Optimizing organizational performance through an intelligent strategy: The key role of top management

dc.contributorGuevara Garzón, Catherine Ninoska
dc.creatorVargas Flórez, Héctor Julián
dc.date2023-07-04T17:55:49Z
dc.date2023-07-04T17:55:49Z
dc.date2023-03-07
dc.date.accessioned2023-09-06T17:45:29Z
dc.date.available2023-09-06T17:45:29Z
dc.identifierhttp://hdl.handle.net/10654/44880
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8692658
dc.descriptionLa combinación de datos, análisis y conocimientos es fundamental para tomar decisiones informadas en cualquier organización. Los datos son hechos objetivos y medibles que se recopilan a través de diversas fuentes y el análisis de datos implica la interpretación y organización de estos datos para encontrar patrones, relaciones y tendencias que permitan obtener información útil. Los conocimientos se obtienen a partir del análisis y la interpretación de los datos, lo que permite la identificación de oportunidades y desafíos. La adopción de tecnologías avanzadas es clave para mejorar la eficiencia y eficacia de los procesos empresariales y la identificación de áreas de mejora y oportunidades de crecimiento. Para fomentar una cultura empresarial orientada a los datos, es necesario que las organizaciones adopten tecnologías avanzadas y herramientas de análisis de datos para tomar decisiones informadas y basadas en datos concretos, en lugar de decisiones basadas en la intuición o la experiencia previa. La implementación de estas tecnologías no solo permite una mayor eficiencia en los procesos empresariales, sino que también ayuda en la identificación de áreas de mejora y oportunidades de crecimiento. Además, la adopción de tecnologías avanzadas permite la automatización de procesos empresariales, lo que aumenta la eficiencia y reduce el error humano. Otras herramientas importantes para la estrategia inteligente son el análisis predictivo y la inteligencia artificial. Para fomentar una cultura empresarial orientada a los datos, es esencial que las organizaciones capaciten a sus empleados en el uso de estas tecnologías y promuevan una cultura que valore la toma de decisiones basadas en datos y análisis.
dc.descriptionResumen 3 Abstract 4 Objetivo general 6 Objetivos específicos 6 Gerente como ente de identificación, regulación y control. 7 1. Combinar datos, análisis y conocimientos para tomar decisiones. 9 2. Fomentar una cultura empresarial orientada a los datos. 12 3. Monitorear y medir continuamente el rendimiento empresarial. 14 4. Conclusiones 17 5. Referencias 19
dc.descriptionThe combination of data, analysis, and knowledge is crucial for making informed decisions in any organization. Data is objective and measurable facts that are collected from various sources, and data analysis involves the interpretation and organization of this data to find patterns, relationships, and trends that provide useful information. Knowledge is obtained from the analysis and interpretation of data, allowing for the identification of opportunities and challenges. The adoption of advanced technologies is key to improving the efficiency and effectiveness of business processes and identifying areas for improvement and growth. To foster a data-driven culture in business, organizations need to adopt advanced technologies and data analysis tools to make informed, data-driven decisions rather than relying on intuition or past experience. The implementation of these technologies not only allows for greater efficiency in business processes but also aids in identifying areas for improvement and growth. Additionally, the adoption of advanced technologies enables the automation of business processes, increasing efficiency and reducing human error. Other important tools for smart strategy include predictive analysis and artificial intelligence. To foster a data-driven culture in business, it is essential for organizations to train their employees in the use of these technologies and promote a culture that values data-driven decision-making and analysis.
dc.descriptionEspecialización
dc.formatapplicaction/pdf
dc.formatapplication/pdf
dc.formatapplication/octet-stream
dc.languagespa
dc.publisherEspecialización en Alta Gerencia
dc.publisherFacultad de Estudios a Distancia
dc.publisherUniversidad Militar Nueva Granada
dc.relationMcKinsey & Company. (2017). Smart strategy involves adopting advanced technologies to improve the efficiency and effectiveness of business processes and identifying areas for improvement and growth opportunities.
dc.relationDeloitte. (2019). The combination of data analytics technologies and human expertise can improve decision-making and enable the identification of new business opportunities.
dc.relationDavenport, T. H., & Harris, J. G. (2007). Competing on analytics. Harvard Business Review, 85(1), 98-107.
dc.relationGhosh, D. (2018). The importance of data analytics in today's business environment. Journal of Business Research and Management, 6(3), 47-52.
dc.relationKimball, R., Ross, M., Mundy, J., & Thornthwaite, W. (2008). The business impact of data quality. In The Data Warehouse Lifecycle Toolkit (2nd ed., pp. 321-334). Wiley.
dc.relationLi, X. (2018). An overview of artificial intelligence and its application in business. Journal of Economics, Management and Trade, 22(3), 1-8.
dc.relationMcKinsey & Company. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
dc.relationOxford Economics. (2016). The big data dividend: Reaping the rewards of the industrial revolution. Oxford Economics Ltd.
dc.relationUniversidad de Harvard. (2018). Culture matters: The power of data in organizational transformations. Harvard Business School.
dc.relationUniversidad de California. (2017). Data-driven business innovation and growth. University of California, Berkeley.
dc.relationDeloitte. (2018). Analytics in action: Transforming the heart of the business. Deloitte Consulting LLP.
dc.relationGarcía-Sánchez, E., González-Portela-García, M., & Prado-Roman, C. (2019). The relationship between continuous monitoring of business performance and customer satisfaction: Evidence from Spain. Journal of Business Research, 99, 424-433. doi: 10.1016/j.jbusres.2019.01.047.
dc.relationCavusgil, E., Uçar, A., & Tektas, A. (2018). The impact of performance measurement systems on productivity and profitability: Evidence from Turkey. Journal of Business Research, 89, 161-170. doi: 10.1016/j.jbusres.2018.03.041.
dc.relationMonteiro, J., de Araújo, C., & Diniz, E. (2020). Business performance indicators and strategic growth: An analysis of Brazilian firms. Journal of Business Research, 116, 222-230. doi: 10.1016/j.jbusres.2020.05.012.
dc.relationFavier, M., Navatte, P., & Reynaud, E. (2020). Data analysis for strategic decision-making: An example from the transport sector. Decision Support Systems, 132, 113222. doi: 10.1016/j.dss.2020.113222.
dc.relationLarrinaga-González, C., Ortiz-Bas, Á., & Armendáriz-Inigo, J. E. (2020). Key performance indicators and financial performance in SMEs: Evidence from Spain. Journal of Small Business Management, 58(2), 324-344. doi: 10.1080/00472778.2018.1531993.
dc.relationDumitru, M., & Vinerean, S. (2019). The impact of key performance indicators on organizational performance. Sustainability, 11(2), 347. doi: 10.3390/su11020347.
dc.relationChang, H. C., Park, S. Y., & Park, Y. S. (2020). The effect of using key performance indicators on decision-making process: Moderating effect of corporate culture. Journal of Business Research, 118, 168-179. doi: 10.1016/j.jbusres.2020.06.019.
dc.relationChiu, Y. C., & Wang, J. L. (2020). The role of key performance indicators in measuring organizational performance: Evidence from Taiwanese firms. Total Quality Management & Business Excellence, 31(5-6), 540-553. doi: 10.1080/14783363.2018.1509638.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.subjectINTELIGENCIA ARTIFICIAL
dc.subjectRENDIMIENTO LABORAL
dc.subjectTOMA DE DECISIONES
dc.subjectdata
dc.subjectanalysis
dc.subjectknowledge
dc.subjectorganization
dc.subjectsources
dc.subjectpatterns
dc.subjectrelationships
dc.subjecttrends
dc.subjectadvanced technologies
dc.subjectefficiency
dc.subjecteffectiveness
dc.subjectbusiness processes
dc.subjectbusiness culture
dc.subjecttools
dc.subjectinformed decisions
dc.subjectintuition
dc.subjectprior experience
dc.subjectautomation
dc.subjecthuman error
dc.subjectpredictive analysis
dc.subjectartificial intelligence
dc.subjecttraining
dc.subjectdata-driven decision making
dc.subjectdatos
dc.subjectanálisis
dc.subjectconocimientos
dc.subjectorganización
dc.subjectfuentes
dc.subjectpatrones
dc.subjectrelaciones
dc.subjecttendencias
dc.subjecttecnologías avanzadas
dc.subjecteficiencia
dc.subjecteficacia
dc.subjectprocesos empresariales
dc.subjectcultura empresarial
dc.subjectherramientas
dc.subjectdecisiones informadas
dc.subjectintuición
dc.subjectexperiencia previa
dc.subjectautomatización
dc.subjecterror humano
dc.subjectanálisis predictivo
dc.subjectinteligencia artificial
dc.subjectcapacitación
dc.subjecttoma de decisiones basadas en datos y análisis
dc.titleOptimizando el rendimiento organizacional a través de una estrategia inteligente: El papel clave de la alta gerencia
dc.titleOptimizing organizational performance through an intelligent strategy: The key role of top management
dc.typeTesis/Trabajo de grado - Monografía - Especialización
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.coverageCampus UMNG


Este ítem pertenece a la siguiente institución