Road accidents in home workers of technological platforms and their relationship with working and operational conditions in the case of Bogotá - Colombia

dc.contributorOrozco Fontalvo, Mauricio
dc.creatorRobayo Castillo, Juan Sebastián
dc.date2023-05-30T16:50:12Z
dc.date2023-05-30T16:50:12Z
dc.date2021-12-09
dc.date.accessioned2023-09-06T17:43:46Z
dc.date.available2023-09-06T17:43:46Z
dc.identifierhttp://hdl.handle.net/10654/44058
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8692483
dc.descriptionIntroducción: Las plataformas digitales han tenido un rápido crecimiento en el mundo y en Colombia en los últimos años, y a través de estas se han creado nuevas formas de consumir bienes y servicios. En este mismo contexto, y teniendo en cuenta los problemas sociales y desempleo que se evidencian en Colombia, el trabajo de domiciliario se ha convertido en una alternativa de empleo para muchas personas, al igual que en el denominado sur global. No obstante, las tasas crecientes de accidentalidad de la población de domiciliarios han hecho que el interés en el área de estudio sea mayor, sin embargo, aún es escaza la literatura que relaciona esta problemática a este actor vial, y, más aún, su relación con los comportamientos viales y no viales. Objetivo: por lo cual el presente estudio tuvo como objetivo evaluar que comportamientos viales y no viales inciden en la accidentalidad de los domiciliarios que trabajan con aplicaciones móviles en la ciudad de Bogotá. La Metodología: Se definió un estudio de tipo cuantitativo y transversal. Así, se estableció un muestreo de carácter no probabilístico en el cual se recolectaron datos de 245 domiciliarios ubicados en la ciudad de Bogotá, Colombia. Como instrumento se utilizó un cuestionario de auto reporte, en el que se evaluaron condiciones socioeconómicas, laborales, y las escalas de Desequilibrio Esfuerzo-Recompensa (ERI) y contenido de los puestos de trabajo (JCQ por la sigla en inglés). Los análisis estadísticos se plantearon por cada uno de los objetivos específicos, así se utilizaron técnicas de clusterización, diferencia de medias – ANOVA- y Modelamiento de Ecuaciones Estructurales. Resultados: Se identificaron cuatro conglomerados en el desarrollo del perfil socioeconómico. No se determinaron diferencias esdísticamente significativas entre los domiciliarios teniendo como variable de comparación la nacionalidad, no obstante, solo en el caso de la edad se evidencio diferencia. Por último, se logró establecer el Modelo de Ecuaciones Estructurales que explica la accidentalidad a partir de los comportamientos viales y no viales. Conclusiones: Como principal conclusión se observa que el modelo desarrollado tiene cualidades estadísticas para explicar el fenómeno, sin embargo, solo la cantidad de turnos y la fatiga general se relaciona con la accidentalidad de los domiciliarios en la ciudad de Bogotá
dc.descriptionTabla de Contenido 1 Capítulo 1 Introducción ................................................................................................. 3 1.1 Planteamiento del problema 3 1.2 Justificación 6 1.3 Objetivos 8 1.3.1 Objetivo General ............................................................................................................................... 8 1.3.2 Objetivos Específicos ........................................................................................................................ 8 2 Capítulo 2 Estado del Arte ........................................................................................... 9 3 Capítulo 3 Marco Teórico ........................................................................................... 13 4 Capítulo 4 Metodología ............................................................................................... 17 4.1 Muestra 17 4.2 Instrumentos 18 4.3 Análisis estadísticos 20 4.3.1 Objetivos específicos uno: Realizar un perfil socioeconómico de los domiciliarios que trabajan mediante plataformas digitales en la cuidad de Bogotá. .................................................................................20 4.3.2 Objetivo específico dos y tres: Identificar las situaciones laborales de los domiciliarios en la ciudad de Bogotá y Formular estrategias y políticas que permiten mejorar las condiciones operacionales de los domiciliarios ...................................................................................................................................................21 4.4 Modelo 23 5 Capítulo 5 RESULTADOS .......................................................................................... 26 5.1 Análisis de clúster 26 5.2 Análisis ANOVA por nacionalidad 33 5.3 Modelo SEM 36 6 Capítulo 6 Conclusiones y Recomendaciones ............................................................ 39 7 Bibliografía ................................................................................................................... 41 8 Anexos ........................................................................................................................... 58
dc.descriptionIntroduction: Digital platforms have grown in the world and in Colombia in recent years, and have created new ways of consuming goods and services, it is thus, as the pandemic of COVID-19, has also generated a steady growth in the domiciliary sector. In this same context, and taking into account the social problems and unemployment that are evident in Colombia, home-based work has become an employment alternative for many people, as well as in the so-called global south. However, the increasing accident rates of the houseworker population have led to a growing interest in the area of study; however, there is still little literature that relates this problem to this road actor, and, even more, its relationship with road and nonroad behaviors. Objective: Therefore, the present study had the objective of evaluating which road and non-road behaviors have an impact on the accident rate of home users who work with mobile applications in the city of Bogota. Methodology: A quantitative and transversal study was defined. Thus, a nonprobabilistic sampling was established in which data were collected from 245 home workers located in the city of Bogota, Colombia. A self-report questionnaire was used as an instrument, in which socioeconomic and labor conditions were evaluated, as well as the Effort-Reward Imbalance (ERI) and Job Content (JCQ) scales. Statistical analyses were performed for each of the specific objectives, using clustering techniques, mean difference - ANOVA - and Structural Equation Modeling. Results: Four clusters were identified in the development of the socioeconomic profile. No statistically significant differences were determined among the domiciliary, taking nationality as a comparison variable; however, only in the case of age was a difference evidenced. Finally, it was possible to establish the Structural Equations Model that explains the accident rate based on road and non-road behaviors. Conclusions: As main conclusion, it is observed that the model developed has statistical qualities to explain the phenomenon, however, only the number of shifts and general fatigue are related to the accident rate of housekeepers in the city of Bogota. Key words: Digital platforms, domiciliary, road behavior, no road behavior, accidents.
dc.descriptionMaestría
dc.formatapplicaction/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherMaestría en Ingeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherUniversidad Militar Nueva Granada
dc.relation(1) Adanu, E. K., Hu, Q., Liu, J., & Jones, S. (2021). Better Rested than Sorry: Data-Driven Approach to Reducing Drowsy Driving Crashes on Interstates. Journal of Transportation Engineering, Part A: Systems, 147(10), 04021067. https://doi.org/10.1061/JTEPBS.0000569
dc.relation(2) Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28–44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008
dc.relation(3) Alonso, F., Esteban, C., Montoro, L., & Useche, S. A. (2017). Knowledge, perceived effectiveness and qualification of traffic rules, police supervision, sanctions and justice. Cogent Social Sciences, 3(1), 1393855. https://doi.org/10.1080/23311886.2017.1393855
dc.relation(4) Alonso, F., Esteban, C., Useche, S., & Colomer, N. (2018). Effect of Road Safety Education on Road Risky Behaviors of Spanish Children and Adolescents: Findings from a National Study. International Journal of Environmental Research and Public Health, 15(12), 2828. https://doi.org/10.3390/ijerph15122828
dc.relation(5) Arefnezhad, S., Eichberger, A., Fruhwirth, M., Kaufmann, C., & Moser, M. (2020). Driver Drowsiness Classification Using Data Fusion of Vehicle-based Measures and ECG Signals. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 451–456. https://doi.org/10.1109/SMC42975.2020.9282867
dc.relation(6) Basso, F., Cifuentes, A., Pezoa, R., & Varas, M. (2021). A vehicle-by-vehicle approach to assess the impact of variable message signs on driving behavior. Transportation Research Part C: Emerging Technologies, 125, 103015. https://doi.org/10.1016/j.trc.2021.103015
dc.relation(7) Bikse, V., Lusena-Ezera, I., Rivza, P., & Rivza, B. (2021). The Development of Digital Transformation and Relevant Competencies for Employees in the Context of the Impact of the COVID-19 Pandemic in Latvia. Sustainability, 13(16), 9233. https://doi.org/10.3390/su13169233
dc.relation(8) Borio, C. (2020). The Covid-19 economic crisis: dangerously unique. Business Economics, 55(4), 181–190. https://doi.org/10.1057/s11369-020-00184-2
dc.relation(9) Bucsuházy, K., Matuchová, E., Zůvala, R., Moravcová, P., Kostíková, M., & Mikulec, R. (2020). Human factors contributing to the road traffic accident occurrence. Transportation Research Procedia, 45, 555–561. https://doi.org/10.1016/j.trpro.2020.03.057
dc.relation(10) Cabrera-Arnau, C., Prieto Curiel, R., & Bishop, S. R. (2020). Uncovering the behaviour of road accidents in urban areas. Royal Society Open Science, 7(4), 191739. https://doi.org/10.1098/rsos.191739
dc.relation(11) Cai, A. W. T., Manousakis, J. E., Lo, T. Y. T., Horne, J. A., Howard, M. E., & Anderson, C. (2021). I think I’m sleepy, therefore I am – Awareness of sleepiness while driving: A systematic review. Sleep Medicine Reviews, 60, 101533. https://doi.org/10.1016/j.smrv.2021.101533
dc.relation(12) Casado-Sanz, N., Guirao, B., & Attard, M. (2020). Analysis of the Risk Factors Affecting the Severity of Traffic Accidents on Spanish Crosstown Roads: The Driver’s Perspective. Sustainability, 12(6), 2237. https://doi.org/10.3390/su12062237
dc.relation(13) Chotigo, J., & Kadono, Y. (2021). Comparative Analysis of Key Factors Encouraging Food Delivery App Adoption Before and During the COVID-19 Pandemic in Thailand. Sustainability, 13(8), 4088. https://doi.org/10.3390/su13084088
dc.relation(14) Cioca, L.-I., & Ivascu, L. (2017). Risk Indicators and Road Accident Analysis for the Period 2012–2016. Sustainability, 9(9), 1530. https://doi.org/10.3390/su9091530
dc.relation(15) Clark, A. J., Salo, P., Lange, T., Jennum, P., Virtanen, M., Pentti, J., Kivimäki, M., Vahtera, J., & Rod, N. H. (2015). Onset of impaired sleep as a predictor of change in health-related behaviours; analysing observational data as a series of non-randomized pseudo-trials. International Journal of Epidemiology, 44(3), 1027–1037. https://doi.org/10.1093/ije/dyv063
dc.relation(16) Cordelier, N., Bergeron, J., & Gagnon, J. (2021). The influence of the frequency of cannabis use and of the five impulsivity traits on risky driving behaviors among young drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 77, 312– 319. https://doi.org/10.1016/j.trf.2021.01.002
dc.relation(17) Corredera-Catalán, F., di Pietro, F., & Trujillo-Ponce, A. (2021). Post-COVID-19 SME financing constraints and the credit guarantee scheme solution in Spain. Journal of Banking Regulation, 22(3), 250–260. https://doi.org/10.1057/s41261-021-00143-7
dc.relation(18) Costa, G. (2010). Shift Work and Health: Current Problems and Preventive Actions. Safety and Health at Work, 1(2), 112–123. https://doi.org/10.5491/SHAW.2010.1.2.112
dc.relation(19) da Silva, D. W., Andrade, S. M. de, Soares, D. F. P. de P., Mathias, T. A. de F., Matsuo, T., & de Souza, R. K. T. (2012a). Factors Associated with Road Accidents among Brazilian Motorcycle Couriers. The Scientific World Journal, 2012, 1–6. https://doi.org/10.1100/2012/605480
dc.relation(20) da Silva, D. W., Andrade, S. M. de, Soares, D. F. P. de P., Mathias, T. A. de F., Matsuo, T., & de Souza, R. K. T. (2012b). Factors Associated with Road Accidents among Brazilian Motorcycle Couriers. The Scientific World Journal, 2012, 1–6. https://doi.org/10.1100/2012/605480
dc.relation(21) Das, S. (2021). A Smart Solution with Ignition Interlock Device to Prevent Drunk- Driving Accidents. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), 135–140. https://doi.org/10.1109/BigDataSecurityHPSCIDS52275.2021.00034
dc.relation(22) Davis, J., & Rohlman, D. S. (2021). Winter Weather-Related Crashes during the Commute to Work: An Opportunity for Total Worker Health®. International Journal of Environmental Research and Public Health, 18(19), 10268. https://doi.org/10.3390/ijerph181910268
dc.relation(23) de Winter, J. C. F., Dodou, D., & Stanton, N. A. (2015). A quarter of a century of the DBQ: some supplementary notes on its validity with regard to accidents. Ergonomics, 58(10), 1745–1769. https://doi.org/10.1080/00140139.2015.1030460
dc.relation(24) Dinegro, A. (2020). El mercado laboral peruano y las plataformas de delivery: ¿Qué dicen los derechos laborales? In K. Hidalgo & C. Salazar (Eds.), Precarización laboral en plataformas digitales una lectura desde América Latina. (1st ed., pp. 69–82). Friederich Eber Stifung.
dc.relation(25) Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King, M., & Hankey, J. (2016). Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proceedings of the National Academy of Sciences, 113(10), 2636–2641. https://doi.org/10.1073/pnas.1513271113
dc.relation(26) Durán-Sánchez, A., Álvarez-García, J., Río-Rama, M. de la C. del, & Maldonado-Erazo, C. P. (2016). Economía Colaborativa: Análisis De La Producción Científica En Revistas Académicas. Revista de Gestão e Secretariado, 7(3), 1–20. https://www.redalyc.org/articulo.oa?id=435649063002.
dc.relation(27) Feng, Z., Ji, N., Luo, Y., Sze, N. N., Tian, J., & Zhao, C. (2021). Exploring the influencing factors of public traffic safety awareness in China. Cognition, Technology & Work, 23(4), 731–742. https://doi.org/10.1007/s10111-020-00655-8
dc.relation(28) Ferreira, J., Galitzky, M., Montastruc, J., & Rascol, O. (2000). Sleep attacks and Parkinson’s disease treatment. The Lancet, 355(9212), 1333–1334. https://doi.org/10.1016/S0140-6736(00)02119-X
dc.relation(29) Fletcher, L., & Zelinsky, A. (2009). Driver Inattention Detection based on Eye Gaze— Road Event Correlation. The International Journal of Robotics Research, 28(6), 774– 801. https://doi.org/10.1177/0278364908099459
dc.relation(30) Galindo-Martín, M.-Á., Castaño-Martínez, M.-S., & Méndez-Picazo, M.-T. (2021). Effects of the pandemic crisis on entrepreneurship and sustainable development. Journal of Business Research, 137, 345–353. https://doi.org/10.1016/j.jbusres.2021.08.053
dc.relation(31) Gallo-García, A. C., & Castillo-Villanueva, G. M. (2018). Análisis de las condiciones de seguridad vial ligadas a temas de infraestructura en las vías rápidas de Bogotá. https://repository.ucatolica.edu.co/handle/10983/16847
dc.relation(32) García, J., A., & Javier, K. (2020). Los trabajadores de plataformas digitales en la República Dominicana: Caracterización y opciones para su protección social. CEPAL. https://repositorio.cepal.org/bitstream/handle/11362/45893/1/S2000431_es.pdf
dc.relation(33) Ge, Y., Qu, W., Jiang, C., Du, F., Sun, X., & Zhang, K. (2014a). The effect of stress and personality on dangerous driving behavior among Chinese drivers. Accident Analysis & Prevention, 73, 34–40. https://doi.org/10.1016/j.aap.2014.07.024
dc.relation(34) Ge, Y., Qu, W., Jiang, C., Du, F., Sun, X., & Zhang, K. (2014b). The effect of stress and personality on dangerous driving behavior among Chinese drivers. Accident Analysis & Prevention, 73, 34–40. https://doi.org/10.1016/j.aap.2014.07.024
dc.relation(35) Gitelman, V., Vis, M., Weijermars, W., & Hakkert, S. (2014). Development of Road Safety Performance Indicators for the European Countries. Advances in Social Sciences Research Journal, 1(4), 138–158. https://doi.org/10.14738/assrj.14.302
dc.relation(36) Gómez-Barroso, J. L., & Marbán-Flores, R. (2020). Telecommunications and economic development – The 21st century: Making the evidence stronger. Telecommunications Policy, 44(2), 101905. https://doi.org/10.1016/j.telpol.2019.101905
dc.relation(37) Gopalakrishnan, S. (2012a). A Public Health Perspective of Road Traffic Accidents. Journal of Family Medicine and Primary Care, 1(2), 144. https://doi.org/10.4103/2249- 4863.104987
dc.relation(38) Gopalakrishnan, S. (2012b). A Public Health Perspective of Road Traffic Accidents. Journal of Family Medicine and Primary Care, 1(2), 144. https://doi.org/10.4103/2249- 4863.104987
dc.relation(39) Green, W., Gao, X., Li, K., Banz, B., Wu, J., Crowley, M., Camenga, D., & Vaca, F. (2020). The Association of Sleep Hygiene and Drowsiness with Adverse Driving Events in Emergency Medicine Residents. Western Journal of Emergency Medicine, 21(6). https://doi.org/10.5811/westjem.2020.8.47357
dc.relation(40) Health, P. on R. M. and S. A. to U. D. F. F. in M. C. S. and D., Statistics, C. on N., Integration, B. on H.-S., Education, D. of B. and S. S. and, Board, T. R., & National Academies of Sciences, E. (2016). Fatigue, Hours of Service, and Highway Safety. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK384974/
dc.relation(41) Hong, J.-H., Margines, B., & Dey, A. K. (2014). A smartphone-based sensing platform to model aggressive driving behaviors. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 4047–4056. https://doi.org/10.1145/2556288.2557321
dc.relation(42) Jain, A., Koppula, H. S., Raghavan, B., Soh, S., & Saxena, A. (2015). Car that Knows Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models. 2015 IEEE International Conference on Computer Vision (ICCV), 3182–3190. https://doi.org/10.1109/ICCV.2015.364
dc.relation(43) Jameel, A. K., & Evdorides, H. (2021). Developing a safer road user behaviour index. IATSS Research, 45(1), 70–78. https://doi.org/10.1016/j.iatssr.2020.06.006
dc.relation(44) Jannat, M., Hurwitz, D. S., Monsere, C., & Funk, K. H. (2018). The role of driver’s situational awareness on right-hook bicycle-motor vehicle crashes. Safety Science, 110, 92–101. https://doi.org/10.1016/j.ssci.2018.07.025
dc.relation(45) Karasek, R., Brisson, C., Kawakami, N., Houtman, I., Bongers, P., & Amick, B. (1998). The Job Content Questionnaire (JCQ): An instrument for internationally comparative assessments of psychosocial job characteristics. Journal of Occupational Health Psychology, 3(4), 322–355. https://doi.org/10.1037/1076-8998.3.4.322
dc.relation(46) Korn, L., Weiss, Y., & Rosenbloom, T. (2017). Driving violations and health promotion behaviors among undergraduate students: Self-report of on-road behavior. Traffic Injury Prevention, 18(8), 813–819. https://doi.org/10.1080/15389588.2017.1316842
dc.relation(47) Kyriacou, E., Christofides, S., & Pattichis, C. S. (2017). Erratum to: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. In E. Kyriacou, S. Christofides, & C. S. Pattichis (Eds.), XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016 (Vol. 57, pp. E1–E14). Springer International Publishing. https://doi.org/10.1007/978-3-319-32703-7_260
dc.relation(48) Li, G., Lai, W., Sui, X., Li, X., Qu, X., Zhang, T., & Li, Y. (2020). Influence of traffic congestion on driver behavior in post-congestion driving. Accident Analysis & Prevention, 141, 105508. https://doi.org/10.1016/j.aap.2020.105508
dc.relation(49) Litwiller, B., Snyder, L. A., Taylor, W. D., & Steele, L. M. (2017). The relationship between sleep and work: A meta-analysis. Journal of Applied Psychology, 102(4), 682– 699. https://doi.org/10.1037/apl0000169
dc.relation(50) Llopis-Castelló, D., Bella, F., Camacho-Torregrosa, F. J., & García, A. (2018). New Consistency Model Based on Inertial Operating Speed Profiles for Road Safety Evaluation. Journal of Transportation Engineering, Part A: Systems, 144(4), 04018006. https://doi.org/10.1061/JTEPBS.0000126
dc.relation(51) López, E. (2020). El trabajo en las plataformas digitales de reparto en Argentina: Análisis y recomendaciones de política (1st ed.). OIT.
dc.relation(52) Lv, C., Cao, D., Zhao, Y., Auger, D. J., Sullman, M., Wang, H., Dutka, L. M., Skrypchuk, L., & Mouzakitis, A. (2018). Analysis of autopilot disengagements occurring during autonomous vehicle testing. IEEE/CAA Journal of Automatica Sinica, 5(1), 58–68. https://doi.org/10.1109/JAS.2017.7510745
dc.relation(53) Malin, F., Norros, I., & Innamaa, S. (2019). Accident risk of road and weather conditions on different road types. Accident Analysis & Prevention, 122, 181–188. https://doi.org/10.1016/j.aap.2018.10.014
dc.relation(54) Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014). Exploratory Structural Equation Modeling: An Integration of the Best Features of Exploratory and Confirmatory Factor Analysis. Annual Review of Clinical Psychology, 10(1), 85–110. https://doi.org/10.1146/annurev-clinpsy-032813-153700
dc.relation(55) Martínez-Licerio, K. A., Marroquín-Arreola, J., & Ríos-Bolívar, H. (2019). Precarización laboral y pobreza en México. Análisis económico, 34(86), 113–131. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2448- 66552019000200113&lng=es&nrm=iso&tlng=es
dc.relation(56) Masuri, M. G., Isa, K. A. M., & Tahir, M. P. M. (2012). Children, Youth and Road Environment: Road Traffic Accident. Procedia - Social and Behavioral Sciences, 38, 213–218. https://doi.org/10.1016/j.sbspro.2012.03.342
dc.relation(58) Meiring, G., & Myburgh, H. (2015). A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms. Sensors, 15(12), 30653–30682. https://doi.org/10.3390/s151229822
dc.relation(59) Minka, N. S., & Ayo, J. O. (2007). Effects of loading behaviour and road transport stress on traumatic injuries in cattle transported by road during the hot-dry season. Livestock Science, 107(1), 91–95. https://doi.org/10.1016/j.livsci.2006.10.013
dc.relation(60) Montoro, L., Useche, S., Alonso, F., & Cendales, B. (2018). Work Environment, Stress, and Driving Anger: A Structural Equation Model for Predicting Traffic Sanctions of Public Transport Drivers. International Journal of Environmental Research and Public Health, 15(3), 497. https://doi.org/10.3390/ijerph15030497
dc.relation(61) Nguyen, T. T., Pham, T. A. T., & Tram, H. T. X. (2020). Role of information and communication technologies and innovation in driving carbon emissions and economic growth in selected G-20 countries. Journal of Environmental Management, 261, 110162. https://doi.org/10.1016/j.jenvman.2020.110162
dc.relation(62) Nordentoft, M., Rod, N. H., Bonde, J. P., Bjorner, J. B., Cleal, B., Madsen, I. E. H., Magnusson Hanson, L. L., Nexo, M. A., Sterud, T., & Rugulies, R. (2020). Changes ineffort-reward imbalance at work and risk of onset of sleep disturbances in a populationbased cohort of workers in Denmark. Sleep Medicine: X, 2, 100021. https://doi.org/10.1016/j.sleepx.2020.100021
dc.relation(63) Nordfjærn, T., & Şimşekoğlu, Ö. (2014). Empathy, conformity, and cultural factors related to aberrant driving behaviour in a sample of Urban Turkish drivers. Safety Science, 68, 55–64. https://doi.org/10.1016/j.ssci.2014.02.020
dc.relation(64) Olivero, L., & Crawford-Visbal, J. L. (2018). Domicilios, aplicaciones y economía colaborativa: el caso de Rappi. Corporación universidad de la costa. https://repositorio.cuc.edu.co/handle/11323/6149
dc.relation(65) Papakostopoulos, V., & Nathanael, D. (2021). The Complex Interrelationship of Work- Related Factors Underlying Risky Driving Behavior of Food Delivery Riders in Athens, Greece. Safety and Health at Work, 12(2), 147–153. https://doi.org/10.1016/j.shaw.2020.10.006
dc.relation(66) Philip, P., & Akerstedt, T. (2006). Transport and industrial safety, how are they affected by sleepiness and sleep restriction? Sleep Medicine Reviews, 10(5), 347–356. https://doi.org/10.1016/j.smrv.2006.04.002
dc.relation(67) Qi, W., Shen, B., & Yu, Y. (2019). Assessment Model on Cyclists’ Road Behaviors in University of China: A Case of Simplified Cycling Behavior Questionnaire. 302–308. https://doi.org/10.1061/9780784482292.029
dc.relation(68) Salminen, S. (2000). Traffic accidents during work and work commuting. International Journal of Industrial Ergonomics, 26(1), 75–85. https://doi.org/10.1016/S0169- 8141(00)00003-2
dc.relation(69) Salmon, P. M., Lenné, M. G., Stanton, N. A., Jenkins, D. P., & Walker, G. H. (2010). Managing error on the open road: The contribution of human error models and methods. Safety Science, 48(10), 1225–1235. https://doi.org/10.1016/j.ssci.2010.04.004
dc.relation(70) Sarmiento Suárez, J. E., & Garcés Bautista, J. L. (2017). De la Economía Tradicional a la Economía Digital Compartida. INNOVA Research Journal, 2(10.1), 12–17. https://doi.org/10.33890/innova.v2.n10.1.2017.432
dc.relation(71) Sawyer, S. F. (2009a). Analysis of Variance: The Fundamental Concepts. Journal of Manual & Manipulative Therapy, 17(2), 27E-38E. https://doi.org/10.1179/jmt.2009.17.2.27E
dc.relation(72) Sawyer, S. F. (2009b). Analysis of Variance: The Fundamental Concepts. Journal of Manual & Manipulative Therapy, 17(2), 27E-38E. https://doi.org/10.1179/jmt.2009.17.2.27E
dc.relation(73) Shin, J., & Kim, J. K. (2018). How a Good Sleep Predicts Life Satisfaction: The Role of Zero-Sum Beliefs About Happiness. Frontiers in Psychology, 9, 1589. https://doi.org/10.3389/fpsyg.2018.01589
dc.relation(74) Siedlecka, J., & Bortkiewicz, A. (2012). [Driving simulators in risk assessment of traffic accident among drivers with obstructive sleep apnea]. Medycyna pracy, 63(2), 229–236.
dc.relation(75) Siegrist, J., Starke, D., Chandola, T., Godin, I., Marmot, M., Niedhammer, I., & Peter, R. (2004). The measurement of effort–reward imbalance at work: European comparisons. Social Science & Medicine, 58(8), 1483–1499. https://doi.org/10.1016/S0277- 9536(03)00351-4
dc.relation(76) Stanley, T. D., Doucouliagos, H., & Steel, P. (2018). Does ICT generate economic growth? A meta-regression analysis. Journal of Economic Surveys, 32(3), 705–726. https://doi.org/10.1111/joes.12211
dc.relation(77) Svatý, Z., Kocián, K., & Mičunek, T. (2019). INTEGRATION OF SAFETY ASSESSMENT IN BIM FOR TRANSPORTATION INFRASTRUCTURE. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W3, 143–148. https://doi.org/10.5194/isprs-archives-XLII-5-W3-143- 2019
dc.relation(78) Taylor, C. B., Fitzsimmons‐Craft, E. E., & Graham, A. K. (2020). Digital technology can revolutionize mental health services delivery: The COVID-19 crisis as a catalyst for change. International Journal of Eating Disorders, 53(7), 1155–1157. https://doi.org/10.1002/eat.23300
dc.relation(79) Tirado, G., Llorente-Alonso, M., & Topa, G. (2019). Desequilibrio esfuerzo-recompensa y quejas subjetivas de salud: Estudio exploratorio entre médicos en España. European Journal of Investigation in Health, Psychology and Education, 9(2), 59. https://doi.org/10.30552/ejihpe.v9i2.320
dc.relation(80) Todolí, A., Jalil, M., & Llorens, J. (2020). Riesgos Laborales Específicos del Trabajo en Plataformas Digitales (1st ed.). OSALAN-Instituto Vasco de Seguridad y Salud Laborales.
dc.relation(81) Topolšek, D., Babić, D., & Fiolić, M. (2019). The effect of road safety education on the relationship between Driver’s errors, violations and accidents: Slovenian case study.
dc.relation(82) Twisk, D., & Senserrick, T. (2021). Risky road behaviours cluster and share predictor variables with smoking and drinking, and anti-social behaviours during early adolescence. Journal of Transport & Health, 20, 101024. https://doi.org/10.1016/j.jth.2021.101024
dc.relation(83) Uhegbu, U. N., & Tight, M. R. (2021). Road User Attitudes and Their Reported Behaviours in Abuja, Nigeria. Sustainability, 13(8), 4222. https://doi.org/10.3390/su13084222
dc.relation(84) Useche, S. A., Alonso, F., & Montoro, L. (2020). Validation of the Walking Behavior Questionnaire (WBQ): A tool for measuring risky and safe walking under a behavioral perspective. Journal of Transport & Health, 18, 100899. https://doi.org/10.1016/j.jth.2020.100899
dc.relation(85) Useche, S. A., Cendales, B., Alonso, F., & Orozco-Fontalvo, M. (2020). A matter of style? Testing the moderating effect of driving styles on the relationship between job strain and work-related crashes of professional drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 72, 307–317. https://doi.org/10.1016/j.trf.2020.05.015
dc.relation(86) Useche, S. A., Esteban, C., Alonso, F., & Montoro, L. (2021). Are Latin American cycling commuters “at risk”? A comparative study on cycling patterns, behaviors, and crashes with non-commuter cyclists. Accident Analysis & Prevention, 150, 105915. https://doi.org/10.1016/j.aap.2020.105915
dc.relation(87) Useche, S. A., Gómez, V., Cendales, B., & Alonso, F. (2018). Working Conditions, Job Strain, and Traffic Safety among Three Groups of Public Transport Drivers. Safety and Health at Work, 9(4), 454–461. https://doi.org/10.1016/j.shaw.2018.01.003
dc.relation(88) Useche, S. A., Hezaveh, A. M., Llamazares, F. J., & Cherry, C. (2021). Not gendered… but different from each other? A structural equation model for explaining risky road behaviors of female and male pedestrians. Accident Analysis & Prevention, 150, 105942. https://doi.org/10.1016/j.aap.2020.105942
dc.relation(89) Useche, S. A., Montoro, L., Alonso, F., & Tortosa, F. M. (2018). Does gender really matter? A structural equation model to explain risky and positive cycling behaviors. Accident Analysis & Prevention, 118, 86–95. https://doi.org/10.1016/j.aap.2018.05.022
dc.relation(90) Useche, S., Cendales, B., & Gómez, V. (2017). Work stress, fatigue and risk behaviors at the wheel: Data to assess the association between psychosocial work factors and risky driving on Bus Rapid Transit drivers. Data in Brief, 15, 335–339. https://doi.org/10.1016/j.dib.2017.09.032
dc.relation(91) Vu, K., Hanafizadeh, P., & Bohlin, E. (2020). ICT as a driver of economic growth: A survey of the literature and directions for future research. Telecommunications Policy, 44(2), 101922. https://doi.org/10.1016/j.telpol.2020.101922
dc.relation(92) Wang, C., Wang, D., Abbas, J., Duan, K., & Mubeen, R. (2021). Global Financial Crisis, Smart Lockdown Strategies, and the COVID-19 Spillover Impacts: A Global Perspective Implications From Southeast Asia. Frontiers in Psychiatry, 12, 643783. https://doi.org/10.3389/fpsyt.2021.643783
dc.relation(93) Wang, F.-Y. (2017). Computational Social Systems in a New Period: A Fast Transition Into the Third Axial Age. IEEE Transactions on Computational Social Systems, 4(3), 52– 53. https://doi.org/10.1109/TCSS.2017.2738238
dc.relation(94) Wang, K., Zhang, W., Feng, Z., & Wang, C. (2020). Research on the classification for road traffic visibility based on the characteristics of driving behaviour – a driving simulator experiment. Journal of Intelligent and Connected Vehicles, 3(1), 30–36. https://doi.org/10.1108/JICV-10-2019-0011
dc.relation(95) Washington, S., Karlaftis, M., Mannering, F., & Anastasopoulos, P. (2020). Statistical and Econometric Methods for Transportation Data Analysis (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429244018
dc.relation(96) Way, P., Roland, J., Sartipi, M., & Osman, O. (2021). Spatio-Temporal Crash Prediction: Effects of Negative Sampling on Understanding Network-Level Crash Occurrence. Transportation Research Record: Journal of the Transportation Research Board, 2675(6), 225–234. https://doi.org/10.1177/0361198121991836
dc.relation(97) Wright, N. A., & Lee, L.-T. (2021). Alcohol-related traffic laws and drunk-driving fatal accidents. Accident Analysis & Prevention, 161, 106358. https://doi.org/10.1016/j.aap.2021.106358
dc.relation(98) Wunder, S., Kaimowitz, D., Jensen, S., & Feder, S. (2021). Coronavirus, macroeconomy, and forests: What likely impacts? Forest Policy and Economics, 131, 102536. https://doi.org/10.1016/j.forpol.2021.102536
dc.relation(99) Xing, Y., Lv, C., & Cao, D. (2020). Driver Behavior Recognition in Driver Intention Inference Systems. In Advanced Driver Intention Inference (pp. 99–134). Elsevier. https://doi.org/10.1016/B978-0-12-819113-2.00005-1
dc.relation(100) Xing, Y., Lv, C., Cao, D., Wang, H., & Zhao, Y. (2018). Driver workload estimation using a novel hybrid method of error reduction ratio causality and support vector machine. Measurement, 114, 390–397. https://doi.org/10.1016/j.measurement.2017.10.002
dc.relation(101) Yang, L., Ma, R., Zhang, H. M., Guan, W., & Jiang, S. (2018). Driving behavior recognition using EEG data from a simulated car-following experiment. Accident Analysis & Prevention, 116, 30–40. https://doi.org/10.1016/j.aap.2017.11.010
dc.relation(102) Zhang, T., Chan, A. H. S., Ba, Y., & Zhang, W. (2016). Situational driving anger, driving performance and allocation of visual attention. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 376–388. https://doi.org/10.1016/j.trf.2015.05.008
dc.relation(103) Zhao, T., Tu, W., Fang, Z., Wang, X., Huang, Z., Xiong, S., & Zheng, M. (2021). Optimizing Living Material Delivery During the COVID-19 Outbreak. IEEE Transactions on Intelligent Transportation Systems, 1–11. https://doi.org/10.1109/TITS.2021.3061076
dc.relation(104) Zuluaga, G. (2019). Los determinantes de la experiencia y calidad de servicio de los restaurantes en el canal de domicilios, mediante la aplicación Rappi. http://repository.cesa.edu.co/handle/10726/2260
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.subjectACCIDENTES DE TRANSITO
dc.subjectCONDICIONES DE LOS EMPLEADOS
dc.subjectDigital platforms
dc.subjectdomiciliary, road behavior
dc.subjectno road behavior
dc.subjectaccidents
dc.subjectPlataformas digitales
dc.subjectdomiciliarios
dc.subjectcomportamiento en la vía
dc.subjectcomportamientos no viales
dc.subjectaccidentalidad
dc.titleAccidentalidad vial en domiciliarios de plataformas tecnológicas y su relación con las condiciones laborales y operacionales caso Bogotá - Colombia
dc.titleRoad accidents in home workers of technological platforms and their relationship with working and operational conditions in the case of Bogotá - Colombia
dc.typeTesis/Trabajo de grado - Monografía - Maestría
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.coverageBogotá - Colombia
dc.coverageCalle 100


Este ítem pertenece a la siguiente institución