Evaluación de la anisotropía de un suelo cohesivo reconstituido en laboratorio mediante la resistencia no drenada obtenida de ensayos no confinado
Evaluation of the anisotropy of a cohesive soil reconstructed in the laboratory by means of the undrained resistance obtained from unconfined tests
dc.contributor | Ruge Cárdenas, Juan Carlos | |
dc.creator | Pérez Bejarano, Marcela Carolina | |
dc.date | 2023-06-22T14:26:21Z | |
dc.date | 2023-06-22T14:26:21Z | |
dc.date | 2022-12-13 | |
dc.date.accessioned | 2023-09-06T17:52:52Z | |
dc.date.available | 2023-09-06T17:52:52Z | |
dc.identifier | http://hdl.handle.net/10654/44640 | |
dc.identifier | instname:Universidad Militar Nueva Granada | |
dc.identifier | reponame:Repositorio Institucional Universidad Militar Nueva Granada | |
dc.identifier | repourl:https://repository.unimilitar.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8693271 | |
dc.description | La anisotropía en cualquier condición está relacionada con la dependencia a la homogeneidad direccional que posee un sistema. En capas geológicas, esta anisotropía posee un vínculo muy estrecho con la dirección deposicional, la cual determina, en gran parte, la fábrica nativa del material tactoide. En suelos arcillosos este factor es aún más influyente, debido al carácter laminar de la microestructura de este tipo de materiales. Razón por la cual, es indispensable conocer la respuesta de suelos arcillosos, cuando se imponen trayectorias de esfuerzos en sentidos diferentes a los generados en la dirección natural de su consolidación. En términos meramente ingenieriles, los materiales anisotrópicos son aquellos que presentan diferentes propiedades mecánicas, de acuerdo con las distintas direcciones en que se realice su análisis. Por lo anterior, se pretende evaluar el comportamiento de los suelos, cuando exhiben una anisotropía inducida al ser sometidos a una carga en diferentes direcciones, con el fin de identificar las variaciones que pueden llegar a presentar en su resistencia al corte. Por lo general, los suelos arcillosos en el contexto colombiano han sido analizados ampliamente con estándares que ayudan a identificar y caracterizar su comportamiento convencional, como medio isotrópico convencional. Sin embargo, la anisotropía de estos suelos se ha estudiado muy poco, considerándolos generalmente como isotrópicos y estimando que tienen idénticas propiedades en todas sus direcciones. El presente estudio genera un aporte al nuevo conocimiento en esta temática, evaluando la variación en los parámetros de compresión inconfinada, de acuerdo con la anisotropía de los suelos cohesivos. Para tal fin se realizarán ensayos de compresión inconfinada en muestras cohesivas reconstituidas a diferentes esfuerzos de preconsolidación. La anisotropía inducida también será considerada en el momento del muestreo, el cual será realizado a diferentes inclinaciones sobre los bloques reconstituidos. Con el estudio actual, se permitirá concluir el comportamiento que tendrán los suelos arcillosos al ser sometidos a diferentes cargas en distintas direcciones a la preconsolidación, mediante los ensayos realizados de compresión inconfinada. | |
dc.description | Resumen ............................................................................................................................................ ix 1. Introducción ..................................................................................................................................... 1 1.1 Planteamiento del tema ................................................................................................................. 3 1.2 Justificación del proyecto ............................................................................................................... 5 2. Objetivos .......................................................................................................................................... 6 2.1 Objetivo general.............................................................................................................................. 6 2.2 Objetivos específicos...................................................................................................................... 6 2.2.1 Objetivos específicos .................................................................................................................. 6 3. Marco Referencial ............................................................................................................................ 6 3.1 Marco legal ..................................................................................................................................... 6 3.2 Marco conceptual ........................................................................................................................... 7 3.2.1 ¿Qué es la anisotropía? .............................................................................................................. 8 3.2.2 Influencia de la anisotropía en propiedades del suelo................................................................ 11 3.2.3 Ensayo de compresión inconfinada ........................................................................................... 15 3.3 Marco teórico ................................................................................................................................ 17 3.3.1 Anisotropía en aspectos geotécnicos ........................................................................................ 17 3.3.1.1 Trayectorias de esfuerzo ........................................................................................................ 19 3.3.1.2 Estado de esfuerzos in-situ .................................................................................................... 19 3.3.1.3 Módulo de elasticidad ............................................................................................................. 21 3.3.1.4 Cohesión ................................................................................................................................. 25 3.3.1.5 Ángulo de fricción interna ........................................................................................................ 28 3.3.2 Anisotropía en suelos no saturados .............................................................................................31 4. Materiales y Métodos .......................................................................................................................35 4.1 Caracterización de materiales ....................................................................................................... 35 4.1.1 Ensayos índice ........................................................................................................................... 36 4.2 Reconstitución de muestras .......................................................................................................... 37 4.3 Ensayos de compresión inconfinada ............................................................................................. 38 5. Resultados y discusión .................................................................................................................... 39 5.1 Ensayos para cuantificar la influencia de la anisotropía en la resistencia al corte no drenada...... 39 5.1.1 Ensayos de compresión inconfinada .......................................................................................... 39 6. Conclusiones, recomendaciones, limitaciones y prospectiva .......................................................... 47 Conclusiones ........................................................................................................................................ 47 Recomendaciones ................................................................................................................................ 48 Limitaciones .......................................................................................................................................... 49 7. Referencias ....................................................................................................................................... 50 | |
dc.description | The anisotropy in any condition is related to the dependence on the directional homogeneity that a system possesses. In geological layers, this anisotropy has a very close link with the depositional direction, which largely determines the native fabric of the tactoid material. In clay soils this factor is even more influential, due to the laminar nature of the microstructure of this type of material. For this reason, it is essential to know the response of clay soils, when stress paths are imposed in directions different from those generated in the natural direction of their consolidation. In purely engineering terms, anisotropic materials are those that have different mechanical properties, according to the different directions in which their analysis is carried out. Therefore, it is intended to evaluate the behavior of soils, when they exhibit an induced anisotropy when subjected to a load in different directions, in order to identify the variations that they may present in their shear strength. In general, clay soils in the Colombian context have been extensively analyzed with standards that help identify and characterize their conventional behavior. However, the anisotropy of these soils has been studied very little, generally considering them to be isotropic and estimating that they have identical properties in all directions. The present study generates a contribution to the new knowledge on this subject, trying to evaluate the variation in the parameters of unconfined compression, according to the anisotropy of cohesive soils. For this purpose, unconfined compression tests will be carried out on reconstituted cohesive samples at different preconsolidation stresses. The induced anisotropy will be considered at the time of sampling, which will be carried out at different inclinations on the reconstituted blocks. With the current study, it will be possible to conclude the behavior that clayey soils will have when subjected to different loads in different directions to preconsolidation, through unconfined compression tests. | |
dc.description | Maestría | |
dc.format | applicaction/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Maestría en Ingeniería Civil | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Universidad Militar Nueva Granada | |
dc.relation | [1] Mualem, Y. (1984) Anisotropy of unsaturated soils. Soil Science Society of America Journal, 48, 505–509 | |
dc.relation | [2] Dabney, S.M. & Selim, H.M. (1987) Anisotropy of a fragipan soil: vertical vs. horizontal hydraulic conductivity. Soil Sci. Soc. of America Journal, 51, 3–6. | |
dc.relation | [3] Bronswijk, J.J.B. (1990) Shrinkage geometry of a heavy clay soil at various stresses. Soil Sci. Soc. of America Journal, 54, 1500–1502. | |
dc.relation | [4] Pagliai, M., Vignozzi, N. & Pellegrini, S. (2004) Soil Structure and the effect of management practices. Soil and Tillage Res. 79, 131–143 | |
dc.relation | [5] Dörner, J. & Horn, R. (2006) Anisotropy of pore functions in structured Stagnic Luvisols in the Weichselian moraine region in N Germany. Journal of Plant Nutrition and Soil Science, 169, 213–220. | |
dc.relation | [6] Peng, X. & Horn, R. (2007) Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur. J. of Soil Sci., 58, 98–107. | |
dc.relation | [7] Peng, X. & Horn, R. (2008) Time-dependent, anisotropic pore structure and soil strength in a 10-year period after intensive tractor wheeling under conservation and conventional tillage. Journal of Plant Nutrition and Soil Science, 171, 936–944. | |
dc.relation | [8] Avila, J.D. (2019) Evaluación de la anisotropía de materiales arcillosos reconstituidos en laboratorio, mediante parámetros obtenidos del ensayo de consolidación edométrica. Master Thesis. Universidad Militar Nueva Granada, Colombia. | |
dc.relation | [9] Zhou, C. & Chen, R. (2021) Modelling the water retention behaviour of anisotropic soils, Journal of Hydrology, 599, 126361 | |
dc.relation | [10] Al-Shamrani, M. & Baig Moghal, A. (2015) Soluciones de forma cerrada para la capacidad de carga de zapatas en suelos anisotrópicos cohesivos. Revista Ingeniería de construcción, 109-125. | |
dc.relation | [11] Kaliakin, V.N. (2012) An assessment of the macroscopic quantification of anisotropy in cohesive soils. Geomechanics: Testing, Modeling, and Simulation, 370-393 | |
dc.relation | [12] Abelev, A.V. & Lade, P. (2004) Characterization of Failure in CrossAnisotropic Soils. Journal of Engineering Mechanics, 599-606. | |
dc.relation | [13] Muir Wood, D. (1991). Soil Behaviour and Critical State Soil Mechanics. New York: Cambridge University Press. | |
dc.relation | [14] Instituto Nacional de Vías – INVIAS (2013) Compresión inconfinada en muestras de suelos. INV E-152-13 (Colombia) 51 | |
dc.relation | [15] American Society for Testing and Materials - ASTM (2006) Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM D2166 (USA) | |
dc.relation | [16] Casagrande, A., & Carrillo, N. (1944). Shear failure of anisotropic materials. Massachusetts: Cambridge | |
dc.relation | [17] Duncan, J.M. & Seed, H. (1966). Anisotropy and Stress Reorientation in Clay. Journal of the Soil Mechanics and Foundations Division, 21-50. | |
dc.relation | [18] Saada, A. & Bianchini, G. (1975). Strength of One Dimensionally Consolidated Clays. Journal of the Geotechnical Engineering Division, ASCE. 101(11). | |
dc.relation | [19] Clough, G.W. & Hansen, L.A. (1981). Clay anisotropy and braced wall behavior. Journal of the Geotechnical Engineering Div., ASCE. 107(7), 893913. | |
dc.relation | [20] Anandarajah, A. & Dafalias, Y. (1986). Bounding Surface Plasticity. III: Application to Anisotropic Cohesive Soils. Journal of Engineering Mechanics, 1292-1318 | |
dc.relation | [21] Niemunis, A. & Herle, I. (1996). Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Mat., 2, 279–299. | |
dc.relation | [22] Lade, P. (2008). Failure Criterion for Cross-Anisotropic Soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE. 134(1) | |
dc.relation | [23] Mašín, D. (2014) Clay hypoplasticity model including stiffness anisotropy. Géotechnique 64(3): 232-238 | |
dc.relation | [24] Wong, K. & Mašín, D. (2014). Coupled hydro-mechanical model for partially saturated soils predicting small strain stiffness. Computers and Geotechnics. 61, 355-369. | |
dc.relation | [25] Mayne, W. (1985). Stress anisotropy effects on clay strength. Journal of Geotechnical Engineering 111. (No. 3), 356–366. | |
dc.relation | [26] Vyalov, S. (1986). Rheological Fundamentals of Soil Mechanics. Elsevier. | |
dc.relation | [27] Kamei, T. N. (1989). Undrained shear strength anisotropy of K0overconsolidated cohesive soils. Soils and Found. 29 (3), 145–151. | |
dc.relation | [28] Budiman, J. S. (1992). Constitutive behavior of stress-induced anisotropic cohesive soil. Journal of Geot. Eng., ASCE 118(9), 1348–59. | |
dc.relation | [29] Anandarajah, A., Kuganenthira, N. & Zhao, D. (1996). Variation of fabric anisotropy of kaolinite in triaxial loading. Journal of Geotechnical, 633-640 | |
dc.relation | [30] Kuganenthira, N. Z. (1996). Measurement of fabric anisotropy in triaxial shearing. Geotechnique 46 (No. 4), 657–670. 52 | |
dc.relation | [31] Hartge, K. B. (2004). In situ evaluation of the soil consolidation state by using penetration resistance data. Journal of Plant Nutr. and Soil Sci. 167, 304– 308 | |
dc.relation | [32] Bachmann, J. C. (2006). Comparison of soil strength data obtained in situ with penetrometer and with Vane shear test. Soil and Tillage Res. 87, 112– 118 | |
dc.relation | [33] Attom, M. (2008). Investigating anisotropy in shear strength of clayey soils. Proc. of the Institution of Civil Eng.: Geotechnical Eng. 161, 269–273 | |
dc.relation | [34] Sivakugan, N.C. (2009). Anisotropy studies on cuboidal shear device. Journal of Geot. Engineering, ASCE 119 (No. 6), 973–983 | |
dc.relation | [35] Rowshanzamir, M.A. & Askari, A.M. (2010). An investigation on the strength anisotropy of compacted clays. Applied Clay Science, 50(4), 520-524 | |
dc.relation | [36] Peng X. (2011). Anisotropy of Soil Physical Properties. In: Gliński J., Horabik J., Lipiec J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. | |
dc.relation | [36] Peng X. (2011). Anisotropy of Soil Physical Properties. In: Gliński J., Horabik J., Lipiec J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. | |
dc.relation | [37] Batista de Rezende, S., Franzmeier, D.P., Resende, M., Mancini, M. & Curi, N. (2022). Pedogenic processes in a chronosequence of very deeply weathered soils in southeastern Brazil, CATENA, 215, 106362, | |
dc.relation | [38] Zhu, H. & Zhang, I.M. (2013). Characterizing geotechnical anisotropic spatial variations using random field theory. Can. Geotech. J. 50: 723–734 | |
dc.relation | [40] Horn, R., Way, T., and Rostek, J., 2003. Effect of repeated tractor wheeling on stress/strain properties and consequences on physical properties in structured arable soils. Soil and Tillage Research, 73, 101–106. | |
dc.relation | [41] Pagliai, M., Vignozzi, N., and Pellegrini, S., 2004. Soil Structure and the effect of management practices. Soil and Tillage Research, 79, 131–143. | |
dc.relation | [42] Dörner, J., and Horn, R., 2006. Anisotropy of pore functions in structured Stagnic Luvisols in the Weichselian moraine region in N Germany. Journal of Plant Nutrition and Soil Science, 169, 213–220. | |
dc.relation | [43] Peng, X., and Horn, R., 2008. Time-dependent, anisotropic pore structure and soil strength in a 10-year period after intensive tractor wheeling under conservation and conventional tillage. Journal of Plant Nutrition and Soil Science, 171, 936–944. | |
dc.relation | [44] Bronswijk, J. J. B., 1990. Shrinkage geometry of a heavy clay soil at various stresses. Soil Science Society of America Journal, 54, 1500–1502. | |
dc.relation | [45] Garnier, P., Perrier, E., Jaramillo, R. A., and Baveye, P., 1997. Numerical model of 3-dimensional anisotropic deformation and 1-dimensional water flow in swelling soils. Soil Science, 162, 410–420. 53 | |
dc.relation | [46] Chertkov, V. Y., Ravina, I., and Zadoenko, V., 2004. An approach for estimating the shrinkage geometry factor at a moisture content. Soil Science Society of America Journal, 68, 1807–1817. | |
dc.relation | [47] Peng, X., and Horn, R., 2007. Anisotropic shrinkage and swelling of some organic and inorganic soils. European Journal of Soil Science, 58, 98–107. | |
dc.relation | [48] Wiermann, C., Werner, D., Horn, R., Rostek, J., and Werner, B., 2000. Stress/strain processes in a structured unsaturated silty loam Luvisol under different tillage treatments in Germany. Soil and Tillage Research, 53, 117– 128. | |
dc.relation | [49] Oda. M, Nemat-Nasser, S. y Mehrabadi M. (1982). “Statistical study of fabric in a random assembly of spherical granules”. International Journal for numerical and analytical methods in geomechanics. Vol. 6., 77-94. | |
dc.relation | [50] Biarez J. y Hicher, P. “Elementary mechanics of soil behaviour”. Balkema, Rotterdam, 1993. | |
dc.relation | [51] Camacho Tauta, Javier Fernando; Reyes Ortiz, Oscar Javier; Nieto Leal, Andrés. (2006) Anisotropía de esfuerzos y resistencia al corte de arenas. Ciencia e Ingeniería Neogranadina, vol. 16, núm. 1, agosto, 2006, pp. 5462. Universidad Militar Nueva Granada. Bogotá, Colombia | |
dc.relation | [52] Bathurst, R.J.y Rothenburg, L. (1990). “Observations on stress-force-fabric relationships in idealized granular materials”. Mechanics of Materials. 9, 6580. | |
dc.relation | [53] Ananadarajah, A., Kuganenthira N., y Zhao D. (1996). “Variation of fabric anisotropy of kaolinite in triaxial loading”. Journal of Geotechnical Engineering, ASCE, 122(8), 633-640. | |
dc.relation | [54] Love, A.E.H. (1927). A treatise on the mathematical theory: of elasticity, 4th edn. Cambridge University Press. | |
dc.relation | [55] Barden, L. (1963). Stresses and displacements in a cross-anisotropic soil. Geotechnique 13, No. 3, 198-210. | |
dc.relation | [56] Raymond, G.P. (1970). Discussion on Stresses and displacements in a cross-anisotropic soil by Barden, L. (1963). Geotechnique 20, No. 4, 456458. | |
dc.relation | [57] Hooper, J.A. (1975). Elastic settlement of a circular raft in adhesive contact with a transversely isotropic medium. Geotechnique 25, No. 2, 691-712. | |
dc.relation | [58] Lekhnitskii, S.G. (1977). Theory of elasticity of an anisorropic elastic body, 2nd edn. Moscow: MIR Publishers. | |
dc.relation | [59] Graham, J. & Houlsby, G.T. (1983). Anisotropic elasticity of a natural clay. Geothechnique 33, No. 2, 165-180. | |
dc.relation | [60] Serrato, D. (2014). Efectos de la anisotropía del suelo en el equilibrio y las deformaciones de taludes: modelación utilizando equilibrio límite y 54 elementos finitos. Tesis de Maestría. Universidad de Los Andes. Bogotá, Colombia. | |
dc.relation | [61] Khemissa, M. (2011). Characterization of the anisotropy of a normally consolidated soft clay. Studia Geotechnica et Mechanica, Vol. XXXIII. | |
dc.relation | [62] Ratananikom, W., Likitlersuang, S., & Yimisiri, S. (2013). An investigation of anisotropic elastic parameters of Bangkok Clay from vertical and horizontal cut specimens. Geomechanics and Geoengineering: An International Journal. Vol 8, 15-27. | |
dc.relation | [63] Yimsiri, Siam & Soga, Kenichi. (2011). Cross-anisotropic elastic parameters of two natural stiff clays. Geotechnique. 61. 809-814. 10.1680/geot.9. P.072. | |
dc.relation | [64] Lings, M. (2001). Drained and undrained anisotropic elastic stiffness parameters. Geotechnique 51, No. 6, 555-565. | |
dc.relation | [65] Jamshidi Chenari, R., & Mahigir, A. (2014). The Effect of Spatial Variability and Anisotropy of Soils on Bearing Capacity of Shallow Foundations. Civil Engineering Infrastructures Journal, 47(2), 199-213. doi: 10.7508/ceij.2014.02.004 | |
dc.relation | [66] Bellotti, R. & Jamiolkowski, Michele & O'Neill, D. & Lo Presti, Diego. (1996). Anisotropy of small strain stiffness in Ticino sand. Geotechnique. 46. 115131. 10.1680/geot.1996.46.1.115. | |
dc.relation | [67] Kuwano, R. (1999). The stiffness and yielding anisotropy of sand. PhD Thesis. Faculty of Engineering. University of London. | |
dc.relation | [68] Lings, M., Pennington, D., & Nash, D. (2000). Anisotropic stiffness parameters and their measurement in a stiff natural clay. Geotechnique 50, No 2, 109-125. | |
dc.relation | [69] Parry, R. (2005). Mohr circles, stress paths and geotechnics. Nueva York: Taylor & Francis. | |
dc.relation | [70] Lo, K.Y. (1965) Stability of slopes in anisotropic soils. ASCE J. SMFE, 91(SM4), pp. 85–106. | |
dc.relation | [71] De Lory, F.A. and Lai, H.W. (1971) Variation in undrained shearing strength by semiconfined tests. Can. Geotech. J., 8, 538–45 | |
dc.relation | [72] Wesley, L.D. (1975) Influence of stress-path and anisotropy on the behaviour of a soft alluvial clay. PhD dissertation, University of London | |
dc.relation | [73] Duncan, J.M. and Seed, H.B. (1966) Strength variations along failure surfaces in clay. ASCE J. SMFE, 92(SM6), 51–104. | |
dc.relation | [74] Parry, R.H.G. and Nadarajah, V. (1974b) Anisotropy in a natural soft clayey silt. Engng Geol. 8(3), 287–309 | |
dc.relation | [75] Casagrande, A., & N.Carillo. (1984). Shear failure of anisotropic materials. Journal of the Boston Society of Civil Engineers, 31. 55 | |
dc.relation | [76] Sawanda, T., Nomachi, S., & Chen, W. (1983). On limit seismic factor in nonhomogeneous, anisotropic slopes. Department of Civil Engineering Purdue University | |
dc.relation | [77] Chenari, R., & Mahigir, A. (2012). The effect of spatial variability and anisotropy of soils on bearing capacity of shallow foundations. Civil Engineering Infraestructures Journal. | |
dc.relation | [78] Yu, H. & Sloan, S (1994). Limit analysis of anisotropic soils using finite elements and linear programming. Mechanics Research Communications - MECH RES COMMUN. 21. 545-554. 10.1016/0093-6413(94)90017-5 | |
dc.relation | [79] Chen, W.F. & Sawada, T. (1983). Earthquake-Induced Slope Failure in Nonhomogeneous, Anisotropic Soils, Soils and Foundations, Volume 23, Issue 2, 1983, Pages 125-139, ISSN 0038-0806, https://doi.org/10.3208/sandf1972.23.2_125. | |
dc.relation | [80] Duncan, J., & Seed, H. (1970). Anisotropy and stress reorientation in clay. Journal of the Soil Mechanics and Foundations Division, 21-50 | |
dc.relation | [81] Arthur, J.R.F & Phillips, A.B. (1975). Homogeneous and layered sand in triaxial compression Géotechnique, 25 (2) (1975), pp. 799-815 | |
dc.relation | [82] Nishimura, S. (2005). Laboratory study on anisotropy of natural London Clay. Department of Civil and Environmental Engineering Imperial College London | |
dc.relation | [83] Agrawal, K.B. (1967). The influence of size and orientation of sample on the undrained strength of london clay. PhD Thesis, Faculty of Engineering. University of London (Imperial College of Science and Technology) | |
dc.relation | [84] Lade, P. (2007). Modeling failure in cross-anisotropic frictional materials. Elsevier. | |
dc.relation | [85] Al-Karni, A. A., & Al-Shamrani, M. A. (2000). Study of the effect of soil anisotropy on slope stability using method of slices. Elsevier, 83-103. | |
dc.relation | [86] Parry, R.H.G. & Nadarajah, V. (1973) Multistage triaxial testing of lightly overconsolidated clays. J. Test. Evaluat., 1(5), 374–81. | |
dc.relation | [87] Atkinson, J.H., Richardson, D. and Robinson, P.J. (1987) Compression and extension of K0 normally consolidated kaolin clay. ASCE J. Geotech. Engng, 113(12), 1468–82. | |
dc.relation | [88] Scheidegger, A. E. (1956), On directional permeability, Geofis. Pura Appl., 33, 111 –113. | |
dc.relation | [89] Dagan, G. (1967), A method for determining the permeability and effective porosity of unconfined anisotropic aquifers, Water Resour. Res., 3, 1059– 1071. | |
dc.relation | [90] Rice, P. A., D. J. Fontugne, R. G. Latini, and A. J. Barduhn (1970), Anisotropic permeability in porous media, Ind. Eng. Chem., 62, 23–31. 56 | |
dc.relation | [91] Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York. | |
dc.relation | [92] Dullien, F. A. L. (1979), Porous Media: Fluid Transport and Pore Structure, Elsevier, New York. | |
dc.relation | [93] Raats, P. A. C., Z. F. Zhang, A. L. Ward, and G. W. Gee (2004), The relative connectivity-tortuosity tensor for conduction of water in anisotropic unsaturated soils, Vadose Zone J., 31, 1471–1478. | |
dc.relation | [94] Stephens, D. B., and S. Heermann (1988), Dependence of anisotropy on saturation in a stratified sand, Water Resour. Res., 24, 770– 778. | |
dc.relation | [95] McCord, J. T., D. B. Stephens, and J. L. Wilson (1991), Toward validating state-dependent macroscopic anisotropy in unsaturated media: Field experiments and modeling considerations, J. Cont. Hydrol., 7, 145– 175. | |
dc.relation | [96] Ursino, N., T. Gimmi, and H. Fluhler (2001), Combined effects of heterogeneity, anisotropy and saturation on steady state flow and transport: A laboratory sand tank experiment, Water Resour. Res., 37, 201– 208. | |
dc.relation | [97] Zhang, Z. F., A. L. Ward, and G. W. Gee (2003), A tensorial connectivity tortuosity concept to describe the unsaturated hydraulic properties of anisotropic soils, Vadose Zone J., 2, 313– 321. | |
dc.relation | [98] Assouline, S. & Or, d. (2006). Anisotropy factor of saturated and unsaturated soils. Water Resources Research, Vol. 42, W12403, doi:10.1029/2006WR005001, 2006 | |
dc.relation | [99] Bear, J., C. Breaster, and P. C. Menier (1987), Effective and relative permeabilities of anisotropic porous media, Transp. Porous Media, 2, 301– 316. | |
dc.relation | [100] Ursino, N., K. Roth, T. Gimmi, & H. Fluhler (2000), Upscaling of anisotropy in unsaturated Miller-similar porous media, Water Resour. Res., 36, 421– 430. | |
dc.relation | [101] Friedman, S. P., & S. B. Jones (2001), Measurement and approximate critical path analysis of the pore-scale-induced anisotropy factor of an unsaturated porous medium, Water Resour. Res., 37, 2929– 2942. | |
dc.relation | [102] Mualem, Y. (1984), Anisotropy of unsaturated soils, Soil Sci. Soc. Am. J., 48, 505– 509. | |
dc.relation | [103] Stephens, D. B., and S. Heermann (1988), Dependence of anisotropy on saturation in a stratified sand, Water Resour. Res., 24, 770– 778. | |
dc.relation | [104] Green, T. R., and D. L. Freyberg (1995), State-dependent anisotropy: Comparison of quasi-analytical solutions with stochastic results for steady gravity drainage, Water Resour. Res., 31, 2201– 2211. 57 | |
dc.relation | [105] Yeh, T.-C. J., L. Gelhar, and A. L. Gutjhar (1985), Stochastic analysis of unsaturated flow in heterogeneous soils: 2. Statistically anisotropic media with variable a, Water Resour. Res., 21, 457–464. | |
dc.relation | [106] Indelman, P., and G. Dagan (1993), Upscaling of permeability of anisotropic heterogeneous formations: 1. The general framework, Water Resour. Res., 29, 917– 923. | |
dc.relation | [107] Russo, D. (1995), Stochastic analysis of the velocity covariance and the displacement covariance tensors in partially saturated heterogeneous anisotropic porous formations, Water Resour. Res., 31, 1647–1658. | |
dc.relation | [108] Pruess, K. (2004), A composite medium approximation for unsaturated flow in layered sediments, J. Contam. Hydrol., 70, 225– 247. | |
dc.relation | [109] Assouline, S. (2006), Modeling the relationship between soil bulk density and water retention curve, Vadose Zone J., 5, 554–563. | |
dc.relation | [110] Assouline, S. (2006), Modelin | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | Acceso abierto | |
dc.subject | ARCILLA | |
dc.subject | RESISTENCIA DE SUELOS AL ESFUERZO DE CORTE | |
dc.subject | Clays | |
dc.subject | Shear strength | |
dc.subject | Unconfined compression | |
dc.subject | Reconstituted samples | |
dc.subject | Anisotropic | |
dc.subject | Arcillas | |
dc.subject | Resistencia al corte | |
dc.subject | Compresión inconfinada | |
dc.subject | Muestras reconstituidas | |
dc.subject | Anisotropia | |
dc.title | Evaluación de la anisotropía de un suelo cohesivo reconstituido en laboratorio mediante la resistencia no drenada obtenida de ensayos no confinado | |
dc.title | Evaluation of the anisotropy of a cohesive soil reconstructed in the laboratory by means of the undrained resistance obtained from unconfined tests | |
dc.type | Tesis/Trabajo de grado - Monografía - Maestría | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.coverage | Calle 100 |