dc.contributorIsaza Echeverri, Gustavo Adolfo
dc.contributorCastillo Ossa, Luis Fernando
dc.creatorCastañeda Osorio, Carlos Andres
dc.date2021-10-21T22:05:32Z
dc.date2021-10-21T22:05:32Z
dc.date2021-10-10
dc.date.accessioned2023-09-06T18:17:11Z
dc.date.available2023-09-06T18:17:11Z
dc.identifierhttps://repositorio.ucaldas.edu.co/handle/ucaldas/17178
dc.identifierUniversidad de Caldas
dc.identifierRepositorio institucional Universidad de Caldas
dc.identifierhttps://repositorio.ucaldas.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8694756
dc.descriptionIlustraciones, gráficas
dc.descriptionspa:El internet de las cosas (IoT) es un paradigma informático que se expande día a día junto con la cantidad de dispositivos conectados a la red, por eso transmitir información de manera segura y poder utilizar toda la capacidad computacional de los dispositivos que la componen para analizar los generados. Los datos constituyen uno de los grandes desafíos que se intenta resolver bajo la arquitectura computacional propuesta en el presente artículo.
dc.descriptioneng:The internet of things (IoT) is a computing paradigm that expands every day along with the number of devices connected to the network, that’s why transmit information safely and be able to use all the computational capacity of the devices that compose it to analyze the generated data is one of the great challenges that it is tried to solve under the computational architecture proposed in the present article.
dc.description1. Introducción / 1.1. Campo Temático /1.2. Planteamiento del Problema . . . . . . / 1.3. Justificación / 1.4. Objetivos /1.4.1. Objetivo General/ 1.4.2. Objetivos Específicos / 1.5. Estructura del documento / 2. Revisión Bibliográfica /´ 2.1. IoT / 2.2. MQTT / 2.3. Machine Learning / 2.3.1. Máquinas de soporte vectorial / 2.3.2. Clustering con K-Means / 2.3.3. Deep Learning/ 2.3.4. Redes neuronales convolucionales (ConvNets) / 2.3.5. Redes neuronales / 2.4. Big Data . . . . . . . . / 2.5. Fog Computing / 3. Descripción detallada del proceso / 3.1. Materiales y métodos / 3.1.1. Benchmarking a proveedores de servicios en la nube / 3.1.2. Distribución de los Datos analizados / 3.1.3. Dispositivos Físicos Utilizados/ 3.1.4. Servicios nube / 3.1.5. Aplicaciones de algoritmos de Deep learning para el hogar conectado / 3.1.6. Diseño de la solución ˜ on /3.1.7. Detalles de aplicación implementación ´ on y validación ´ / 3.1.8. Resumen / 4 4. Análisis de Resultados / 4.1. Resultados del Fog computing / 4.2. Fog Computing con Movidious / 4.3. Resultados de transmisión y almacenamiento en la nube/ 4.4. Resultados prueba de validación con datos de cocina / 4.5. Resultados del modelo de redes neuronales convolucionales para el análisis de imágenes /4.6. Resumen / 5. Conclusiones y trabajo futuro
dc.descriptionMaestría
dc.descriptionMagister en Ingeniería Computacional
dc.descriptionMachine learning
dc.descriptionInternet of Things
dc.descriptionInteligencia Artificial
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.languagespa
dc.publisherFacultad de Ingeniería
dc.publisherManizales
dc.publisherMaestría en Ingeniería Computacional
dc.relation[Alam et al., 2016] Alam, F., Mehmood, R., Katib, I., and Albeshri, A. (2016). Analysis of eight data mining algorithms for smarter internet of things (iot). Procedia Computer Science, 98:437–442.
dc.relation[Albahri et al., 2021] Albahri, A., Alwan, J. K., Taha, Z. K., Ismail, S. F., Hamid, R. A., Zaidan, A., Albahri, O., Zaidan, B., Alamoodi, A., and Alsalem, M. (2021). Iot-based telemedicine for disease prevention and health promotion: State-of-the-art. Journal of Network and Computer Applications, 173:102873.
dc.relation[Alsheikh et al., 2014] Alsheikh, M. A., Lin, S., Niyato, D., and Tan, H.- P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4):1996–2018.
dc.relation[Bandyopadhyay and Bhattacharyya, 2013] Bandyopadhyay, S. and Bhattacharyya, A. (2013). Lightweight internet protocols for web enablement of sensors using constrained gateway devices. In 2013 International Conference on Computing, Networking and Communications (ICNC), pages 334–340. IEEE.
dc.relation[Basu et al., 2002] Basu, S., Banerjee, A., and Mooney, R. (2002). Semisupervised clustering by seeding. In In Proceedings of 19th International Conference on Machine Learning (ICML-2002. Citeseer.
dc.relation[Betancourt, 2005] Betancourt, G. A. (2005). Las maquinas de soporte vecto- ´ rial (svms). Scientia et technica, 1(27).
dc.relation[Bifet et al., 2010] Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. (2010). Moa: Massive online analysis. Journal of Machine Learning Research, 11(May):1601–1604.
dc.relation[Bin et al., 2010] Bin, S., Yuan, L., and Xiaoyi, W. (2010). Research on data mining models for the internet of things. In 2010 International Conference on Image Analysis and Signal Processing, pages 127–132. IEEE.
dc.relation[Bkassiny et al., 2012] Bkassiny, M., Li, Y., and Jayaweera, S. K. (2012). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3):1136–1159.
dc.relation[Bonomi et al., 2012] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pages 13–16.
dc.relation[Botta et al., 2016] Botta, A., De Donato, W., Persico, V., and Pescap´e, A. (2016). Integration of cloud computing and internet of things: a survey. Future generation computer systems, 56:684–700.
dc.relation[Buczak and Guven, 2015] Buczak, A. L. and Guven, E. (2015). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications surveys & tutorials, 18(2):1153–1176.
dc.relation[Carbonell et al., 1983] Carbonell, J. G., Michalski, R. S., and Mitchell, T. M. (1983). An overview of machine learning. In Machine learning, pages 3–23. Elsevier.
dc.relation[Castaneda et al., 2019] ˜ Castaneda, D. S. et al. (2019). ˜ Aplicacion de support ´ vector machine al mercado colombiano. PhD thesis, Universidad del Rosario.
dc.relation[Chen et al., 2014a] Chen, M., Mao, S., and Liu, Y. (2014a). Big data: A survey. Mobile networks and applications, 19(2):171–209.
dc.relation[Chen et al., 2014b] Chen, S., Xu, H., Liu, D., Hu, B., and Wang, H. (2014b). A vision of iot: Applications, challenges, and opportunities with china perspective. IEEE Internet of Things journal, 1(4):349–359.
dc.relation[Di et al., 2019] Di, Z., Gong, X., Shi, J., Ahmed, H. O., and Nandi, A. K. (2019). Internet addiction disorder detection of chinese college students using several personality questionnaire data and support vector machine. Addictive Behaviors Reports, 10:100200.
dc.relation[Ding et al., 2013] Ding, G., Wang, L., and Wu, Q. (2013). Big data analytics in future internet of things. arXiv preprint arXiv:1311.4112.
dc.relation[Dos Santos and Gatti, 2014] Dos Santos, C. and Gatti, M. (2014). Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 69–78.
dc.relation[Espinosa-Oviedo et al., 2017] Espinosa-Oviedo, J. E., Zuluaga-Mazo, A., and Gomez-Montoya, R. A. (2017). Kernel methods for improving text search ´ engines transductive inference by using support vector machines. Tecciencia, 12(22):51–60.
dc.relation[Fatima et al., 2017] Fatima, M., Pasha, M., et al. (2017). Survey of machine learning algorithms for disease diagnostic. Journal of Intelligent Learning Systems and Applications, 9(01):1.
dc.relation[Foody, 2004] Foody, G. M. (2004). Thematic map comparison. Photogrammetric Engineering & Remote Sensing, 70(5):627–633.
dc.relation[Foody and Mathur, 2006] Foody, G. M. and Mathur, A. (2006). The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm. Remote Sensing of Environment, 103(2):179–189.
dc.relation[Graves et al., ] Graves, A., Mohamed, A., and Hinton, G. Speech recognition with deep recurrent neural networks. in 2013 ieee int. In Conf. on Acoustics, Speech And Signal Processing, pages 6645–6649.
dc.relation[Guzman et al., 2017] ´ Guzman, I. C., Oslinger, J. L., and Dar ´ ´ıo Nieto, R. (2017). Wavelet denoising of partial discharge signals and their pattern classification using artificial neural networks and support vector machines. Dyna, 84(203):240–248.
dc.relation[Hurtado et al., 2002] Hurtado, J., Henao, R., and Castellanos, G. (2002). Clasificacion de se ´ nales s ˜ ´ısmicas por medio de onditas y maquinas de sopor- ´ te vectorial. Universidad Nacional de Colombia. Colombia. Observatorio Sismológico de Quindío. Colombia. INGEOMINAS. sfsl CO ´ .
dc.relation[Jaramillo Garzon, 2013] ´ Jaramillo Garzon, J. A. (2013). Protein function ´ prediction with semi-supervised classification based on evolutionary multiobjective optimization. Departamento de Ingeniera Eléctrica, Electrónica y Computación´ .
dc.relation[Jipkate and Gohokar, 2012] Jipkate, B. R. and Gohokar, V. (2012). A comparative analysis of fuzzy c-means clustering and k means clustering algorithms. International Journal Of Computational Engineering Research, 2(3):737–739.
dc.relation[Kalchbrenner et al., 2014] Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188.
dc.relation[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105.
dc.relation[Lane et al., 2015] Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., and Kawsar, F. (2015). An early resource characterization of deep learning on wearables, smartphones and internet-of-things devices. In Proceedings of the 2015 international workshop on internet of things towards applications, pages 7–12.
dc.relation[Lawrence et al., 1997] Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE transactions on neural networks, 8(1):98–113.
dc.relation[Leal et al., 2016] Leal, J. A., Ochoa, L. H., and Garc´ıa, J. A. (2016). Identification of natural fractures using resistive image logs, fractal dimension and support vector machines. Ingenier´ıa e Investigacion´ , 36(3):125–132.
dc.relation[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.
dc.relation[Li and Yu, 2011] Li, B. and Yu, J. (2011). Research and application on the smart home based on component technologies and internet of things. Procedia Engineering, 15:2087–2092
dc.relation[Likas et al., 2003] Likas, A., Vlassis, N., and Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern recognition, 36(2):451–461.
dc.relation[Marsland, 2015] Marsland, S. (2015). Machine learning: an algorithmic perspective. CRC press.
dc.relation[Mikolov et al., 2010] Mikolov, T., Karafiat, M., Burget, L., ´ Cernock ˇ `y, J., and Khudanpur, S. (2010). Recurrent neural network based language model. In Eleventh annual conference of the international speech communication association.
dc.relation[Moeskops et al., 2016] Moeskops, P., Viergever, M. A., Mendrik, A. M., De Vries, L. S., Benders, M. J., and Iˇsgum, I. (2016). Automatic segmentation of mr brain images with a convolutional neural network. IEEE transactions on medical imaging, 35(5):1252–1261.
dc.relation[Musumeci et al., 2018] Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., and Tornatore, M. (2018). An overview on application of machine learning techniques in optical networks. IEEE Communications Surveys & Tutorials, 21(2):1383–1408.
dc.relation[Naik, 2017] Naik, N. (2017). Choice of effective messaging protocols for iot systems: Mqtt, coap, amqp and http. In 2017 IEEE international systems engineering symposium (ISSE), pages 1–7. IEEE.
dc.relation[Nguyen and Armitage, 2008] Nguyen, T. T. and Armitage, G. (2008). A survey of techniques for internet traffic classification using machine learning. IEEE communications surveys & tutorials, 10(4):56–76.
dc.relation[Pal and Mather, 2005] Pal, M. and Mather, P. (2005). Support vector machines for classification in remote sensing. International journal of remote sensing, 26(5):1007–1011.
dc.relation[Renart et al., 2019] Renart, E. G., Veith, A. D. S., Balouek-Thomert, D., De Assuncao, M. D., Lefevre, L., and Parashar, M. (2019). Distributed operator placement for iot data analytics across edge and cloud resources.
dc.relation[Sak et al., 2014] Sak, H., Senior, A., and Beaufays, F. (2014). Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128.
dc.relation[Schmidhuber, 2015] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61:85–117.
dc.relation[Sehgal and Kehtarnavaz, 2018] Sehgal, A. and Kehtarnavaz, N. (2018). A convolutional neural network smartphone app for real-time voice activity detection. IEEE Access, 6:9017–9026
dc.relation[Severyn and Moschitti, 2015] Severyn, A. and Moschitti, A. (2015). Twitter sentiment analysis with deep convolutional neural networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 959–962.
dc.relation[Shi et al., 2017] Shi, Z., Shi, M., and Li, C. (2017). The prediction of character based on recurrent neural network language model. In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), pages 613–616. IEEE.
dc.relation[Stergiou et al., 2018] Stergiou, C., Psannis, K. E., Kim, B.-G., and Gupta, B. (2018). Secure integration of iot and cloud computing. Future Generation Computer Systems, 78:964–975.
dc.relation[Stolpe, 2016] Stolpe, M. (2016). The internet of things: Opportunities and challenges for distributed data analysis. ACM SIGKDD Explorations Newsletter, 18(1):15–34.
dc.relation[Szepesvari, 2010] ´ Szepesvari, C. (2010). Algorithms for reinforcement lear- ´ ning. Synthesis lectures on artificial intelligence and machine learning, 4(1):1– 103.
dc.relation[Wagstaff et al., 2001] Wagstaff, K., Cardie, C., Rogers, S., Schrodl, S., et al. ¨ (2001). Constrained k-means clustering with background knowledge. In Icml, volume 1, pages 577–584.
dc.relation[Wilches-Cortina et al., 2017] Wilches-Cortina, J. R., Cardona-Pena, J. A., and ˜ Tello-Portillo, J. P. (2017). A voip call classifier for carrier grade based on support vector machines. Dyna, 84(202):75–83.
dc.relation[Wu et al., 2014] Wu, Q., Ding, G., Xu, Y., Feng, S., Du, Z., Wang, J., and Long, K. (2014). Cognitive internet of things: a new paradigm beyond connection. IEEE Internet of Things Journal, 1(2):129–143.
dc.relation[Yuan et al., 2019] Yuan, X., He, P., Zhu, Q., and Li, X. (2019). Adversarial examples: Attacks and defenses for deep learning. IEEE transactions on neural networks and learning systems, 30(9):2805–2824.
dc.relation[Zhang et al., 2019] Zhang, Y.-D., Dong, Z., Chen, X., Jia, W., Du, S., Muhammad, K., and Wang, S.-H. (2019). Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications, 78(3):3613–3632.
dc.relation[Zhong et al., 2021] Zhong, M., Zhou, Y., and Chen, G. (2021). Sequential model based intrusion detection system for iot servers using deep learning methods. Sensors, 21(4).
dc.relation[Zhu and Goldberg, 2009] Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning, 3(1):1–130.
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDatos
dc.subjectProceso electrónico de datos
dc.subjectSoftware
dc.subjectInternet of Things
dc.subjectMachine learning
dc.subjectFog Computing
dc.subjectdeep learning
dc.subjectAnalítica de datos
dc.titleArquitectura computacional de analítica de datos IoT para el connected home basada en deep learning
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttps://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución