Optimization of the aerobic reactor of the wastewater treatment plant of the municipality of Sesquilé, Cundinamarca, through the MUTAG BIOCHIP membrane system as a case study

dc.contributorPramparo, Laura
dc.creatorFajardo Méndez, Juan David
dc.date2023-06-26T17:04:20Z
dc.date2023-06-26T17:04:20Z
dc.date2022-11-10
dc.date.accessioned2023-09-06T17:57:37Z
dc.date.available2023-09-06T17:57:37Z
dc.identifierhttp://hdl.handle.net/10654/44733
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8693616
dc.descriptionEl objetivo del siguiente trabajo es optimizar el reactor aerobio de la planta de tratamiento de agua residual del municipio de Sesquilé, Cundinamarca (PTAR II), a través de la implementación del sistema de membranas MUTAG BIOCHIP, para obtener un beneficio técnico y económico en la operación y puesta en marcha del proceso de tratamiento.
dc.descriptionTABLA DE CONTENIDO 1. INTRODUCCIÓN ……………………………………………………………… 13 1.1. Planteamiento del problema ………………………………………………….… 16 1.2. Justificación ………………………………………………………………………18 2. OBJETIVOS ……………………………………………………………………. 20 2.1. Objetivo general ……………………………………………….…………….…...20 2.2. Objetivos específicos ………………………………………….…………….……20 3. ANTECEDENTES …………………………………………….……….……….. 21 4. ESTADO DEL ARTE ……………………………………….……………….…. 27 4.1. Marco conceptual ………………………………………………..……………….27 4.2. Marco de referencia ……………………………………………….……………. 30 4.3. Marco legal …………………………………………………….…………………36 5. METODOLOGÍA ………………………………………………………….…… 38 5.1. Desarrollo Objetivo 1 …………………………………………………………… 39 5.2. Desarrollo Objetivo 2 ………………………………………………………….…46 5.3. Desarrollo Objetivo 3 ………………………………………………………….…51 5.4. Análisis estadístico …………………………………………………………….…51 6. RESULTADOS OBTENIDOS ………………………………………………… 52 6.1. Diagnóstico PTAR Sesquilé ...................................................................................... 52 6.2 Reactor a escala in situ .............................................................................................. 58 6.2.2 Condiciones de operación del reactor …………………………………………… 60 6.2.1.1 Color ……………………………………………………………………………...63 6.2.1.2 pH ………… ……………………………………………………………………..65 6.2.1.3 Demanda química de oxígeno (DQO) ……………………………………….…..66 6.2.1.4 Nitrógeno ……… …………………………………………………………………69 6.2.1.5 Fósforo …………… ………………………………………………………………71 6.2.1.6 Demanda bioquímica de oxígeno (DBO)5 … …………………………………...73 CÁLCULO DE VELOCIDAD DE REACCIÓN Y VOLUMEN ESTIMADO …….. 79 Cálculo de velocidad de reacción reactor in situ PTAR II Sesquilé, Cundinamarca.. 79 CÁLCULO DE VELOCIDAD DE REACCIÓN REACTOR A ESCALA LABORATORIO …………………………………………………………………...….. 82 Cálculo de –Rj DBO5 – reactor a escala laboratorio ……………….………………….97 Cálculo de –Rj DQO– reactor a escala laboratorio .………………………………….103 Comparación de velocidades de reacción y concentraciones .………………………..109 7. CONCLUSIONES .………………………………………………………………….. 110 8. REFERENCIAS ......………………………………………………………………… 113
dc.descriptionThe objective of the following work is to optimize the aerobic reactor of the wastewater treatment plant of the municipality of Sesquilé, Cundinamarca (PTAR II), through the implementation of the MUTAG BIOCHIP membrane system, to obtain a technical and economic benefit in the operation and start-up of the treatment process.
dc.descriptionMaestría
dc.descriptionOptimisation du réacteur aérobie de la station d'épuration de la municipalité de Sesquilé, Cundinamarca, à travers le système de membrane MUTAG BIOCHIP comme étude de cas.
dc.formatapplicaction/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherMaestría en Ingeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherUniversidad Militar Nueva Granada
dc.relationAcodal, Y.A., Centro, S., 2014. Municipio de Sesquilé.
dc.relationAcuases, 2016. MUNICIPIO SESQUILE EPS.pdf.
dc.relationAshadullah, A.K.M., Shafiquzzaman, M., Haider, H., Alresheedi, M., Azam, M.S., Ghumman, A.R., 2021. Wastewater treatment by microalgal membrane bioreactor: Evaluating the effect of organic loading rate and hydraulic residence time. J. Environ. Manage. 278, 111548. https://doi.org/10.1016/j.jenvman.2020.111548
dc.relationBassin, J.P., Dias, I.N., Cao, S.M.S., Senra, E., Laranjeira, Y., Dezotti, M., 2016. Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: Assessing the activity of suspended and attached biomass fractions. Process Saf. Environ. Prot. 100, 131–141. https://doi.org/10.1016/j.psep.2016.01.007
dc.relationChu, L., Wang, J., 2011. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio. Chemosphere 83, 63–68. https://doi.org/10.1016/j.chemosphere.2010.12.077
dc.relationConsultoria Lambda, 2018. Convenio 1842 del 2017. Sereal Untuk 51, 51.
dc.relationDan, N.H., Le Luu, T., 2021. High organic removal of landfill leachate using a continuous flow sequencing batch biofilm reactor (CF-SBBR) with different biocarriers. Sci. Total Environ. 787, 147680. https://doi.org/10.1016/j.scitotenv.2021.147680
dc.relationEntidades, R. (ERA), 2013. EVALUACIÓN REGIONAL.
dc.relationEurostat, 2019. Sustainable development in the European Union - Monitoring report on progress towards the SDGs in an EU context, Greener Management International. https://doi.org/10.9774/gleaf.3062.2001.wi.00007
dc.relationInbegriff, C. Der, 2017. CHIP-Tuning für biologische Kläranlagen 3–6.
dc.relationJr, A.J.E., Orleans, N., 2020. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information .
dc.relationJulio Pérez Cañestro, M.E.S.-O., 2013. Universitat Autònoma de Barcelona 2013.
dc.relationLatif, M.A., Ghufran, R., Wahid, Z.A., Ahmad, A., 2011. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res. 45, 4683–4699. https://doi.org/10.1016/j.watres.2011.05.049
dc.relationLi, H., Zhang, Y., Yang, M., Kamagata, Y., 2013. Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Front. Environ. Sci. Eng. China 7, 43–48. https://doi.org/10.1007/s11783-012-0397-8
dc.relationLim, S.J., Kim, T.H., 2014. Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy 60, 189–202. https://doi.org/10.1016/j.biombioe.2013.11.011
dc.relationMazioti, A.A., Koutsokeras, L.E., Constantinides, G., Vyrides, I., 2021. Untapped potential of moving bed biofilm reactors with different biocarrier types for bilge water treatment: A laboratory‐scale study. Water (Switzerland) 13. https://doi.org/10.3390/w13131810
dc.relationMetcalf & Eddy, I., Tchobanoglous, G., Burton, F., Stensel, H.D., 2002. Wastewater Engineering: Treatment and Reuse. McGraw-Hill Education.
dc.relationMinisterio de Ambiente, 2015. Resolución 0631 de 2015.pdf. Colom.
dc.relationMuri, P., Marinšek-Logar, R., Djinović, P., Pintar, A., 2018. Influence of support materials on continuous hydrogen production in anaerobic packed-bed reactor with immobilized hydrogen producing bacteria at acidic conditions. Enzyme Microb. Technol. 111, 87–96. https://doi.org/10.1016/j.enzmictec.2017.10.008
dc.relationNewsletter, 2020. Mutag newsletter. Newsl. Co. 9126.
dc.relationNi, H., Zhou, X., Zhang, X., Xiao, X., Liu, J.F., Huan, H., Luo, Z., Wu, Z., 2018. Feasibility of using basalt fiber as biofilm Carrier to construct bio-nest for wastewater treatment. Chemosphere 212, 768–776. https://doi.org/10.1016/j.chemosphere.2018.08.136
dc.relationPiculell, M., Welander, P., Jönsson, K., Welander, T., 2016. Evaluating the effect of biofilm thickness on nitrification in moving bed biofilm reactors. Environ. Technol. (United Kingdom) 37, 732–743. https://doi.org/10.1080/09593330.2015.1080308
dc.relationRas, A., Wasserqualität, H., 2015. Hohe Wasserqualität in Rezirkulierenden. Mutag BioChip 30.
dc.relationRasool, K., Ahn, D.H., Lee, D.S., 2014. Simultaneous organic carbon and nitrogen removal in an anoxic-oxic activated sludge system under various operating conditions. Bioresour. Technol. 162, 373–378. https://doi.org/10.1016/j.biortech.2014.03.108
dc.relationShi, J., Podola, B., Melkonian, M., 2014. Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour. Technol. 154, 260–266. https://doi.org/10.1016/j.biortech.2013.11.100
dc.relationSurbtal, O., 2013. Hybrid - Wirbelbettbiologie ARA oberes Surbtal 0041, 8400.
dc.relationToro, J.G., Hernando, G.R., 2019. Pilot test for Mutag evaluation in treatment of wastewater from the hydrocarbons sector 13, 41–48.
dc.relationUNESCO, 2015. Sex-disaggregated indicators for water assessment , monitoring and reporting Sex-disaggregated indicators for water assessment , monitoring and reporting.
dc.relationUnwelttechnologies, A.M., Sl, Z.T., Biochip, M., Biochip, M., 2013. • MUTAG BIOCHIP TM para la mejora del rendimiento y / o ampliación de EDAR mediante el uso de los soportes biológicos de altísima • MUTAG BIOCHIP TM. Unwelttechnologies 18–21.
dc.relationVenkata Subhash, G., Rajvanshi, M., Raja Krishna Kumar, G., Shankar Sagaram, U., Prasad, V., Govindachary, S., Dasgupta, S., 2022. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Bioresour. Technol. 343, 126155. https://doi.org/10.1016/j.biortech.2021.126155
dc.relationZhang, M., Wang, T., Lin, X., Fan, M., Zho, Y., Li, N., Cui, X., 2021. Boron-substituted rhodamine for ratiometric monitoring dynamic of H2O2 and HOCl in vivo. Sensors Actuators, B Chem. 331. https://doi.org/10.1016/j.snb.2020.129411
dc.relationZhu, J., You, H., Li, Z., Ding, Y., Liu, F., Zhang, C., Wang, S., Gu, Y., Chen, F., Ma, B., 2020. Impacts of bio-carriers on the characteristics of soluble microbial products in a hybrid membrane bioreactor for treating mariculture wastewater. Sci. Total Environ. 737, 140287. https://doi.org/10.1016/j.scitotenv.2020.140287
dc.relationZhu, J., You, H., Li, Z., Ding, Y., Liu, F., Zhang, C., Wang, S., Gu, Y., Chen, F., Ma, B., 2020. Impacts of bio-carriers on the characteristics of soluble microbial products in a hybrid membrane bioreactor for treating mariculture wastewater. Sci. Total Environ. 737, 140287. https://doi.org/10.1016/j.scitotenv.2020.140287
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.subjectAGUAS RESIDUALES
dc.subjectTRATAMIENTO TERRESTRE DE AGUAS RESIDUALES
dc.subjectPLANTAS PARA TRATAMIENTO DE AGUA
dc.subjectmutag biochip
dc.subjectbiofilms
dc.subjectaerobic reactor
dc.subjectreaction speed
dc.subjectMBBR reactor
dc.subjectSesquile
dc.subjectmutag biochip
dc.subjectbiopeliculas
dc.subjectreactor aerobio
dc.subjectvelocidad de reaccion
dc.subjectreactor MBBR
dc.subjectSesquile
dc.titleOptimización del reactor aerobio de la planta de tratamiento de agua residual del municipio de Sesquilé, Cundinamarca, a través del sistema de membranas MUTAG BIOCHIP como caso de estudio
dc.titleOptimization of the aerobic reactor of the wastewater treatment plant of the municipality of Sesquilé, Cundinamarca, through the MUTAG BIOCHIP membrane system as a case study
dc.typeTesis/Trabajo de grado - Monografía - Maestría
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.coverageSesquilé - Cundinamarca - Colombia
dc.coverageCalle 100


Este ítem pertenece a la siguiente institución