Brasil | Otro
dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBertin, M. C.
dc.creatorPimentel, B. M.
dc.creatorPompeia, P. J.
dc.date2013-09-30T18:55:18Z
dc.date2014-05-20T14:10:16Z
dc.date2016-10-25T17:20:56Z
dc.date2013-09-30T18:55:18Z
dc.date2014-05-20T14:10:16Z
dc.date2016-10-25T17:20:56Z
dc.date2008-03-01
dc.date.accessioned2017-04-05T21:54:38Z
dc.date.available2017-04-05T21:54:38Z
dc.identifierAnnals of Physics. San Diego: Academic Press Inc. Elsevier B.V., v. 323, n. 3, p. 527-547, 2008.
dc.identifier0003-4916
dc.identifierhttp://hdl.handle.net/11449/24283
dc.identifierhttp://acervodigital.unesp.br/handle/11449/24283
dc.identifier10.1016/j.aop.2007.11.003
dc.identifierWOS:000254673400001
dc.identifierhttp://dx.doi.org/10.1016/j.aop.2007.11.003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/869259
dc.descriptionIn this work, we analyze systems described by Lagrangians with higher order derivatives in the context of the Hamilton-Jacobi formalism for first order actions. Two different approaches are studied here: the first one is analogous to the description of theories with higher derivatives in the hamiltonian formalism according to [D.M. Gitman, S.L. Lyakhovich, I.V. Tyutin, Soviet Phys. J. 26 (1983) 730; D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, New York, Berlin, 1990] the second treats the case where degenerate coordinate are present, in an analogy to reference [D.M. Gitman, I.V. Tyutin, Nucl. Phys. B 630 (2002) 509]. Several examples are analyzed where a comparison between both approaches is made. (C) 2007 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherAcademic Press Inc. Elsevier B.V.
dc.relationAnnals of Physics
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHamilton-Jacobi formalism
dc.subjectsingular systems
dc.subjectfirst order actions
dc.subjecthigher order derivatives
dc.titleHamilton-Jacobi approach for first order actions and theories with higher derivatives
dc.typeOtro


Este ítem pertenece a la siguiente institución