho, L. D., Lima, E. S., ... & Koolen, H. H. (2018). Remela de cachorro (Clavija lancifolia Desf.) fruits from South Amazon: Phenolic composition, biological potential, and aroma analysis. Food research international, 109, 112-119.
dc.relationPena-pereira, Francisco. 2014. “From Conventional to Miniaturized Analytical Systems.” Analytical and Food Chemistry Department: 1–28.
dc.relationPeng, Y., Bishop, K. S., Zhang, J., Chen, D., & Quek, S. Y. (2020). Characterization of phenolic compounds and aroma active compounds in feijoa juice from four New 103 Zealand grown cultivars by LC-MS and HS-SPME-GC-O-MS. Food Research International, 129, 108873.
dc.relationPico, J., Gerbrandt, E. M., & Castellarin, S. D. (2022). Optimization and validation of a SPME-GC/MS method for the determination of volatile compounds, including enantiomeric analysis, in northern highbush blueberries (Vaccinium corymbosum L.). Food Chemistry, 368, 130812
dc.relationPino, J. A. (2012). Odour‐active compounds in mango (Mangifera indica L. cv. Corazón). International journal of food science & technology, 47(9), 1944-1950.
dc.relationPino, J. A. (2014). Odour-active compounds in papaya fruit cv. Red Maradol. Food chemistry, 146, 120-126
dc.relationPino, J. A. (2014). Odour-active compounds in papaya fruit cv. Red Maradol. Food chemistry, 146, 120-126
dc.relationPino, J. A., & Febles, Y. (2013). Odour-active compounds in banana fruit cv. Giant Cavendish. Food chemistry, 141(2), 795-801.
dc.relationPino, J. A., & Mesa, J. (2006). Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour and fragrance journal, 21(2), 207-213.
dc.relationPino, J. A., & Roncal, E. (2016). Characterisation of odour‐active compounds in cherimoya (Annona cherimola Mill.) fruit. Flavour and Fragrance Journal, 31(2), 143- 148
dc.relationPino, J. A., & Trujillo, R. (2021). Characterization of odour‐active compounds of sour guava (Psidium acidum [DC.] Landrum) fruit by gas chromatography‐olfactometry and odour activity value. Flavour and Fragrance Journal, 36(2), 207-212.
dc.relationPino, J. A., Marbot, R., Rosado, A., & Vázquez, C. (2004). Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. & Perry]. Flavour and Fragrance Journal, 19(1). https://doi.org/10.1002/ffj.1269
dc.relationPino, J., Moo-Huchin, V., Sosa-Moguel, O., Sauri-Duch, E., & Cuevas-Glory, L. (2017). Characterization of aroma-active compounds in choch (Lucuma hypoglauca Standley) fruit. International journal of food properties, 20(sup1), S444-S448
dc.relationPlagemann, I., Krings, U., Berger, R. G., & Marostica Jr, M. R. (2012). Volatile constituents of jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) fruits. Journal of Essential Oil Research, 24(1), 45-51
dc.relationPorat, R., Tietel, Z., Zippori, I., & Dag, A. (2011). Aroma volatile compositions of high‐and low‐aromatic guava varieties. Journal of the Science of Food and Agriculture, 91(15), 2794-2798
dc.relationPott, D. M., Vallarino, J. G., & Osorio, S. (2021). Profiling Volatile Compounds in Blackcurrant Fruit using Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. Journal of Visualized Experiments: Jove, (172).
dc.relationPrat, L., Espinoza, M. I., Agosin, E., & Silva, H. (2014). Identification of volatile compounds associated with the aroma of white strawberries (Fragaria chiloensis). Journal of the Science of Food and Agriculture, 94(4), 752-759.
dc.relationPuyol Bosch, M. D. M. (2015). Sistemas analíticos miniaturizados integración de sistemas microelectrónicos con sensores químicos
dc.relationQian, M. C., & Wang, Y. (2005). Seasonal variation of volatile composition and odor activity value of ‘Marion’(Rubus spp. hyb) and ‘Thornless Evergreen’(R. laciniatus L.) blackberries. Journal of Food Science, 70(1), C13-C20.
dc.relationQiao, Y., Xie, B. J., Zhang, Y., Zhang, Y., Fan, G., Yao, X. L., & Pan, S. Y. (2008). Characterization of aroma active compounds in fruit juice and peel oil of Jinchen sweet orange fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GCO. Molecules, 13(6), 1333-1344.
dc.relationQin, L., Kang, W. H., Zhang, Z. W., & Guo, A. Y. (2015). Changes in C6 volatile aldehyde and alcohol components of nectarine fruits analyzed by headspace solidphase microextraction-gas chromatography/mass spectrometry. Modern Food Science and Technology, 31(8). https://doi.org/10.13982/j.mfst.1673- 9078.2015.8.047
dc.relationQiu, S., & Wang, J. (2015). Application of sensory evaluation, HS‐SPME GC‐MS, E‐ Nose, and E‐Tongue for quality detection in citrus fruits. Journal of food science, 80(10), S2296-S2304.
dc.relationQuintana, J. B., Ramil, M., Rodil, R., Rodriguez, I., & Cela, R. (2014). New Sample Preparation Strategies for Analytical Determinations. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 1-98.
dc.relationRajkumar, G., Rajan, M., Araujo, H. C., Jesus, M. S., Leite Neta, M. T. S., Sandes, R. D. D., & Narain, N. (2020). Comparative evaluation of volatile profile of tomato subjected to hot air, freeze, and spray drying. Drying Technology, 39(3), 383-391.
dc.relationRakitin, Y. W. (1945). Accumulation of ethanol and acetaldehyde in ripening fruits. Biokhimiya, 10(373).
dc.relationRay Marsili. 2012. FLAVOR, FRAGRANCE, AND ODOR ANALYSIS. 2nd ed. ed. CRC Press Taylor
dc.relationRega B., Fournier N., Guichard E. Solid Phase Microextraction (SPME) of Orange Juice Flavor:  Odor Representativeness by Direct Gas Chromatography Olfactometry (D-GCO). Journal of Agricultural and Food Chemistry. Oct (2003), 51 (24): 7092– 7099
dc.relationRíos Acevedo, J. J. (2016). Nuevos desarrollos metodológicos en SPME.
dc.relationRiu-Aumatell, M., Castellari, M., López-Tamames, E., Galassi, S., & Buxaderas, S. (2004). Characterisation of volatile compounds of fruit juices and nectars by HS/SPME and GC/MS. Food Chemistry, 87(4), 627-637.
dc.relationROACH, John. Perfumes más antiguos encontrados en la "Isla de Afrodita". En: Noticias geográficas nacionales. 2007
dc.relationRoberts, G., & Spadafora, N. D. (2020). Analysis of apple flavours: The use of volatile organic compounds to address cultivar differences and the correlation between consumer appreciation and aroma Profiling. Journal of Food Quality, 2020.
dc.relationRocha, S., Ramalheira, V., Barros, A., Delgadillo, I., & Coimbra, M. A. (2001). Headspace solid phase microextraction (SPME) analysis of flavor compounds in wines. Effect of the matrix volatile composition in the relative response factors in a wine model. Journal of Agricultural and Food Chemistry, 49(11), 5142-5151.
dc.relationRoderick, William R. 1966. “Current Ideas on the Chemical Basis of Olfaction.” J Chem Educ 43(10): 510–20. http://pubs.acs.org/doi/abs/10.1021/ed043p510%5Cnhttp://www.ncbi.nlm.nih.gov/p ubmed/5917029.
dc.relationRojas, J. (2005). Ecologia quimica de la broca del cafe y sus parasitoides. En J. F Barrera (Ed.), Simposio sobre situación actual y perspectivas de la invesigación y manejo de la broca del café en Costa Rica, Cuba, Guatemala y México. (pp. 14-21). Sociedad Mexicana de Entomología; El Colegio de la Frontera Sur.
dc.relationRondán Sanabria, G. G., Cabezas Garcia, A. J., Oliveira Lima, A. W., BrousettMinaya, M. A., & Narain, N. (2018). HS-SPME-GC-MS detection of volatile compounds in Myrciaria jabuticaba Fruit. Scientia Agropecuaria, 9(3), 319-327.
dc.relationROVESTI, Paolo. Alla ricerca dei cosmetici perduti Con un saggio di Giampiero Bonetti. Venezia: Blow-up di Marsilio Editori. 1975.
dc.relationSampaio, K. L., Biasoto, A. C., & Da Silva, M. A. A. (2015). Comparison of techniques for the isolation of volatiles from cashew apple juice. Journal of the Science of Food and Agriculture, 95(2), 299-312.
dc.relationSampaio, K. L., Garruti, D. S., Franco, M. R. B., Janzantti, N. S., & Da Silva, M. A. A. (2011). Aroma volatiles recovered in the water phase of cashew apple (Anacardium occidentale L.) juice during concentration. Journal of the Science of Food and Agriculture, 91(10), 1801-1809.
dc.relationSan, A. T., Joyce, D. C., Hofman, P. J., Macnish, A. J., Webb, R. I., Matovic, N. J., ... & Smyth, H. E. (2017). Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars. Food chemistry, 221, 613-619.
dc.relationSanchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A non-targeted approach unravels the volatile network in peach fruit. PloS one, 7(6), e38992.
dc.relationSánchez, G., Venegas-Calerón, M., Salas, J. J., Monforte, A., Badenes, M. L., & Granell, A. (2013). An integrative “omics” approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC genomics, 14(1), 1-23.
dc.relationSaryan, P., & Gowda, V. (2020). Low‐cost FloPump for regulated air sampling of volatile organic compounds. Applications in plant sciences, 8(4), e11343.
dc.relationSawaddipanich, V., & Chanthai, S. (2016). Headspace-single drop microextraction followed by gas chromatographic determination of key aroma compounds in tomato fruits and their sample products. Orient J Chem, 32(3), 1271-1282.
dc.relationSchipilliti, L., Dugo, P., Bonaccorsi, I., & Mondello, L. (2011). Headspace-solid phase microextraction coupled to gas chromatography–combustion-isotope ratio mass spectrometer and to enantioselective gas chromatography for strawberry flavoured food quality control. Journal of Chromatography A, 1218(42), 7481-7486.
dc.relationSchulbach, K., Rouseff R., Sims C. Relating descriptive sensory analysis to gas chromatography/olfactometry ratings of fresh strawberries using partial least squares regression. Journal of Food Science. Sep (2004), 69(7): 273-277
dc.relationSeker, M., Ekinci, N., & Gür, E. (2017). Effects of different rootstocks on aroma volatile constituents in the fruits of peach (Prunus persica L. Batsch cv.‘Cresthaven’). New Zealand Journal of Crop and Horticultural Science, 45(1), 1-13
dc.relationSelli, S., Kelebek, H., Ayseli, M. T., & Tokbas, H. (2014). Characterization of the most aroma-active compounds in cherry tomato by application of the aroma extract dilution analysis. Food chemistry, 165, 540-546.
dc.relationSerrano, E., Beltrán, J., & Hernández, F. E. L. I. X. (2009). Application of multiple headspace-solid-phase microextraction followed by gas chromatography–mass spectrometry to quantitative analysis of tomato aroma components. Journal of Chromatography A, 1216(1), 127-133.
dc.relationShi, J., Wu, H., Xiong, M., Chen, Y., Chen, J., Zhou, B., ... & Huang, Y. (2020). Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food chemistry, 316, 126342.
dc.relationShi, X. B., Liu, F. Z., Cheng, C. G., Wang, X. D., Wang, B. L., Zheng, X. C., & Wang, H. B. (2015). Effects of canopy shapes of grape on canopy microenvironment, leaf and fruit quality in greenhouse. Ying yong sheng tai xue bao= The journal of applied ecology, 26(12), 3730-3736.
dc.relationShimizu, K., Suzuki, M., Yoshida, K., Muto, T., Fujita, A., Tomita, N., & Watanabe, N. (2004). Maturity discrimination of snake fruit (Salacca edulis Reinw.) cv. Pondoh based on volatiles analysis using an electronic nose device equipped with a sensor array and fingerprint mass spectrometry. Flavour and fragrance journal, 19(1), 44- 50.
dc.relationSinuco León, DC, Ortíz, DKR y González, DFJ (2020). Enfoque sensorial y análisis quiral para la determinación de compuestos activos de olor de feijoa (Acca sellowiana). Química de los alimentos, 317, 126383.
dc.relationSmith, J G. Organic Chemistry. McGraw-Hill Education. https://books.google.com.co/books?id=W3SdjwEACAAJ.
dc.relationSolís-Solís, H. M., Calderón-Santoyo, M., Schorr-Galindo, S., Luna-Solano, G., & Ragazzo-Sánchez, J. A. (2007). Characterization of aroma potential of apricot varieties using different extraction techniques. Food chemistry, 105(2), 829-837.
dc.relationStadtman, F. H. (1948). The chemical deterioration of dried fruit during storage. III. Chromatographic separation of carbonyl compounds as 2, 4- dinitrophenylhydrazones. Journal of the American Chemical Society, 70(11), 3583- 3586
dc.relationSteingass, C. B., Carle, R., & Schmarr, H. G. (2015). Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive twodimensional gas chromatography-mass spectrometry. Analytical and bioanalytical chemistry, 407(9), 2591-2608.
dc.relationSteingass, C. B., Jutzi, M., Müller, J., Carle, R., & Schmarr, H. G. (2015). Ripeningdependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry. Analytical and bioanalytical chemistry, 407(9), 2609-2624.
dc.relationStrojnik, L., Stopar, M., Zlatič, E., Kokalj, D., Gril, M. N., Ženko, B., ... & Ogrinc, N. (2019). Authentication of key aroma compounds in apple using stable isotope approach. Food chemistry, 277, 766-773.
dc.relationSun, S. Y., Jiang, W. G., & Zhao, Y. P. (2010). Characterization of the aroma‐active compounds in five sweet cherry cultivars grown in Yantai (China). Flavour and fragrance journal, 25(4), 206-213.
dc.relationTERENCE Radford, et al. 1974.
dc.relationTerry E. Acree (2022), Flavornet: Ginebra, NY 14456 EE. UU: Cornell University. https://www.flavornet.org
dc.relationThiruchelvam, T., Landahl, S., & Terry, L. A. (2020). Temporal variation of volatile compounds from Sri Lankan mango (Mangifera indica L.) fruit during ripening. Journal of Agriculture and Food Research, 2, 100053.
dc.relationTietel Z., Porat R., Weiss K., Ulrich D. Identification of aroma-active compounds in fresh and stored ‘Mor’ mandarins. International Journal of Food Science & Technology. Nov (2011), 46(11): 2225-2231
dc.relationTorres, M. R. P. (2010). Nuevas aportaciones en la automatización y miniaturización de sistemas analíticos de screening (Doctoral dissertation, Universidad de CastillaLa Mancha).
dc.relationTressl, R., Drawert, F., Heimann, W., & Emberger, R. (1970). Über die Biogenese von Aromastoffen bei Pflanzen und Früchten, VI. Mitteilung Ester, Alkohole, Carbonylverbindungen und Phenoläther des Bananenaromas. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 142(5), 313-321.
dc.relationTressl, R., Drawert, F., Heimann, W., & Emberger, R. (1971). About the biogenesis of aroma-substances in plants and fruits XIIIth communication: Incorporation of 8- 14C-octanoic-acid in banana and strawberry aroma-substances. [Ü die Biogenese von Aromastoffen bei Planzen und Früchten: XIII. * Mitt.: Einbau von 8-14CCaprylsäure in Bananen- und Erdbeeraromastoffe] Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences. 26(8), 774-779.
dc.relationTripathi J., Chatterjee., Gamre S., Chattopadhyay S., Variyar P., Sharma. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.). LWT – Food Tripathi J., Chatterjee., Gamre S., Chattopadhyay S., Variyar P., Sharma. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.). LWT – Food
dc.relationUbeda, C., San-Juan, F., Concejero, B., Callejon, R. M., Troncoso, A. M., Morales, M. L., ... & Hernandez-Orte, P. (2012). Glycosidically bound aroma compounds and impact odorants of four strawberry varieties. Journal of agricultural and food chemistry, 60(24), 6095-6102.
dc.relationUlrich, D., Kecke, S., & Olbricht, K. (2018). What do we know about the chemistry of strawberry aroma. Journal of agricultural and food chemistry, 66(13), 3291-3301.
dc.relationVallone, S., Lloyd, N. W., Ebeler, S. E., & Zakharov, F. (2012). Fruit volatile analysis using an electronic nose. JoVE (Journal of Visualized Experiments), (61), e3821.
dc.relationVega, F. E., Simpkins, A., Miranda, J., Harnly, J. M., Infante, F., Castillo, A., Wakarchuk, D., & Cossé, A. (2017). A potential repellent against the coffee berry borer (Coleoptera: Curculionidae: Scolytinae). Journal of Insect Science, 17(6)
dc.relationVendel, I., Hertog, M., & Nicolaï, B. (2019). Fast analysis of strawberry aroma using SIFT-MS: A new technique in postharvest research. Postharvest Biology and Technology, 152, 127-138.
dc.relationVerzera, A., Dima, G., Tripodi, G., Ziino, M., Lanza, C. M., & Mazzaglia, A. (2011). Fast quantitative determination of aroma volatile constituents in melon fruits by headspace–solid-phase microextraction and gas chromatography–mass spectrometry. Food Analytical Methods, 4(2), 141-149.
dc.relationVilanova, M., Genisheva, Z., Bescansa, L., Masa, A., & Oliveira, J. M. (2012). Changes in free and bound fractions of aroma compounds of four Vitis vinifera cultivars at the last ripening stages. Phytochemistry, 74, 196-205.
dc.relationWAHAB, Seema. Integrated Pest Management Strategies for Sustainability of Agriculture. En: Agriculture Diversification Problems And Perspectives. India. 2010. p. 5.
dc.relationWen, Y. Q., He, F., Zhu, B. Q., Lan, Y. B., Pan, Q. H., Li, C. Y., ... & Wang, J. (2014). Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chemistry, 152, 29-36.
dc.relationWhite, I. R., Blake, R. S., Taylor, A. J., & Monks, P. S. (2016). Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv.‘Tommy Atkins’ by real-time measurement of volatile organic compounds. Metabolomics, 12(3), 1-11.
dc.relationWinefordner, J.D. (Editor). 2011. 162 John Wiley & Sons, Inc. Sample Preparation Techniques in Analytical Chemistry. Department. ed. Somenath Mitra. http://books.google.com/books?hl=en&lr=&id=yk1RZ9HD6hcC&oi=f nd&pg=PR17&dq=Sample+Preparation+Techniques+in+Analytical+Che mistry&ots=tyR68- 839S&sig=3oTNiH3XrjymneeuGWnEsotJwkg%5Cnhttp://linkinghub.elsevier.c om/retrieve/pii/S0012.
dc.relationXi, W., Zheng, H., Zhang, Q., & Li, W. (2016). Profiling taste and aroma compound metabolism during apricot fruit development and ripening. International journal of molecular sciences, 17(7), 998.
dc.relationXiao, Z., Ma, S., Niu, Y., Chen, F., & Yu, D. (2016). Characterization of odour‐active compounds of sweet orange essential oils of different regions by gas chromatography‐mass spectrometry, gas chromatography‐olfactometry and their correlation with sensory attributes. Flavour and Fragrance Journal, 31(1), 41-50.
dc.relationXiao, Z., Wu, Q., Niu, Y., Wu, M., Zhu, J., Zhou, X., ... & Kong, J. (2017). Characterization of the key aroma compounds in five varieties of mandarins by gas chromatography–olfactometry, odor activity values, aroma recombination, and omission analysis. Journal of agricultural and food chemistry, 65(38), 8392-8401.
dc.relationYang, Cui, Juan Wang, and Donghao Li. 2013. “Microextraction Techniques for the Determination of Volatile and Semivolatile Organic Compounds from Plants: A Review.” Analytica Chimica Acta 799: 8–22. http://dx.doi.org/10.1016/j.aca.2013.07.069.
dc.relationYang, F., Liu, Y., Wang, B., Song, H., & Zou, T. (2021). Screening of the volatile compounds in fresh and thermally treated watermelon juice via headspace-gas chromatography-ion mobility spectrometry and comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry analysis. LWT, 137, 110478.
dc.relationYang, S., Meng, Z., Fan, J., Yan, L., Yang, Y., & Zhao, Z. (2021). Evaluation of the volatile profiles in pulp of 85 apple cultivars (Malus domestica) by HS–SPME combined with GC–MS. Journal of Food Measurement and Characterization, 1-11.
dc.relationYang, S., Meng, Z., Li, Y., Chen, R., Yang, Y., & Zhao, Z. (2021). Evaluation of physiological characteristics, soluble sugars, organic acids and volatile compounds in ‘Orin’apples (Malus domestica) at different ripening stages. Molecules, 26(4), 807.
dc.relationYang, Y. N., Zheng, F. P., Yu, A. N., & Sun, B. G. (2019). Changes of the free and bound volatile compounds in Rubus corchorifolius L. f. fruit during ripening. Food chemistry, 287, 232-240.
dc.relationYao, H., Jin, X., Feng, M., Xu, G., Zhang, P., Fang, Y., ... & Meng, J. (2021). Evolution of volatile profile and aroma potential of table grape Hutai-8 during berry ripening. Food Research International, 143, 110330.
dc.relationYilmaztekin, M. (2014). Characterization of potent aroma compounds of cape gooseberry (Physalis peruviana L.) fruits grown in Antalya through the determination of odor activity values. International journal of food properties, 17(3), 469-480.
dc.relationYu, M. H., Olson, L. E., & Salunkhe, D. K. (1968). Precursors of volatile components in tomato fruit—II: Enzymatic production of carbonyl compounds. Phytochemistry, 7(4), 555-560.
dc.relationZhang, C. Y., Zhang, Q., Zhong, C. H., & Guo, M. Q. (2016). Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography–mass spectrometry. Journal of Chromatography A, 1440, 255-259.
dc.relationZhang, W., Lao, F., Bi, S., Pan, X., Pang, X., Hu, X., ... & Wu, J. (2021). Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chemistry, 336, 127721.
dc.relationZheng, H., Zhang, Q., Quan, J., Zheng, Q., & Xi, W. (2016). Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chemistry, 205, 112-121.
dc.relationZhong, S., Ren, J., Chen, D., Pan, S., Wang, K., Yang, S., & Fan, G. (2014). Free and bound volatile compounds in juice and peel of Eureka lemon. Food Science and Technology Research, 20(1), 167-174.
dc.relationZhu, J.C, & Xiao, Z. (2019). Characterization of the key aroma compounds in peach by gas chromatography–olfactometry, quantitative measurements and sensory analysis. European Food Research and Technology, 245(1), 129-141.
dc.relationZhu, J.C, Wang, L., Xiao, Z., & Niu, Y. (2018). Characterization of the key aroma compounds in mulberry fruits by application of gas chromatography–olfactometry (GC-O), odor activity value (OAV), gas chromatography-mass spectrometry (GC– MS) and flame photometric detection (FPD). Food chemistry, 245, 775-785
dc.relationZidi, K., Kati, D. E., Bachir-Bey, M., Genva, M., & Fauconnier, M. L. (2021). Comparative study of fig volatile compounds using headspace solid-phase microextraction-gas chromatography/mass spectrometry: Effects of cultivars and ripening stages. Frontiers in Plant Science, 12.
dc.relationZini, C. A., Augusto, F., Christensen, E., Caramão, E. B., & Pawliszyn, J. (2002). SPME applied to the study of volatile organic compounds emitted by three species of Eucalyptus in situ. Journal of Agricultural and Food Chemistry, 50(25), 7199-7205.
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.subjectAnálisis cromatográfico
dc.subjectFrutas
dc.subjectCompuestos químicos
dc.titleAnálisis de los compuestos orgánicos volátiles responsables de los aromas frutales (revisión)
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttps://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución