Study on how to increase the effectiveness of maritime interdiction operations to reduce the resilience of the drug trafficking logistics network

dc.contributorGarrido, Diogenes Alexander
dc.creatorPrada Saavedra, Hernán Dario
dc.date2023-05-24T17:46:27Z
dc.date2023-05-24T17:46:27Z
dc.date2022-06-24
dc.date.accessioned2023-09-06T17:51:47Z
dc.date.available2023-09-06T17:51:47Z
dc.identifierhttp://hdl.handle.net/10654/43864
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8693181
dc.descriptionEl tráfico de drogas ilegales es un negocio criminal resiliente que afecta a muchos países a pesar de los grandes esfuerzos por parte de los gobiernos para contenerlo. Dentro de estos esfuerzos, la Armada Nacional emplea las operaciones de interdicción marítima (OIM) como la principal herramienta para combatir la cadena logística del narcotráfico. En la presente investigación se propone un modelo de simulación basada en agentes (ABMS) que permite hallar la “mejor localización y configuración” de los Sistemas de Aeronaves Remotamente Pilotadas (RPAS) empleados en la lucha contra este flagelo. Para este propósito se utilizó el software NetLogo como plataforma para la simulación y Minitab con herramienta estadística para tratar los datos obtenidos en un experimento factorial completo de dos niveles. Los resultados demostraron que, primero, la localización y configuración de los RPAS influyen en la efectividad de las OIM, y segundo, la aplicación de una estrategia de ubicación por centro de gravedad favorece la mejora de los indicadores de afectación a la resiliencia de las rutas del narcotráfico. Finalmente, el modelo propuesto puede usarse como herramienta para tomar decisiones sobre la localización de bases de lanzamiento y selección de RPAS que participen en OIM.
dc.descriptionIllegal drug trafficking is a resilient criminal business that affects many countries despite great efforts by governments to contain it. Within these efforts, the National Navy uses maritime interdiction operations (MIO) as the main tool to combat the logistic chain of drug trafficking. In the present investigation, an agent-based simulation model (ABMS) is proposed that allows finding the "best location and configuration" of the Remotely Piloted Aircraft Systems (RPAS) used in the fight against this scourge. For this purpose, the NetLogo software was used as a platform for the simulation and Minitab with a statistical tool to treat the data obtained in a complete two-level factorial experiment. The results showed that, first, the location and configuration of the RPAS influence the effectiveness of the MIO, and second, the application of a location strategy by center of gravity favors the improvement of the indicators affecting the resilience of the routes of drug trafficking. Finally, the proposed model can be used as a tool to make decisions about the location of launch bases and the selection of RPAS that participate in MIO.
dc.descriptionMaestría
dc.formatapplicaction/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherMaestría en Logística Integral
dc.publisherFacultad de Ingeniería
dc.publisherUniversidad Militar Nueva Granada
dc.relationAbar, S., Theodoropoulos, G. K., Lemarinier, P., & O’Hare, G. M. (2017). Agent Based Modelling and Simulation tools: A review of the state-of-art software. Computer Science Review, 24, 13-33.
dc.relationAdami, C., Schossau, J., & Hintze, A. (2016). Evolutionary game theory using agent-based methods. Physics of life reviews, 19, 1-26.
dc.relationAnghinolfi, D. C., Paolucci, M., & Perra, F. (2013). An agent-based simulator for the evaluation of the measurement of effectiveness in the military naval tasks. 17th International Conference on System Theory, Control and Computing, 733-738.
dc.relationAronica, S., Benvegna, F., Cossentino, M., Gaglio, S., Langiu, A., Lodato, C., . . . Sangiorgi, P. (2010). An Agent-based System for Maritime Search and rescue operations. WOA.
dc.relationAtkinson, M. P., Kress, M., & Szechtman, R. (2017). Maritime transportation of illegal drugs from South America. International Journal of Drug Policy, 39, 43-51.
dc.relationBasu, G. (2013). The role of transnational smuggling operations in illicit supply chains. . Journal of Transportation Security, 315-328.
dc.relationBichler, G., Malm, A., & Cooper, T. (2017). Drug supply networks: a systematic review of the organizational structure of illicit drug trade. Crime Science, 6(1), 2.
dc.relationBohórquez, K. (7 de Marzo de 2020). La producción de cocaína equivale a un poco más de 0,3% de la economía colombiana. La República. https://www.larepublica.co/economia/la-produccion-de-cocaina-pesa-03-en-la-economia-colombiana-2974251
dc.relationBouchard, M. (2007). On the resilience of illegal drug markets. Global crime, 325-344.
dc.relationBrailsford, S., Eldabi, T., Kunc, M., Mustafee, N., & Osorio, A. F. (2019). Hybrid simulation modelling in operational research: A state-of-the-art review. European Journal of Operational Research, 721-737.
dc.relationCatanese, S., De Meo, P., & Fiumara, G. (2016). Resilience in criminal networks. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 94(2), 1.
dc.relationCentro Internacional Marítimo de Análisis Contra el Narcotráfico (CMCON). (2017). Narcotráfico Marítimo: Amenaza Compleja Dinámica y Adaptativa. Revista CNCOM, 1-108.
dc.relationChen, X., Ong, Y. S., Tan, P. S., Zhang, N., & Li, Z. (2013). Agent-based modeling and simulation for supply chain risk management-a survey of the state-of-the-art. In Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on IEEE., 1294-1299.
dc.relationCMCON. (2017). Interdicción. Eslabón de mayor impacto en la cadena de valor del narcotráfico. Revista CMCON, 1-120.
dc.relationCMCON. (2020). Catálogo de modalidades del narcotráfico marítimo. Cartagena de Indias D.T. y C.: Armada de Colombia.
dc.relationCMCON. (2021). Dinámica Regional Narcotráfico Marítimo Países 2020. Cartagena de Indias D.T. y C.: Armada de Colombia.
dc.relationComando General de las FF.MM. (2008). Directiva Permanente No 003 . Difusión y aplicación tareas y roles fuerzas militares, 1-97.
dc.relationCorte Constitucional República de Colombia. (2012). Sentencia C-239/12. https://www.corteconstitucional.gov.co/relatoria/2012/C-239-12.htm
dc.relationDabrowski, J. J., & De Villiers, J. P. (2015). Maritime Piracy Situation Modelling with Dynamic Bayesian Networks. Information fusion, 23, 116-130.
dc.relationDEA. (2021). Drug Enforcement Administration 2020 National Drug Threat Assessment. Department of Justice.
dc.relationDecraene, J., Anderson, M., & Low, M. Y. (2010). Maritime counter-piracy study using agent-based simulations. In Proceedings of the 2010 Spring Simulation Multiconference. Society for Computer Simulation International, 165.
dc.relationDecreto Ley 2324. (18 de septiembre de 1984). Por el cual se reorganiza la Dirección General Marítima y Portuaria. www.dimar.mil.co: https://www.dimar.mil.co/sites/default/files/dl2_3241984.pdf
dc.relationDiaz, J., Vallejo, G., Serrano, M., & Lievano, G. (2017). Relevancia de la interdicción marítima sobre la cadena de valor del narcotráfico, en el pacífico colombiano. Centro Internacional Marítimo de Análisis Contra el Narcotráfico CIMCOM, 88-99.
dc.relationDobias, P., Eisler, M. C., & Liu, M. J. (2016). Use of agent-based models in support of coastal surveillance planning and assessment. Defence Research and Development Canada R16, 11-84.
dc.relationDuijn, P. A., Kashirin, V., & Sloot, P. M. (2014). The relative ineffectiveness of criminal network disruption. Scientific reports, 4, 4238.
dc.relationDurán, A. E. (7 de Agosto de 2018). La ruta para hacer eficiente la lucha contra las drogas (EL TIEMPO). (P. Apoleyo Mendoza, Entrevistador)
dc.relationDuxbury, S. W., & Haynie, D. L. (2019). Criminal network security: An agent-based approach to evaluating network resilience. Criminology, 1-29.
dc.relationGarrido, A. (2017). A Mixed-method Study on the Effectiveness of a Buffering Strategy in the Relationship Between Risks and Resilience. (Doctoral dissertation, University of Warwick).
dc.relationGarrido, A., & Álvarez, L. (2019). A military food supply chain in a hostile environment: a case study. Proceedings of the 2019 Winter Simulation Conference.
dc.relationGrimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: a review and first update. Ecological modelling, 221(23), 2760-2768.
dc.relationGroff, E. R., Johnson, S. D., & Thornton, A. (2019). State of the Art in Agent-Based Modeling of Urban Crime: An Overview. Journal of Quantitative Criminology, 155-193
dc.relationGuerrero, C. J. (2017). Maritime interdiction in the war on drugs in Colombia: practices, technologies and technological innovation. Thesis for the Degree of: Doctor of Philosophy Science and Technology Studies The University of Edinburgh.
dc.relationHrstka, O., Vaňek, O., Kopřiva, Š., Zelinka, J., Faigl, J., & Pěchouček, M. (2015). Agent-based approach to illegal maritime behavior modeling. Zeszyty Naukowe Akademii Morskiej w Szczecinie.
dc.relationHuang, F. (2020). MANOVA: A Procedure Whose Time Has Passed? Gifted Child Quarterly, Vol. 64(1) 56–60.
dc.relationJakob, M., Vaněk, O., Hrstka, O., & Pěchouček, M. (2012). Agents vs. pirates: multi-agent simulation and optimization to fight maritime piracy. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1. International Foundation for Autonomous Agents and Multiagent Systems, 37-44.
dc.relationJohnson, P. G., Balke, T., & Kotthoff, L. (2014). Integrating Optimisation And Agent-Based Modelling. ECMS, 775-781.
dc.relationJomini, A. H. (2007). The Art of War. Translated by GH Mendell and WP Craighill. New York: Dover Publications.
dc.relationKaymal, T. (2016). Unmanned aircraft systems for maritime operations: choosing a good design for achieving operational effectiveness. International Conference on Unmanned Aircraft Systems, 763-768.
dc.relationKim, Y., Chen, Y. S., & Linderman, K. (2015). Supply network disruption and resilience: A network structural perspective. Journal of operations Management, 43-59
dc.relationKlügl, F. (2008). A validation methodology for agent-based simulations. Proceedings of the 2008 ACM symposium on Applied computing, 39-43
dc.relationLaw, A. M. (2005). How to build valid and credible simulation models. 2005 Winter Simulation Conference, 24-32
dc.relationLeuprecht, C., Aulthouse, A., & Walther, O. (2016). The puzzling resilience of transnational organized criminal networks. Police Practice and Research, 376-387
dc.relationLucas, G. R. (2015). Ethics and UAVs. Handbook of Unmanned Aerial Vehicles, 2865-2878
dc.relationMacal, C. M., & North, M. J. (2014). Introductory tutorial: Agent-based modeling and simulation. In Proceedings of the 2014 winter simulation conference. IEEE Press, 6-20
dc.relationMagliocca, N. R., McSweeney, K., Sesnie, S. E., Tellman, E., Devine, J. A., Nielsen, E. A., & Wrathall, D. J. (2019). Modeling cocaine traffickers and counterdrug interdiction forces as a complex adaptive system. Proceedings of the National Academy of Sciences, 7784-7792
dc.relationMarchione, E., Johnson, S. D., & Wilson, A. (2014). Modelling maritime piracy: a spatial approach. Journal of Artificial Societies and Social Simulation, 17(2), 9
dc.relationMelo, O., López, L., & Melo, S. (2020). Diseño de Experimentos Métodos y Aplicaciones, 2da edición. Bogotá: Universidad Nacional de Colombia
dc.relationMinisterio de Defensa Nacional. (31 de Enero de 2022). Viceministerio para las Políticas y Asuntos Internacionales. Información de criminalidad, resultados operacionales y delitos contra las propias tropas: https://www.mindefensa.gov.co/irj/go/km/docs/Mindefensa/Documentos/descargas/estudios_sectoriales/info_estadistica/Avance_Politica_Defensa_Seguridad.pdf
dc.relationMinisterio Defensa Nacional. (2019). Política de Defensa y Seguridad PDS - Para la Legalidad, el Emprendimiento y la Equidad. Bogotá D.C.: MDN
dc.relationMoon, Y. B. (2017). Simulation modelling for sustainability: a review of the literature. International Journal of Sustainable Engineering, 10(01), 2-19
dc.relationMualla, Y., Najjar, A., Daoud, A., Galland, S., Nicolle, C., & Shakshuki, E. (2019). Agent-based simulation of unmanned aerial vehicles in civilian applications: A systematic literature review and research directions. Future Generation Computer Systems, 344-364
dc.relationOkcu, H. (2016). Utilization of unmanned aircraft systems in maritime domain: Challenges and opportunities. International Conference on Unmanned Aircraft Systems (ICUAS), 920-925
dc.relationOliveira, J. B., Lima, R. S., & Montevechi, J. A. (2016). Perspectives and relationships in Supply Chain Simulation: A systematic literature review. Simulation Modelling Practice and Theory, 62, 166-191.
dc.relationOnggo, B. S., & Karatas, M. (2015). Agent-based model of maritime search operations: A validation using test-driven simulation modelling. 2015 Winter Simulation Conference, 254-265.
dc.relationOnggo, B. S., & Karatas, M. (2016). Test driven simulation modelling A case study using agent based maritime search operation simulation. European Journal of Operational Research, 254(2), 517-531.
dc.relationOrganización de Aviación Civil Internacional. (2015). Doc 10019, Manual sobre sistemas de aeronaves pilotadas a distancia (RPAS). Montreal: OACI.
dc.relationOsorio, L. H. (2016). Caracterización de la logística naval operativa. En S. U. Cáceres, Estrategia marítima, evolución y prospectiva (págs. 362-385). Bogotá D.C.: Escuela Superior de Guerra.
dc.relationRazi, N., Karatas, M., & Gunal, M. (2016). A combined optimization and simulation based methodology for locating search and rescue helicopters. SpringSim-ANSS, 2-9.
dc.relationSAS Institute Inc. (2016). JMP® 13 Design of Experiments Guide. Cary, NC: SAS Institute Inc
dc.relationSibley, C. (2016). Be Alert and Stay the Course: An Agent-Based Model Exploring Maritime Piracy Countermeasures. In International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation , 356-365.
dc.relationSIMCI. (2021). Monitoreo de territorios afectados por cultivos ilícitos 2020. Bogotá: Legis S. A
dc.relationSun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld, J., . . . Buchmann, C. M. (2016). Simple or complicated agent-based models? A complicated issue. Environmental Modelling & Software, 86, 56-67.
dc.relationTanguy, M., & Napoli, A. (2016). An assessment approach of maritime supply chain of energy vulnerability to piracy risk by simulation of spatial behavior. ESREL 2016 Taylor & Francis, ISBN-978
dc.relationToth, A. G., & Mitchell, O. (2018). A qualitative examination of the effects of international counter-drug interdictions. International Journal of Drug Policy, 55, 70-76
dc.relationUniversidad del Rosario, Ministerio de Justicia y del Derecho. (2021). Caracterización y estimación económica de la cadena de valor del narcotráfico en Colombia.
dc.relationUNODC. (2017). World Drug Report 2017. Vienna: United Nations publication.
dc.relationUNODC. (2018). World Drug Report 2018. Vienna: United Nations publication.
dc.relationUNODC. (2021). World Drug Report 2021. Vienna: United Nations publication.
dc.relationVaněk, O., Jakob, M., Hrstka, O., & Pěchouček, M. (2011). Using Multi-agent Simulation to Improve the Security of Maritime Transit. International Workshop on Multi-Agent Systems and Agent-Based Simulation (pp. 44-58). Berlin, Heidelberg: Springer.
dc.relationVaněk, O., Jakob, M., Hrstka, O., & Pěchouček, M. (2013). Agent based Model of Maritime Traffic in Piracy affected waters. Transportation research part C emerging technologies, 157-176.
dc.relationVaněk, O., Jakob, M., Hrstka, O., & Pěchouček, M. (2013). Agent based Model of Maritime Traffic in Piracy affected waters. Transportation research part C emerging technologies, 157-176.
dc.relationVaněk, O., Kopřiva, Š., Ondráček, J., Hrstka, O., & Pěchček, M. (2016). Modeling maritime contraband trafficking activities with the agent-based approach. In E. Shahbazian, & G. Rogova, Meeting Security Challenges Through Data Analytics and Decision Support (pp. 168-183). Amsterdam: IOS Press.
dc.relationVarol, A. E., & Gunal, M. M. (2015). Simulating prevention operations at sea against maritime piracy. Journal of the Operational Research Society, 2037-2049.
dc.relationWilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/ Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.subjectSIMULACION POR COMPUTADORES
dc.subjectVEHICULOS PILOTEADOS DE FORMA REMOTA
dc.subjectCONTROL DE DROGAS Y NARCOTICOS
dc.subjectPROGRAMAS PARA COMPUTADOR (NETLOGO)
dc.subjectAgent Based Simulation
dc.subjectMaritime Interdiction
dc.subjectDrug Trafficking Resilience
dc.subjectRemotely Piloted Aircraft Systems
dc.subjectSimulación Basada en Agentes
dc.subjectInterdicción Marítima
dc.subjectResiliencia del Narcotráfico
dc.subjectSistemas de Aeronaves Remotamente Pilotadas
dc.titleEstudio sobre cómo aumentar la efectividad de las operaciones de interdicción marítima para reducir la resiliencia de la red logística del narcotráfico
dc.titleStudy on how to increase the effectiveness of maritime interdiction operations to reduce the resilience of the drug trafficking logistics network
dc.typeTesis/Trabajo de grado - Monografía - Maestría
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.coverageCalle 100


Este ítem pertenece a la siguiente institución