Feasibility analysis methodology for isolated microgrids with a focus on the non-interconnected zone of Colombia

dc.contributorRolón Rios, Juan Eduardo
dc.creatorPeña Contreras, Jonathan
dc.date2023-05-20T20:49:14Z
dc.date2023-05-20T20:49:14Z
dc.date2022-07-15
dc.date.accessioned2023-09-06T17:46:13Z
dc.date.available2023-09-06T17:46:13Z
dc.identifierhttp://hdl.handle.net/10654/43753
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8692726
dc.descriptionEste trabajo de investigación desarrolló una metodología estructurada para la toma de decisión sobre la factibilidad de microrredes en las ZNI, partiendo del juicio de expertos se aplicó una encuesta semiestructurada de comparación pareada a diferentes especialidades: ingeniería, biología, antropología, estudios sociales y finanzas con la finalidad de formular un modelo de evaluación multicriterio basado en la metodología denominada Proceso Analítico en Red o ANP, desarrollada por el doctor Thomas Saaty; mediante la cual se construyó una arquitectura de cuatro (4) clústeres y 22 subcriterios para la evaluación comparativa de alternativas basada en una ponderación conjunta de todos los criterios y subcriterios de la red, garantizando así la objetividad en el proceso y también la integración de las influencias que pueden coexistir entre cada uno de los nodos de la red.
dc.descriptionRESUMEN XII CAPÍTULO 1: INTRODUCCIÓN 1 1.2 PLANTEAMIENTO DEL PROBLEMA 1 1.2.1 Contexto mundial 1 1.2.1.1 Ejemplos del uso de microrredes en el mundo 3 1.2.2 Contexto Colombiano 7 1.2.2.1 Sistema interconectado nacional 7 1.2.2.2 Zonas no interconectadas 7 1.2.2.3 Matriz energética colombiana 8 1.2.2.4 Casos de éxito de microrredes en Colombia 11 1.2.2.5 Definición del problema 12 1.3 JUSTIFICACIÓN 13 1.4 OBJETIVOS 14 1.4.1 Objetivo General 14 1.4.2 Objetivos Específicos 14 1.5 ALCANCE 14 1.6 PRESENTACIÓN DEL DOCUMENTO 15 2 CAPÍTULO 2: ANTECEDENTES Y ESTADO DEL ARTE 16 2.1 FACTIBILIDAD FINANCIERA 16 2.2 FACTIBILIDAD SOCIAL 17 2.3 FACTIBILIDAD TÉCNICA 18 2.4 EVALUACIÓN DE FACTIBILIDAD MULTICRITERIO 19 3 CAPÍTULO 3: MARCO DE REFERENCIA 21 3.1 MARCO TEÓRICO 21 3.1.1 Eficiencia energética PAI-PROURE 2022-2030 21 3.1.2 Estudio de Factibilidad 22 3.1.2.1 Estudio de mercado 22 3.1.2.2 Aspectos administrativos 23 3.1.2.3 Aspectos institucionales 24 3.1.2.4 Aspectos Financieros 24 3.1.2.5 Aspectos socioeconómicos 25 3.1.2.6 Aspectos técnicos 25 3.1.2.7 Aspectos ambientales 26 3.1.3 Conceptos financieros aplicados al estudio de factibilidad de proyectos 26 3.1.3.1 Costo nivelado de la energía 26 3.1.3.2 Valor presente neto 27 3.1.4 Fuentes de energía renovable 27 3.1.4.1 Energía de biomasa 28 3.1.4.2 Energía Geotérmica 29 3.1.4.3 Energía solar fotovoltaica 30 3.1.4.3.1 Irradiancia 31 3.1.4.4 Energía eólica 31 3.1.4.5 Energía micro hidráulica 33 3.1.5 Microrred 34 3.1.6 Recursos energéticos distribuidos 36 3.1.7 Análisis multicriterio 37 3.1.8 El proceso analítico Jerárquico (AHP) 39 3.1.8.1 Fundamentación matemática del AHP 40 3.1.8.2 Matriz de comparaciones pareadas 42 3.1.8.3 Consistencia 44 3.1.9 El proceso analítico en red (ANP) 48 3.2 MARCO LEGAL 52 3.2.1 Ley 1117 de 2006 52 3.2.2 Ley 1715 de 2014 52 3.2.3 Ley 2099 de 2021 53 3.2.4 CREG 038 de 2018 53 3.2.5 Ley 2036 de 2020 54 3.2.6 Decreto 517 de 2020 Ministerio de minas y energía 54 3.2.7 Decreto 574 de 2020 Ministerio de minas y energía 54 3.2.8 Decreto ministerio de minas y energía 1623 de 2015 55 3.2.9 Resolución 18-1072 de 2008 55 3.2.10 CREG 091 de 2007 55 3.2.11 Subsidios para las ZNI 56 3.2.12 Incentivos y fuentes de financiación 57 3.2.13 IPSE 58 4 CAPÍTULO 4: METODOLOGÍA DE INVESTIGACIÓN 60 4.1 DESARROLLO DE OBJETIVOS 62 4.1.1 Caracterización zona no interconectada 62 4.1.1.1 Zona Amazonia 72 4.1.1.2 Zona Orinoquia 73 4.1.1.3 Zona Pacífico 73 4.1.1.4 Zona Norte 74 4.1.1.5 Zona Insular 74 4.1.1.6 Prestación del servicio 74 4.1.2 Factibilidad proyectos de energía renovable microrredes aisladas 83 4.1.2.1 Criterios técnicos 83 4.1.2.2 Criterios sociales y ambientales 87 4.1.2.3 Criterios financieros 88 4.1.3 Planteamiento de la metodología de estudio de factibilidad 90 4.1.4 Descripción de la metodología 98 4.1.4.1 Fase cero 98 4.1.4.2 Fase uno 99 4.1.4.3 Fase dos 99 4.1.4.4 Fase tres 100 4.1.4.5 Fase cuatro 100 4.1.4.6 Fase cinco 101 4.1.4.7 Fase final 101 4.1.5 Validación de la metodología 101 4.1.5.1 Contexto del municipio 102 4.1.5.2 Aplicación de la metodología 102 4.1.5.2.1 Participación de la comunidad evaluación socio económica 102 4.1.5.2.2 Cuantificación de la demanda de energía 104 4.1.5.2.3 Análisis técnico 105 4.1.5.2.4 Análisis financiero 111 4.1.5.2.5 Evaluación ambiental 115 4.1.5.2.5.1 Uso del suelo 116 4.1.5.2.5.2 Vida silvestre 116 4.1.5.2.5.3 Residuos peligrosos 116 4.1.5.2.5.4 Uso de baterías 116 4.1.5.2.5.5 Penalización ambiental 117 5 CAPÍTULO 5: RESULTADOS 119
dc.descriptionThis research work structured methodology was developed for decision-making on the feasibility of microgrids in the ZNI, based on expert judgment, a semi-structured paired comparison survey was applied to different specialties: engineering, biology, anthropology, social studies and finance in order to formulate a multi-criteria evaluation model based on the methodology called Analytic Network Process or ANP, developed by Dr. Thomas Saaty; through which an architecture of four (4) clusters and 22 sub criteria was built for the comparative evaluation of alternatives based on a joint weighting of all the criteria and sub criteria of the network, thus guaranteeing objectivity in the process and also the integration of the influences that can coexist between each of the network nodes.
dc.descriptionMaestría
dc.formatapplicaction/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherMaestría en Gerencia de Proyectos
dc.publisherFacultad de Ingeniería
dc.publisherUniversidad Militar Nueva Granada
dc.relationAlmeshqab, F., & Ustun, T. S. (2019). Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects. Renewable and Sustainable Energy Reviews, 102(November 2018), 35–53. https://doi.org/10.1016/j.rser.2018.11.035
dc.relationAmjith, L. R., & Bavanish, B. (2022). A review on biomass and wind as renewable energy for sustainable environment. Chemosphere, 293(October 2021). https://doi.org/10.1016/j.chemosphere.2022.133579
dc.relationAntonsson, F., Lindvall, D., Lagerkvist, J., & Rempling, R. (2021). Optimal time for contractors to enter infrastructure projects. Procedia Computer Science, 196, 990–998. https://doi.org/10.1016/j.procs.2021.12.101
dc.relationAstriani, Y., & Shafiullah, G. M. (2019). ScienceDirect ScienceDirect ScienceDirect Techno-economic Evaluation of Utilizing a Small-Scale Microgrid Techno-economic Evaluation of Utilizing a Heating Small-Scale Microgrid Assessing the feasibility of using the heat temperature function for a long-term district heat demand forecast. Energy Procedia, 158, 3131–3137. https://doi.org/10.1016/j.egypro.2019.01.1013
dc.relationBáez, José. Forero, R. (2018). Energía solar fotovoltaica, una alternativa sustentable para el futuro. Universidad Santo Tomás Bogotá, Colombia, 1–14. https://repository.usta.edu.co/bitstream/handle/11634/10713/2018Baezjose.pdf?sequence=1
dc.relationBasak, I., & Saaty, T. (1993). Group decision making using the analytic hierarchy process. Mathematical and Computer Modelling, 17(4–5), 101–109. https://doi.org/10.1016/0895-7177(93)90179-3
dc.relationBasbous, T., Younes, R., Ilinca, A., & Perron, J. (2012). A new hybrid pneumatic combustion engine to improve fuel consumption of wind-Diesel power system for non-interconnected areas. Applied Energy, 96, 459–476. https://doi.org/10.1016/j.apenergy.2012.03.005
dc.relationBern, C.-. (2022). Handbook part I : Software Global Meteorological Database Version 8 Software and Data for Engineers , Planers and Education. January.
dc.relationBhuvad, S. S., & Udayraj. (2022). Investigation of annual performance of a building shaded by rooftop PV panels in different climate zones of India. Renewable Energy, 189, 1337–1357. https://doi.org/10.1016/j.renene.2022.03.004
dc.relationBillionnet, A., Costa, M. C., & Poirion, P. L. (2016). Robust optimal sizing of a hybrid energy stand-alone system. European Journal of Operational Research, 254(2), 565–575. https://doi.org/10.1016/j.ejor.2016.03.013
dc.relationBruck, M., & Sandborn, P. (2021). Pricing bundled renewable energy credits using a modi fi ed LCOE for power purchase agreements. Renewable Energy, 170, 224–235.
dc.relationBullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212(August 2017), 340–361. https://doi.org/10.1016/j.apenergy.2017.12.048
dc.relationBunker, K., Doig, S., Hawley, K., & Morris, J. (2015). Renewable Microgrids: Profiles From Islands and Remote Communities Across the Globe. Rocky Mountain Institute, 11(November), 1–32.
dc.relationCastaño-Gómez, M., & García-Rendón, J. J. (2020). Análisis de los incentivos económicos en la capacidad instalada de energía solar fotovoltaica en Colombia. Lecturas de Economía, 93, 23–64. https://doi.org/10.17533/udea.le.n93a338727
dc.relationChicco, G., Somma, M. Di, & Graditi, G. (2021). Overview of distributed energy resources in the context of local integrated energy systems. Distributed Energy Resources in Local Integrated Energy Systems: Optimal Operation and Planning, 1–29. https://doi.org/10.1016/B978-0-12-823899-8.00002-9
dc.relationClarke, W. C., Brear, M. J., & Manzie, C. (2020). Control of an isolated microgrid using hierarchical economic model predictive control. Applied Energy, 280(September), 115960. https://doi.org/10.1016/j.apenergy.2020.115960
dc.relationConsejo privado de competitividad. (2021). INFORME NACIONAL DE COMPETITIVIDAD 2021-2022 (Issue 2021).
dc.relationCordroch, L., Hilpert, S., & Wiese, F. (2022). Why renewables and energy efficiency are not enough - the relevance of sufficiency in the heating sector for limiting global warming to 1.5 °C. Technological Forecasting and Social Change, 175(February 2021). https://doi.org/10.1016/j.techfore.2021.121313
dc.relationCorrea-henao, G. J., & Rojas-zerpa, J. C. (2017). generación distribuida en zonas no interconectadas connected areas. 14, 70–87.
dc.relationCozzi, L., Gould, T., Bouckart, S., Crow, D., Kim, T.-Y., McGlade, C., Olejarnik, P., Wanner, B., & Wetzel, D. (2020). World Energy Outlook 2020. 2050(October), 213–250. https://www.oecd-ilibrary.org/energy/world-energy-outlook-2020_557a761b-en
dc.relationCuervoa, F. I., & Boterob, S. B. (2014). Application of real options in decision-making in power markets. Estudios Gerenciales, 30(133), 397–407. https://doi.org/10.1016/j.estger.2014.06.003
dc.relationde Siqueira, L. M. S., & Peng, W. (2021). Control strategy to smooth wind power output using battery energy storage system: A review. Journal of Energy Storage, 35(January), 102252. https://doi.org/10.1016/j.est.2021.102252
dc.relationDesprés, J., Mima, S., Kitous, A., Criqui, P., Hadjsaid, N., & Noirot, I. (2017). Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis. Energy Economics, 64, 638–650. https://doi.org/10.1016/j.eneco.2016.03.006
dc.relationDhar, A., Naeth, M. A., Jennings, P. D., & Gamal El-Din, M. (2020). Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Science of the Total Environment, 718, 134602. https://doi.org/10.1016/j.scitotenv.2019.134602
dc.relationDibaba, H., Demidov, I., Vanadzina, E., Honkapuro, S., & Pinomaa, A. (2022). Feasibility of rural electrification and connectivity—A methodology and case study. Applied Energy, 315(April), 119013. https://doi.org/10.1016/j.apenergy.2022.119013
dc.relationEnergy Section of the Economic and Social Commission for Western Asia Sustainable Development Policies Division. (2016). Guidebook for Project Developers for Preparing Renewable Energy Investments Business Plans. United Nations Development Account (DA) Project on Promoting Renewable Energy Investments for Climate Change Mitigation and Sustainable Development.
dc.relationEraso Checa, F., & Escobar Rosero, E. (2018). Metodología para la determinación de características del viento y evaluación del potencial de energía eólica en Túquerres-Nariño. Revista Científica, 1(31), 19–31. https://doi.org/10.14483/23448350.12304
dc.relationFathy, A., Ferahtia, S., Rezk, H., Yousri, D., Abdelkareem, M. A., & Olabi, A. G. (2022). Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid. Energy, 247, 123447. https://doi.org/10.1016/j.energy.2022.123447
dc.relationFlorez Espinosa, F. (2020). Estado de la cobertura eléctrica y las zonas no interconectadas en la región central. Matriz Energetica En La Región Central, 117. https://regioncentralrape.gov.co/matriz-energetica/
dc.relationFouquet, D. (2013). Policy instruments for renewable energy - From a European perspective. Renewable Energy, 49(11), 15–18. https://doi.org/10.1016/j.renene.2012.01.075
dc.relationFranklin, R. (n.d.). Energización rural en un contexto colombiano en Nariño : ¿ económicamente sostenible ? 1–30.
dc.relationGaona, E. E., Trujillo, C. L., & Guacaneme, J. A. (2015). Rural microgrids and its potential application in Colombia. Renewable and Sustainable Energy Reviews, 51, 125–137. https://doi.org/10.1016/j.rser.2015.04.176
dc.relationGarcía Franco, J. F. (2020). Diseño de Programas de Uso Racional y Eficiente de la Energía Eléctrica en Zonas No Interconectadas en Colombia. https://repositorio.unal.edu.co/handle/unal/78113#.X6CfvRgbPYI.mendeley
dc.relationGhorbani, N., Kasaeian, A., Toopshekan, A., Bahrami, L., & Maghami, A. (2018). Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy, 154, 581–591. https://doi.org/10.1016/j.energy.2017.12.057
dc.relationGómez-Hernández, D. F., Domenech, B., Moreira, J., Farrera, N., López-González, A., & Ferrer-Martí, L. (2019). Comparative evaluation of rural electrification project plans: A case study in Mexico. Energy Policy, 129(July 2018), 23–33. https://doi.org/10.1016/j.enpol.2019.02.004
dc.relationGómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015
dc.relationGönül, Ö., Duman, A. C., Barutçu, B., & Güler, Ö. (2022). Techno-economic analysis of PV systems with manually adjustable tilt mechanisms. Engineering Science and Technology, an International Journal, 35. https://doi.org/10.1016/j.jestch.2022.101116
dc.relationHarris, W., & Ehsani, M. (2017). Socioeconomically sustainable rural microgrid engineering design. GHTC 2017 - IEEE Global Humanitarian Technology Conference, Proceedings, 2017-Janua, 1–9. https://doi.org/10.1109/GHTC.2017.8239319
dc.relationHarsh Gupta, S. R. (2009). Geothermal Energy. 2, 1–42. papers2://publication/uuid/5773C632-2737-4B41-9C08-51A3DB9B76DA
dc.relationHumberto Rodríguez Murcia. (2016). Formulación de una Propuesta para una Acción de Mitigación Nacionalmente Apropiada (NAMA) para las Zonas No Interconectadas (ZNI) de Colombia Informe Final Consolidado Mayo de 2016. Organización Latinoamericana de Energía, 247.
dc.relationIEA. (2020). Renewables. Data Explorer. https://doi.org/10.1002/peng.20026
dc.relationIEA. (2021). Key World Energy Statistics 2021. 1–82.
dc.relationIshraque, F., Shezan, S. A., Ali, M. M., & Rashid, M. M. (2021). Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources. Applied Energy, 292(April), 116879. https://doi.org/10.1016/j.apenergy.2021.116879
dc.relationJägerhag, C., & Shende, V. (2018). Grid-connected microgrids: Evaluation of benefits and challenges for the distribution system operator. https://odr.chalmers.se/bitstream/20.500.12380/255735/1/255735.pdf
dc.relationJin, X., Shen, Y., & Zhou, Q. (2022). A systematic review of robust control strategies in DC microgrids. The Electricity Journal, 35(5), 107125. https://doi.org/10.1016/j.tej.2022.107125
dc.relationKadoić, N., Ređep, N. B., & Divjak, B. (2017). Decision making with the analytic network process. Proceedings of the 14th International Symposium on Operational Research, SOR 2017, 2017-Septe(August), 180–186. https://doi.org/10.1007/0-387-33987-6
dc.relationKallio, S., & Siroux, M. (2022). Hybrid renewable energy systems based on micro-cogeneration. Energy Reports, 8, 762–769. https://doi.org/10.1016/j.egyr.2021.11.158
dc.relationKallio, S., & Siroux, M. (2022). Hybrid renewable energy systems based on micro-cogeneration. Energy Reports, 8, 762–769. https://doi.org/10.1016/j.egyr.2021.11.158 Kamal, M., Ashraf, I., & Fernandez, E. (2022). Planning and optimization of microgrid for rural electrification with integration of renewable energy resources. Journal of Energy Storage, 52(PA), 104782. https://doi.org/10.1016/j.est.2022.104782
dc.relationKaraveli, A. B., Akinoglu, B. G., & Soytas, U. (2018). Measurement of economic feasibility of photovoltaic power plants - application to Turkey. PVCon 2018 - International Conference on Photovoltaic Science and Technologies, 1–4. https://doi.org/10.1109/PVCon.2018.8523967
dc.relationKhasawneh, H., & Illindala, M. (2015). Supercapacitor Cycle Life Equalization in a Microgrid Through Flexible Distribution of Energy and Storage Resources. IEEE Transactions on Industry Applications, 51(3), 1962–1969. https://doi.org/10.1109/TIA.2014.2369815
dc.relationKhodayar, M. E. (2017). Rural electrification and expansion planning of off-grid microgrids. Electricity Journal, 30(4), 68–74. https://doi.org/10.1016/j.tej.2017.04.004
dc.relationKirimtat, A., Tasgetiren, M. F., Brida, P., & Krejcar, O. (2022). Control of PV integrated shading devices in buildings: A review. Building and Environment, 214(November 2021), 108961.
dc.relationKitson, J., Williamson, S. J., Harper, P. W., McMahon, C. A., Rosenberg, G., Tierney, M. J., Bell, K., & Gautam, B. (2018). Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities. Energy, 160, 142–153. https://doi.org/10.1016/j.energy.2018.06.219
dc.relationKumar, P., Pal, N., & Sharma, H. (2022). Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India. Energy, 247, 123560. https://doi.org/10.1016/j.energy.2022.123560
dc.relationLarentis, D. G., Collischonn, W., Olivera, F., & Tucci, C. E. M. (2010). Gis-based procedures for hydropower potential spotting. Energy, 35(10), 4237–4243. https://doi.org/10.1016/j.energy.2010.07.014
dc.relationLeary, J., Czyrnek-Delêtre, M., Alsop, A., Eales, A., Marandin, L., Org, M., Craig, M., Ortiz, W., Casillas, C., Persson, J., Dienst, C., Brown, E., While, A., Cloke, J., & Latoufis, K. (2020). Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power. Renewable and Sustainable Energy Reviews, 133(July). https://doi.org/10.1016/j.rser.2020.110240
dc.relationLipu, M. S. H., Ansari, S., Miah, S., Hasan, K., Meraj, S. T., Faisal, M., Jamal, T., Ali, S. H. M., Hussain, A., Muttaqi, K. M., & Hannan, M. A. (2022). A review of controllers and optimizations based scheduling operation for battery energy storage system towards decarbonization in microgrid : Challenges and future directions. Journal of Cleaner Production, 360(October 2021), 132188. https://doi.org/10.1016/j.jclepro.2022.132188
dc.relationLöffler, K., Burandt, T., Hainsch, K., Oei, P. Y., Seehaus, F., & Wejda, F. (2022). Chances and barriers for Germany’s low carbon transition - Quantifying uncertainties in key influential factors. Energy, 239. https://doi.org/10.1016/j.energy.2021.121901
dc.relationLópez-González, A., Domenech, B., & Ferrer-Martí, L. (2018). Lifetime, cost and fuel efficiency in diesel projects for rural electrification in Venezuela. Energy Policy, 121(March), 152–161. https://doi.org/10.1016/j.enpol.2018.06.023
dc.relationMandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621–1646. https://doi.org/10.1016/j.rser.2015.12.338
dc.relationMazzola, S., Vergara, C., Astolfi, M., Li, V., Perez-Arriaga, I., & Macchi, E. (2017). Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids. Renewable Energy, 108, 116–125. https://doi.org/10.1016/j.renene.2017.02.040
dc.relationMcKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(83), 37–64.
dc.relationMesjasz-Lech, A. (2015). Planning of Production Resources use and Environmental Effects on the Example of a Thermal Power Plant. Procedia - Social and Behavioral Sciences, 213, 539–545. https://doi.org/10.1016/j.sbspro.2015.11.447
dc.relationMiranda, D. S., Sun, Y., Cobben, J. F. G., & Gibescu, M. (2016). Impact of energy storage on island grid dynamics: A case study of Bonaire. 2016 IEEE International Energy Conference, ENERGYCON 2016, April. https://doi.org/10.1109/ENERGYCON.2016.7513940
dc.relationMotjoadi, V., Bokoro, P. N., & Onibonoje, M. O. (2020). A review of microgrid-based approach to rural electrification in South Africa: Architecture and policy framework. Energies, 13(9), 1–23. https://doi.org/10.3390/en13092193
dc.relationNúñez Viveros, C. A., Gallego Hidalgo, G. J., & Vera, G. B. (2013). Methodological design for the evaluation of energy projects with prices uncertainty: The case of cogeneration in a firm in Cali. Estudios Gerenciales, 29(126), 58–71. https://doi.org/10.1016/S0123-5923(13)70020-2
dc.relationÑustes, W., & Rivera, S. (2017). Colombia: Territorio De Inversión En Fuentes No Convencionales De Energía Renovable Para La Generación Eléctrica. Ingeniería Investigación y Desarrollo, 17(1), 37–48. https://doi.org/10.19053/1900771x.v17.n1.2017.5954
dc.relationONU. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Asamblea General, 15900, 40. http://www.un.org/ga/search/view_doc.asp?symbol=A/70/L.1&Lang=S
dc.relationOthman, R., & Hatem, T. M. (2022). Assessment of PV technologies outdoor performance and commercial software estimation in hot and dry climates. Journal of Cleaner Production, 340(May 2020), 130819. https://doi.org/10.1016/j.jclepro.2022.130819
dc.relationQuijano, N., Pedraza, A., Velásquez, M., Jiménez Estévez, G., Cadena, Á., Becerra, J. M., & Ramírez, Á. (2019). Microrredes Aisladas En La Guajira: Diseño E Implementación. Revista de Ingeniería, 48, 54–65. https://doi.org/10.16924/revinge.48.7
dc.relationRahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161(March). https://doi.org/10.1016/j.rser.2022.112279
dc.relationRai, A., Shrivastava, A., Jana, K. C., & Jayalakshmi, N. S. (2021). Sustainable Energy , Grids and Networks Techno-economic-environmental and sociological study of a microgrid for the electrification of difficult un-electrified isolated villages. Sustainable Energy, Grids and Networks, 28, 100548. https://doi.org/10.1016/j.segan.2021.100548
dc.relationRicardo Echeverri Martínez Diego Echeverri Ibarra, J. C. O. G. C. L. M. (2018). Selección de una infraestructura de medición inteligente de energía usando una técnica de decisión multicriterio . Scientia Et Technica, 23(02), 136, 142. https://www.redalyc.org/jatsRepo/849/84958001002/html/index.html
dc.relationRodríguez-Velásquez, R., Osma-Pinto, G., & Ordóñez-Plata, G. (2017). Energy planning challenges of microgrid in remote rural regions with scattered loads. Sicel 2017, 1–8.
dc.relationRoslan, M. F., Hannan, M. A., Ker, P. J., Mannan, M., Muttaqi, K. M., & Mahlia, T. I. (2022). Microgrid control methods toward achieving sustainable energy management: A bibliometric analysis for future directions. Journal of Cleaner Production, 348(March), 131340. https://doi.org/10.1016/j.jclepro.2022.131340
dc.relationRudas, G. (2014). Desarrollo Y Aplicación Piloto De La Metodología De Evaluación De Los Cobeneficios De Acciones De Mitigación Del Cambio Climático En Colombia. Econometria Consultores.
dc.relationSaaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8
dc.relationSagastume Gutiérrez, A., Cabello Eras, J. J., Hens, L., & Vandecasteele, C. (2020). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269. https://doi.org/10.1016/j.jclepro.2020.122317
dc.relationSantos, J. (2015). Metodología de ayuda a la decisión para la electrificación rural apropiada en países en vías de desarrollo . 415.
dc.relationSaraswat, S. K., & Digalwar, A. K. (2021). Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach. Renewable Energy, 171, 58–74. https://doi.org/10.1016/j.renene.2021.02.068
dc.relationShen, L. yin, Tam, V. W. Y., Tam, L., & Ji, Y. bo. (2010). Project feasibility study: the key to successful implementation of sustainable and socially responsible construction management practice. Journal of Cleaner Production, 18(3), 254–259. https://doi.org/10.1016/j.jclepro.2009.10.014
dc.relationShezan, S. A. (2021). Feasibility analysis of an islanded hybrid wind-diesel-battery microgrid with voltage and power response for offshore Islands. Journal of Cleaner Production, 288, 125568. https://doi.org/10.1016/j.jclepro.2020.125568
dc.relationSingh, D., Gautam, A. K., & Chaudhary, R. (2022). Potential and performance estimation of free-standing and building integrated photovoltaic technologies for different climatic zones of India. Energy and Built Environment, 3(1), 40–55.
dc.relationSinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205. https://doi.org/10.1016/j.rser.2014.01.035
dc.relationSuperservicios. (2018). Diagnóstico Anual de la Prestación del Servicio de Energía Eléctrica en las Zonas no Interconectadas. In Diagnóstico De La Prestación Del Servicio De Energía Eléctrica 2017 (Issue September). https://www.superservicios.gov.co/sites/default/archivos/SSPD Publicaciones/Publicaciones/2018/Sep/diagnosticozni-superservicios-oct-2017.pdf
dc.relationTecnología, M. de ciencia y. (2014). Impactos ambientales de la producción de electricidad. Asociación de Productores de Energías Renovables, 42. http://proyectoislarenovable.iter.es/wp-content/uploads/2014/05/17_Estudio_Impactos_MA_mix_electrico_APPA.pdf
dc.relationThakar, S., Vijay, A. S., & Doolla, S. (2019). System reconfiguration in microgrids. Sustainable Energy, Grids and Networks, 17, 100191. https://doi.org/10.1016/j.segan.2019.100191
dc.relationThe Pacific Power Association. (2020). Micro Hydropower system design guidlines. 163–172. https://doi.org/10.1201/9781420031485-19
dc.relationTon, D. T., & Smith, M. A. (2012). The U.S. Department of Energy’s Microgrid Initiative. Electricity Journal, 25(8), 84–94. https://doi.org/10.1016/j.tej.2012.09.013
dc.relationTong, W. (2010). Fundamentals of wind energy. WIT Transactions on State of the Art in Science and Engineering, 44, 1755–8336. https://doi.org/10.2495/978-1-84564
dc.relationTurkenburg, W., Arent, D. J., Bertani, R., Faaij, A., Hand, M., Krewitt, W., Larson, E. D., Lund, J., Mehos, M., Merrigan, T., Mitchell, C., Moreira, J. R., Sinke, W., Sonntag-O’Brien, V., Thresher, B., van Sark, W., & Usher, E. (2012). Chapter 11 - Renewable Energy. Global Energy Assessment - Toward a Sustainable Future, 811–821.
dc.relationTutak, M., & Brodny, J. (2022). Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. Journal of Cleaner Production, 345(December 2021). https://doi.org/10.1016/j.jclepro.2022.131076
dc.relationUPME. (2016). Parte IV Anexo 1. Características del entorno eléctrico. Smart Grids Colombia Visión 2030, 22. http://www.upme.gov.co/Estudios/2016/SmartGrids2030/4_Parte4_Anexo1_Proyecto_SmartGrids.pdf
dc.relationViteri, J. P., Henao, F., Cherni, J., & Dyner, I. (2019). Optimizing the insertion of renewable energy in the off-grid regions of Colombia. Journal of Cleaner Production, 235, 535–548. https://doi.org/10.1016/j.jclepro.2019.06.327
dc.relationWang, W., Yuan, B., Sun, Q., & Wennersten, R. (2022). Application of energy storage in integrated energy systems — A solution to fluctuation and uncertainty of renewable energy. Journal of Energy Storage, 52(PA), 104812. https://doi.org/10.1016/j.est.2022.104812
dc.relationZahnd, A., & Kimber, H. M. K. (2009). Benefits from a renewable energy village electrification system. Renewable Energy, 34(2), 362–368. https://doi.org/10.1016/j.renene.2008.05.011
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.subjectESTUDIOS DE FACTIBILIDAD
dc.subjectRECURSOS ENERGETICOS RENOVABLES
dc.subjectFeasibility study methodology
dc.subjectIsolated microgrid
dc.subjectnon-interconnected zone
dc.subjectAnalytic network process
dc.subjectRenewable energy
dc.subjectMetodología de estudio de factibilidad
dc.subjectzonas no interconectadas
dc.subjectEnergía renovable
dc.subjectProceso analítico en red
dc.subjectMicrorred aislada
dc.titleMetodología de análisis de factibilidad para microrredes aisladas con enfoque en la zona no interconectada de Colombia
dc.titleFeasibility analysis methodology for isolated microgrids with a focus on the non-interconnected zone of Colombia
dc.typeTesis/Trabajo de grado - Monografía - Maestría
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.coverageCampus UMNG


Este ítem pertenece a la siguiente institución