dc.contributorIsaza Londoño, Carlos Felipe
dc.creatorMORENO-REINA, RAMIRO
dc.date2022-02-24T00:06:16Z
dc.date2022-02-24T00:06:16Z
dc.date2022-02-24
dc.date.accessioned2023-09-06T18:21:34Z
dc.date.available2023-09-06T18:21:34Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/17454
dc.identifierUniversidad de Caldas
dc.identifierRepositorio institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8696023
dc.descriptionGráficas
dc.descriptionspa: La Hipotensión intraoperatoria (HIO) posterior a la inducción anestésica está asociado a desenlaces adversos. Es de importancia tener un control de la presión arterial donde el uso de vasopresores es una medida eficaz para el tratamiento de HIO. Al realizar una corrección numérica de la presión arterial se debe considerar los efectos de los vasopresores en la hemodinámica cerebral. La literatura ofrece estudios de varios vasopresores disponibles, pero no de Etilefrina, ese es el propósito de esta investigación. Metodología: Se incluyeron pacientes adultos programados para cirugía electiva, que fueron tratados con Etilefrina (2mg) para la HIO causada por la inducción anestésica intravenosa con Remifentanil (TCI 6 ng/ml) + Propofol (2mg/kg). Se realizaron mediciones de velocidad de flujo sanguíneo cerebral en la arteria cerebral media (VmACM) por medio de ecografía dúplex transcraneal codificada por colores (Transcranial color coded duplex ultrasonography), velocidad media de arteria carótida interna (VmACI), presión arterial en 3 momentos diferentes: Basal, en HIO y posterior a aplicación de Etilefrina. Resultados: Se estudiaron 52 pacientes que presentaron HIO y fueron tratados con Etilefrina. Se presentó disminución significativa en los valores de PAM posterior a la inducción anestésica intravenosa (p< 0.00001), las VmACM promediadas en HIO posterior a la inducción anestésica disminuyeron respecto al valor basal (82.8 ±18.4 cm/s a 62.8 ±14.6 cm/s; p< 0.00001). Cuando fueron tratados con Etilefrina para la HIO, se observó un aumento significativo en la PAM (p< 0.00001), las VmACM también aumentaron de forma significativa (62.8 ±14.6 cm/s subió a 93.2 ±23.1 cm/s; p< 0.00001). Sin embargo los valores promediados de VmACM post-Etilefrina fueron muy superiores respecto a los valores basales (93.2 ±23.1 cm/s respecto al basal 82.8 ±18.4 cm/s; p< 0.00001). Para un análisis del efecto vasoconstrictor de Etilefrina en la circulación cerebral se calculó un indice de Lindegaard (IL), se comparó el valor de IL post-Etilefrina respecto al valor basal, el resultado fue normal en los 2 momentos (IL<3), pero con un descenso significativo (basal 1.79 ±0.5 y post-Etilefrina 1.2 ±0.3; p< 0.00001). Conclusión: La Etilefrina a la dosis usada en el presente estudio aumentó las velocidades de flujo sanguíneo cerebral en el manejo de la hipotensión intraoperatoria, incluso llevando a unos valores superiores respecto a los basales, con un indice de Lindegaard en rango normal pero menor respecto al basal, sugiriendo un efecto Hiperemico en la circulación cerebral.
dc.descriptioneng:Intraoperative hypotension (IOH) after anesthetic induction is associated with adverse outcomes. It is important to have blood pressure control where the use of vasopressors is an effective measure for the treatment of HIO. When performing a numerical correction of blood pressure, the effects of vasopressors on cerebral hemodynamics must be considered. The literature offers studies of several available vasopressors, but not Etilefrine, that is the purpose of this research. Methodology: Adult patients scheduled for elective surgery were included, who were treated with Etilefrine (2mg) for IOH caused by intravenous anesthetic induction with Remifentanil (TCI 6ng/ml) + Propofol (2mg/kg). Cerebral blood flow velocity measurements were made in the middle cerebral artery (MCAMV) by transcranial color coded duplex ultrasonography, internal carotid artery mean velocity (MCAMV), blood pressure at 3 different times : Basal, in HIO and after application of Etilefrine. Results: 52 patients who presented HIO and were treated with Etilefrine were studied. There was a significant decrease in MAP values ​​after intravenous anesthetic induction (p< 0.00001), the MVACM averaged in HIO after anesthetic induction decreased compared to the baseline value (82.8 ± 18.4 cm/s to 62.8 ± 14.6 cm/s; p<0.00001). When treated with Etilefrine for IOH, a significant increase in MAP was observed (p<0.00001), MVACM also increased significantly (62.8 ±14.6 cm/s rose to 93.2 ±23.1 cm/s; p<0.00001). . However, the average values ​​of VmMCA post-Etilefrine were much higher compared to baseline values ​​(93.2 ± 23.1 cm/s compared to baseline 82.8 ± 18.4 cm/s; p < 0.00001). For an analysis of the vasoconstrictor effect of Etilefrine in the cerebral circulation, a Lindegaard index (IL) was calculated, the value of post-Etilefrine IL was compared with the basal value, the result was normal at 2 moments (IL<3), but with a significant decrease (baseline 1.79 ±0.5 and post-Ethylephrine 1.2 ±0.3; p< 0.00001). Conclusion: Etilefrine at the dose used in the present study increased cerebral blood flow velocities in the management of intraoperative hypotension, even leading to higher values ​​compared to baseline, with a Lindegaard index in the normal range but lower compared to baseline. basal, suggesting a hyperemic effect on the cerebral circulation.
dc.description1. Introducción / 2. Planteamiento del problema/ 3. Pregunta de investigación /4. Justificación / 5. Marco teórico / 5.1 Anatomía de circulación cerebral/ 5.2 Flujo sanguíneo cerebral/ 5.3 Presión de perfusión cerebral/ 5.4 Autorregulación del flujo sanguíneo cerebral/ 5.5 Teoría miogénica del FSC / 5.6 Teoría metabólica del FSC/ 5.7 Teoría neurológica del FSC / 5.8 Teoría química del FSC/ 5.9 Viscosidad del flujo sanguíneo cerebral/ 5.10 Temperatura / 5.11 Doppler transcraneal/ 5.12 Indice de Lindegaard / 5.13 Etilefrina / 6. OBJETIVOS / 6.1 Objetivo General /6.2 Objetivos específicos/ 7. METODOLOGÍA / 7.1 Tipo y nivel de investigación. / 7.2 Población de estudio/ 7.3 Criterios de inclusión para el estudio / 7.4 Criterios de exclusión para el estudio/ 7.5 Muestra. / 7.6 Técnica de recolección de datos/ 7.7 Protocolo de investigación/ 7.8 Plan de análisis estadístico/ 8. ASPECTOS ÉTICOS/ 9. RESULTADOS / 10. DISCUSIÓN / 11. Conclusión / 12. ANEXOS/ 12.1 Anexo 1: Instrumento de recolección de datos. / 12.2 Anexo 2: Matriz de variables del estudio / 12.3 Anexo 3: Consentimiento informado y comité de ética / 12.4 Anexo 4: Cronograma/ 12.5 Anexo 5: Presupuesto / 13. Referencias bibliográficas .
dc.descriptionEspecialización
dc.descriptionEspecialista en Anestesiología
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ciencias para la Salud
dc.publisherManizales
dc.publisherEspecialización en Anestesiología
dc.relation1. Hammermeister KE. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology. 2015;123(2):307-319.
dc.relation2. Lewis NCS, Smith KJ, Bain AR, Wildfong KW, Numan T, Ainslie PN. Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci. 2015;129(2):169-178. doi:10.1042/cs20140751
dc.relation3. Südfeld S, Brechnitz S, Wagner JY, et al. Post-induction hypotension and early intraoperative hypotension associated with general anaesthesia. Br J Anaesth. 2017;119(1):57-64. doi:10.1093/bja/aex127
dc.relation4. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100(1):4-10. doi:10.1213/01.ANE.0000147519.82841.5E
dc.relation5. Chang HS, Hongo K, Nakagawa H. Adverse effects of limited hypotensive anesthesia on the outcome of patients with subarachnoid hemorrhage. J Neurosurg. 2000;92(6):971-975. doi:10.3171/jns.2000.92.6.0971
dc.relation6. Reich DL, Bodian CA, Krol M, Kuroda M, Osinski T, Thys DM. Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery. Anesth Analg. 1999;89(4):814-822. doi:10.1097/00000539-199910000-00002
dc.relation7. Sanborn K V., Castro J, Kuroda M, Thys DM. Detection of intraoperative incidents by electronic scanning of computerized anesthesia records: Comparison with voluntary reporting. Anesthesiology. 1996;85(5):977-987. doi:10.1097/00000542- 199611000-00004
dc.relation8. Bijker JB, Van Klei WA, Kappen TH, Van Wolfswinkel L, Moons KGM, Kalkman CJ. Incidence of intraoperative hypotension as a function of the chosen definition: Literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology. 2007;107(2):213-220. doi:10.1097/01.anes.0000270724.40897.8e
dc.relation9. Walsh M, Devereaux PJ, Garg AX, et al. Relationship Between Intraoperative Mean Arterial Pressure and Clinical Outcomes After Noncardiac Surgery. Surv Anesthesiol. 2014;58(4):184-185. doi:10.1097/sa.0000000000000064
dc.relation10. Wesselink EM, Kappen TH, Torn HM, Slooter AJC, van Klei WA. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. Br J Anaesth. 2018;121(4):706-721. doi:10.1016/j.bja.2018.04.036
dc.relation11. Salmasi V, Maheshwari K, Yang D, et al. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery. Anesthesiology. 2017;126(1):47-65. doi:10.1097/ALN.0000000000001432
dc.relation12. Saugel B, Reuter DA, Reese PC. Intraoperative Mean Arterial Pressure Targets: Can Databases Give Us a Universally Valid “magic Number” or Does Physiology Still Apply for the Individual Patient? Anesthesiology. 2017;127(4):725-726. doi:10.1097/ALN.0000000000001810
dc.relation13. Sthephan P. Strebel M. The impact of systemic vasoconstrictors on the cerebral circulation of anesthetized patients. Anesthesiology. 1998;89:67-72.
dc.relation14. Depresseux JC. The effect of intracarotid epinephrine, norepinephrine and angiotensin on the regional cerebral blood flow in man. Eur Neurol. 1978;17(2):100- 107. doi:10.1159/000114931
dc.relation15. Stephan P. Strebel, MD ; Dr. Christoph Kindler ; Bruno Bissonnette M; DGT; DDD. the impact of systemic Vasoconstrictors on the cerebral circulation of anesthetiazed patients. Anesthesiology. 1998;89(1).
dc.relation16. Status S. Effortil ®. 2010;2010:1-2.
dc.relation17. Ederberg S, Westerlind A, Houltz E, Svensson SE, Elam M, Ricksten SE. The effects of propofol on cerebral blood flow velocity and cerebral oxygen extraction during cardiopulmonary bypass. Anesth Analg. 1998;86(6):1201-1206. doi:10.1097/00000539-199806000-0001
dc.relation18. Kondo Y, Hirose N, Maeda T, Suzuki T. Changes in Cerebral Blood Flow and Oxygenation During Induction of General Anesthesia with Sevoflurane Versus Propofol. :479-484. doi:10.1007/978-1-4939-3023-4
dc.relation19. Conti A, Iacopino DG, Fodale V, Micalizzi S, Penna O, Santamaria LB. Cerebral haemodynamic changes during propofol – remifentanil or sevoflurane anaesthesia : transcranial Doppler study under bispectral index monitoring. Br J Anaesth. 2006;97(3):333-339. doi:10.1093/bja/ael169
dc.relation20. Holzer A, Winter W, Greher M, et al. A comparison of propofol and sevoflurane anaesthesia : effects on aortic blood flow velocity and middle cerebral artery blood flow velocity *. 2003:217-222
dc.relation21. Ogoh S, Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH. The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects. 2011:445-451. doi:10.1111/j.1475-097X.2011.01040.x
dc.relation22. Anna Maria Bombardieri, MD, PhD,*† Nigel E. Sharrock, BMedSci, MB, ChB,* Yan Ma, PhD, FCCP,‡ George Go, BS,* and John C. Drummond M. An Observational Study of Cerebral Blood Flow Velocity During Hypotensive Epidural Anesthesia. Anesth Analg. 2016;122(1):226-233. doi:10.1213/ANE.0000000000000985
dc.relation23. Moppett IK, Sherman RW, Wild MJ, Latter JA, Mahajan RP. Effects of norepinephrine and glyceryl trinitrate on cerebral haemodynamics: Transcranial Doppler study in healthy volunteers. Br J Anaesth. 2008;100(2):240-244. doi:10.1093/bja/aem374
dc.relation24. Meng L, Cannesson M, Alexander BS, et al. Effect of phenylephrine and ephedrine bolus treatment on cerebral oxygenation in anaesthetized patients. 2011;107(June):209-217. doi:10.1093/bja/aer150
dc.relation25. Nissen P, Brassard P, Jørgensen TB, Secher NH. Phenylephrine but not Ephedrine Reduces Frontal Lobe Oxygenation Following Anesthesia-Induced Hypotension. Neurocrit Care. 2010:17-23. doi:10.1007/s12028-009-9313-x
dc.relation26. Reto Krapf T-MM. Failure to demonstrate a vasoconstrictive effect of vasopressin on the internal carotid and middle carebral arteries: a transcranial ultrasound doppler study. 1987;13(3):131-134
dc.relation27. Tatu L, Vuillier F, Moulin T. Chapter 13 Anatomy of the circulation of the brain and spinal cord. In: Handbook of Clinical Neurology. Vol 92. ; 2008:247-281. doi:10.1016/S0072-9752(08)01913-1
dc.relation27. Tatu L, Vuillier F, Moulin T. Chapter 13 Anatomy of the circulation of the brain and spinal cord. In: Handbook of Clinical Neurology. Vol 92. ; 2008:247-281. doi:10.1016/S0072-9752(08)01913-1
dc.relation28. Pukenas B. Normal Brain Anatomy on Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am. 2011;19(3):429-437. doi:10.1016/j.mric.2011.05.015
dc.relation29. Lin JS, Anaclet C, Sergeeva OA, Haas HL. The waking brain: An update. Cell Mol Life Sci. 2011;68(15):2499-2512. doi:10.1007/s00018-011-0631-8
dc.relation30. Robba C, Goffi A, Geeraerts T, et al. Brain ultrasonography: methodology , basic and advanced principles and clinical applications . A narrative review. Intensive Care Med. 2019. doi:10.1007/s00134-019-05610-4
dc.relation31. Vavilala MS, Lee LA, Lam AM. Cerebral blood flow and vascular physiology. Anesthesiol Clin North America. 2002;20(2):247-264. doi:10.1016/S0889- 8537(01)00012-8
dc.relation32. Rodríguez-Boto G, Rivero-Garvía M, Gutiérrez-González R, Márquez-Rivas J. Basic concepts about brain pathophysiology and intracranial pressure monitoring. Neurol (English Ed. 2015;30(1):16-22. doi:10.1016/j.nrleng.2012.09.002
dc.relation33. Frontera J, Ziai W, O’Phelan K, et al. Regional Brain Monitoring in the Neurocritical Care Unit. Neurocrit Care. 2015;22(3):348-359. doi:10.1007/s12028- 015-0133-x
dc.relation34. Doppenberg EMR, Zauner A, Bullock R, Ward JD, Fatouros PP, Young HF. Correlations between brain tissue oxygen tension, carbon dioxide tension, pH, and cerebral blood flow - A better way of monitoring the severely injured brain? Surg Neurol. 1998;49(6):650-654. doi:10.1016/S0090-3019(97)00355-8
dc.relation35. Liu J, Zhu Y, Hill C, et al. Cerebral Autoregulation of Blood Velocity and Volumetric Flow during Steady-State Changes in Arterial Pressure RR. NIH Public Access. 2014;62(5):973-979. doi:10.1161/HYPERTENSIONAHA.113.01867.Cerebral
dc.relation36. Martin NA, Patwardhan R V., Alexander MJ, et al. Characterization of cerebral hemodynamic phases following severe head trauma: Hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997;87(1):9-19. doi:10.3171/jns.1997.87.1.0009
dc.relation37. Holmström A, Rosén I, Åkeson J. Desflurane results in higher cerebral blood flow than sevoflurane or isoflurane at hypocapnia in pigs. Acta Anaesthesiol Scand. 2004;48(4):400-404. doi:10.1111/j.0001-5172.2004.00361.x
dc.relation38. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769- 774. doi:10.3171/jns.1982.57.6.0769
dc.relation39. Ochoa-Pérez L, Cardozo-Ocampo A. Aplicaciones de la ultrasonografía en el sistema nervioso central para neuroanestesia y cuidado neurocrítico. Rev Colomb Anestesiol. 2014;43(4):314-320. doi:10.1016/j.rca.2015.03.009
dc.relation40. Robba C, Czosnyka M. Transcranial Doppler : a stethoscope for the brainneurocritical care use Right to Left CARDIAC. 2017;(June):1-11. doi:10.1002/jnr.24148
dc.relation41. Naqvi J, Yap KH, Ahmad G, et al. Transcranial Doppler Ultrasound : A Review of the Physical Principles and Major Applications in Critical Care. 2013;2013(March).
dc.relation42. Blanco P, Abdo A. Transcranial Doppler ultrasound in neurocritical care. J Ultrasound. 2018;21(1):1-16. doi:10.1007/s40477-018-0282-9
dc.relation43. Harrer JU, Eyding J, Ritter M, Schminke U, Nedelmann M, Schlachetzki F. The potential of neurosonography in neurological emergency and intensive care medicine: monitoring of increased intracranial pressure, brain death diagnostics, and cerebral autoregulation. 2012:320-336.
dc.relation44. Mendía A, Gorostidi G, Txoperena F, et al. Evolución de la velocidad del flujo sanguíneo cerebral en las meningitis graves medida mediante Doppler transcraneal. 48 Med Intensiva. 2004;28(4):193-200. doi:10.1016/s0210-5691(04)70045-5
dc.relation45. Lange MC, Zétola VHF, Miranda-alves M, et al. Brazilian guidelines for the application of transcranial ultrasound as a diagnostic test for the confirmation of brain death. 2012;(January):373-380.
dc.relation46. Bawarjan Schatlo MD. Continuous Neuromonitoring Using Transcranial Doppler Reflects Blood Flow during Carbon Dioxide Challenge in Primates with Global Cerebral Ischemia. HHS. 2016;64(6):1148-1154. doi:10.1227/01.NEU.0000343542.61238.DF.Continuous
dc.relation47. Denault AY, Casas C, Puentes W, Eljaiek R, Iglesias I. Ultrasonido de la cabeza a los pies: opinión actual sobre su utilidad en inestabilidad hemodinámica, hipoxemia, oligoanuria y en el paciente con estado neurológico alterado. Rev Colomb Anestesiol. 2017;45(4):317-326. doi:10.1016/j.rca.2017.07.006
dc.relation48. Bartels E. Transcranial color-coded duplex ultrasonography in routine cerebrovascular diagnostics. Perspect Med. 2012;1-12(1-12):325-330. doi:10.1016/j.permed.2012.06.001
dc.relation49. Findlay JM, Nisar J, Darsaut T. Cerebral Vasospasm: A Review. Can J Neurol Sci. 2015;43(1):15-32. doi:10.1017/cjn.2015.288
dc.relation50. Lindegaard KF, Bakke SJ, Grolimund P, Aaslid R, Huber P, Nornes H. Assessment of intracranial hemodynamics in carotid artery disease by transcranial Doppler ultrasound. J Neurosurg. 1985;63(6):890-898. doi:10.3171/jns.1985.63.6.0890
dc.relation51. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien). 1988;42:81-84. doi:10.1007/978-3-7091- 8975-7_16
dc.relation52. Sapir D, Benenati S, Dupouy V, et al. Courbe d’apprentissage du Doppler transcrânien (DTC). Ann Fr Anesth Reanim. 2013;32:A105. doi:10.1016/j.annfar.2013.07.211
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.subjectPresión sanguínea
dc.subjectArterias
dc.subjectCirculación sanguínea
dc.subjectEtilefrine
dc.subjectUltrasonography Doppler Transcranial
dc.subjectTranscranial color coded duplex ultrasonography
dc.subjectMiddle cerebral artery mean blood velocity
dc.subjectVasoconstrictors,
dc.subjectCerebral blood flow
dc.titleEfecto de la Etilefrina en la velocidad de flujo sanguíneo cerebral para la hipotensión arterial causada por inducción anestésica intravenosa
dc.typeTrabajo de grado - Especialización
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeText
dc.typehttps://purl.org/redcol/resource_type/TP
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución