Accidentalidad vial en domiciliarios de plataformas tecnológicas y su relación con las condiciones laborales y operacionales caso Bogotá - Colombia
Road accidents in home workers of technological platforms and their relationship with working and operational conditions in the case of Bogotá - Colombia
dc.contributor | Orozco Fontalvo, Mauricio | |
dc.creator | Robayo Castillo, Juan Sebastián | |
dc.date | 2023-05-30T16:50:12Z | |
dc.date | 2023-05-30T16:50:12Z | |
dc.date | 2021-12-09 | |
dc.date.accessioned | 2023-09-06T17:43:46Z | |
dc.date.available | 2023-09-06T17:43:46Z | |
dc.identifier | http://hdl.handle.net/10654/44058 | |
dc.identifier | instname:Universidad Militar Nueva Granada | |
dc.identifier | reponame:Repositorio Institucional Universidad Militar Nueva Granada | |
dc.identifier | repourl:https://repository.unimilitar.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8692483 | |
dc.description | Introducción: Las plataformas digitales han tenido un rápido crecimiento en el mundo y en Colombia en los últimos años, y a través de estas se han creado nuevas formas de consumir bienes y servicios. En este mismo contexto, y teniendo en cuenta los problemas sociales y desempleo que se evidencian en Colombia, el trabajo de domiciliario se ha convertido en una alternativa de empleo para muchas personas, al igual que en el denominado sur global. No obstante, las tasas crecientes de accidentalidad de la población de domiciliarios han hecho que el interés en el área de estudio sea mayor, sin embargo, aún es escaza la literatura que relaciona esta problemática a este actor vial, y, más aún, su relación con los comportamientos viales y no viales. Objetivo: por lo cual el presente estudio tuvo como objetivo evaluar que comportamientos viales y no viales inciden en la accidentalidad de los domiciliarios que trabajan con aplicaciones móviles en la ciudad de Bogotá. La Metodología: Se definió un estudio de tipo cuantitativo y transversal. Así, se estableció un muestreo de carácter no probabilístico en el cual se recolectaron datos de 245 domiciliarios ubicados en la ciudad de Bogotá, Colombia. Como instrumento se utilizó un cuestionario de auto reporte, en el que se evaluaron condiciones socioeconómicas, laborales, y las escalas de Desequilibrio Esfuerzo-Recompensa (ERI) y contenido de los puestos de trabajo (JCQ por la sigla en inglés). Los análisis estadísticos se plantearon por cada uno de los objetivos específicos, así se utilizaron técnicas de clusterización, diferencia de medias – ANOVA- y Modelamiento de Ecuaciones Estructurales. Resultados: Se identificaron cuatro conglomerados en el desarrollo del perfil socioeconómico. No se determinaron diferencias esdísticamente significativas entre los domiciliarios teniendo como variable de comparación la nacionalidad, no obstante, solo en el caso de la edad se evidencio diferencia. Por último, se logró establecer el Modelo de Ecuaciones Estructurales que explica la accidentalidad a partir de los comportamientos viales y no viales. Conclusiones: Como principal conclusión se observa que el modelo desarrollado tiene cualidades estadísticas para explicar el fenómeno, sin embargo, solo la cantidad de turnos y la fatiga general se relaciona con la accidentalidad de los domiciliarios en la ciudad de Bogotá | |
dc.description | Tabla de Contenido 1 Capítulo 1 Introducción ................................................................................................. 3 1.1 Planteamiento del problema 3 1.2 Justificación 6 1.3 Objetivos 8 1.3.1 Objetivo General ............................................................................................................................... 8 1.3.2 Objetivos Específicos ........................................................................................................................ 8 2 Capítulo 2 Estado del Arte ........................................................................................... 9 3 Capítulo 3 Marco Teórico ........................................................................................... 13 4 Capítulo 4 Metodología ............................................................................................... 17 4.1 Muestra 17 4.2 Instrumentos 18 4.3 Análisis estadísticos 20 4.3.1 Objetivos específicos uno: Realizar un perfil socioeconómico de los domiciliarios que trabajan mediante plataformas digitales en la cuidad de Bogotá. .................................................................................20 4.3.2 Objetivo específico dos y tres: Identificar las situaciones laborales de los domiciliarios en la ciudad de Bogotá y Formular estrategias y políticas que permiten mejorar las condiciones operacionales de los domiciliarios ...................................................................................................................................................21 4.4 Modelo 23 5 Capítulo 5 RESULTADOS .......................................................................................... 26 5.1 Análisis de clúster 26 5.2 Análisis ANOVA por nacionalidad 33 5.3 Modelo SEM 36 6 Capítulo 6 Conclusiones y Recomendaciones ............................................................ 39 7 Bibliografía ................................................................................................................... 41 8 Anexos ........................................................................................................................... 58 | |
dc.description | Introduction: Digital platforms have grown in the world and in Colombia in recent years, and have created new ways of consuming goods and services, it is thus, as the pandemic of COVID-19, has also generated a steady growth in the domiciliary sector. In this same context, and taking into account the social problems and unemployment that are evident in Colombia, home-based work has become an employment alternative for many people, as well as in the so-called global south. However, the increasing accident rates of the houseworker population have led to a growing interest in the area of study; however, there is still little literature that relates this problem to this road actor, and, even more, its relationship with road and nonroad behaviors. Objective: Therefore, the present study had the objective of evaluating which road and non-road behaviors have an impact on the accident rate of home users who work with mobile applications in the city of Bogota. Methodology: A quantitative and transversal study was defined. Thus, a nonprobabilistic sampling was established in which data were collected from 245 home workers located in the city of Bogota, Colombia. A self-report questionnaire was used as an instrument, in which socioeconomic and labor conditions were evaluated, as well as the Effort-Reward Imbalance (ERI) and Job Content (JCQ) scales. Statistical analyses were performed for each of the specific objectives, using clustering techniques, mean difference - ANOVA - and Structural Equation Modeling. Results: Four clusters were identified in the development of the socioeconomic profile. No statistically significant differences were determined among the domiciliary, taking nationality as a comparison variable; however, only in the case of age was a difference evidenced. Finally, it was possible to establish the Structural Equations Model that explains the accident rate based on road and non-road behaviors. Conclusions: As main conclusion, it is observed that the model developed has statistical qualities to explain the phenomenon, however, only the number of shifts and general fatigue are related to the accident rate of housekeepers in the city of Bogota. Key words: Digital platforms, domiciliary, road behavior, no road behavior, accidents. | |
dc.description | Maestría | |
dc.format | applicaction/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Maestría en Ingeniería Civil | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Universidad Militar Nueva Granada | |
dc.relation | (1) Adanu, E. K., Hu, Q., Liu, J., & Jones, S. (2021). Better Rested than Sorry: Data-Driven Approach to Reducing Drowsy Driving Crashes on Interstates. Journal of Transportation Engineering, Part A: Systems, 147(10), 04021067. https://doi.org/10.1061/JTEPBS.0000569 | |
dc.relation | (2) Alalwan, A. A. (2020). Mobile food ordering apps: An empirical study of the factors affecting customer e-satisfaction and continued intention to reuse. International Journal of Information Management, 50, 28–44. https://doi.org/10.1016/j.ijinfomgt.2019.04.008 | |
dc.relation | (3) Alonso, F., Esteban, C., Montoro, L., & Useche, S. A. (2017). Knowledge, perceived effectiveness and qualification of traffic rules, police supervision, sanctions and justice. Cogent Social Sciences, 3(1), 1393855. https://doi.org/10.1080/23311886.2017.1393855 | |
dc.relation | (4) Alonso, F., Esteban, C., Useche, S., & Colomer, N. (2018). Effect of Road Safety Education on Road Risky Behaviors of Spanish Children and Adolescents: Findings from a National Study. International Journal of Environmental Research and Public Health, 15(12), 2828. https://doi.org/10.3390/ijerph15122828 | |
dc.relation | (5) Arefnezhad, S., Eichberger, A., Fruhwirth, M., Kaufmann, C., & Moser, M. (2020). Driver Drowsiness Classification Using Data Fusion of Vehicle-based Measures and ECG Signals. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 451–456. https://doi.org/10.1109/SMC42975.2020.9282867 | |
dc.relation | (6) Basso, F., Cifuentes, A., Pezoa, R., & Varas, M. (2021). A vehicle-by-vehicle approach to assess the impact of variable message signs on driving behavior. Transportation Research Part C: Emerging Technologies, 125, 103015. https://doi.org/10.1016/j.trc.2021.103015 | |
dc.relation | (7) Bikse, V., Lusena-Ezera, I., Rivza, P., & Rivza, B. (2021). The Development of Digital Transformation and Relevant Competencies for Employees in the Context of the Impact of the COVID-19 Pandemic in Latvia. Sustainability, 13(16), 9233. https://doi.org/10.3390/su13169233 | |
dc.relation | (8) Borio, C. (2020). The Covid-19 economic crisis: dangerously unique. Business Economics, 55(4), 181–190. https://doi.org/10.1057/s11369-020-00184-2 | |
dc.relation | (9) Bucsuházy, K., Matuchová, E., Zůvala, R., Moravcová, P., Kostíková, M., & Mikulec, R. (2020). Human factors contributing to the road traffic accident occurrence. Transportation Research Procedia, 45, 555–561. https://doi.org/10.1016/j.trpro.2020.03.057 | |
dc.relation | (10) Cabrera-Arnau, C., Prieto Curiel, R., & Bishop, S. R. (2020). Uncovering the behaviour of road accidents in urban areas. Royal Society Open Science, 7(4), 191739. https://doi.org/10.1098/rsos.191739 | |
dc.relation | (11) Cai, A. W. T., Manousakis, J. E., Lo, T. Y. T., Horne, J. A., Howard, M. E., & Anderson, C. (2021). I think I’m sleepy, therefore I am – Awareness of sleepiness while driving: A systematic review. Sleep Medicine Reviews, 60, 101533. https://doi.org/10.1016/j.smrv.2021.101533 | |
dc.relation | (12) Casado-Sanz, N., Guirao, B., & Attard, M. (2020). Analysis of the Risk Factors Affecting the Severity of Traffic Accidents on Spanish Crosstown Roads: The Driver’s Perspective. Sustainability, 12(6), 2237. https://doi.org/10.3390/su12062237 | |
dc.relation | (13) Chotigo, J., & Kadono, Y. (2021). Comparative Analysis of Key Factors Encouraging Food Delivery App Adoption Before and During the COVID-19 Pandemic in Thailand. Sustainability, 13(8), 4088. https://doi.org/10.3390/su13084088 | |
dc.relation | (14) Cioca, L.-I., & Ivascu, L. (2017). Risk Indicators and Road Accident Analysis for the Period 2012–2016. Sustainability, 9(9), 1530. https://doi.org/10.3390/su9091530 | |
dc.relation | (15) Clark, A. J., Salo, P., Lange, T., Jennum, P., Virtanen, M., Pentti, J., Kivimäki, M., Vahtera, J., & Rod, N. H. (2015). Onset of impaired sleep as a predictor of change in health-related behaviours; analysing observational data as a series of non-randomized pseudo-trials. International Journal of Epidemiology, 44(3), 1027–1037. https://doi.org/10.1093/ije/dyv063 | |
dc.relation | (16) Cordelier, N., Bergeron, J., & Gagnon, J. (2021). The influence of the frequency of cannabis use and of the five impulsivity traits on risky driving behaviors among young drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 77, 312– 319. https://doi.org/10.1016/j.trf.2021.01.002 | |
dc.relation | (17) Corredera-Catalán, F., di Pietro, F., & Trujillo-Ponce, A. (2021). Post-COVID-19 SME financing constraints and the credit guarantee scheme solution in Spain. Journal of Banking Regulation, 22(3), 250–260. https://doi.org/10.1057/s41261-021-00143-7 | |
dc.relation | (18) Costa, G. (2010). Shift Work and Health: Current Problems and Preventive Actions. Safety and Health at Work, 1(2), 112–123. https://doi.org/10.5491/SHAW.2010.1.2.112 | |
dc.relation | (19) da Silva, D. W., Andrade, S. M. de, Soares, D. F. P. de P., Mathias, T. A. de F., Matsuo, T., & de Souza, R. K. T. (2012a). Factors Associated with Road Accidents among Brazilian Motorcycle Couriers. The Scientific World Journal, 2012, 1–6. https://doi.org/10.1100/2012/605480 | |
dc.relation | (20) da Silva, D. W., Andrade, S. M. de, Soares, D. F. P. de P., Mathias, T. A. de F., Matsuo, T., & de Souza, R. K. T. (2012b). Factors Associated with Road Accidents among Brazilian Motorcycle Couriers. The Scientific World Journal, 2012, 1–6. https://doi.org/10.1100/2012/605480 | |
dc.relation | (21) Das, S. (2021). A Smart Solution with Ignition Interlock Device to Prevent Drunk- Driving Accidents. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), 135–140. https://doi.org/10.1109/BigDataSecurityHPSCIDS52275.2021.00034 | |
dc.relation | (22) Davis, J., & Rohlman, D. S. (2021). Winter Weather-Related Crashes during the Commute to Work: An Opportunity for Total Worker Health®. International Journal of Environmental Research and Public Health, 18(19), 10268. https://doi.org/10.3390/ijerph181910268 | |
dc.relation | (23) de Winter, J. C. F., Dodou, D., & Stanton, N. A. (2015). A quarter of a century of the DBQ: some supplementary notes on its validity with regard to accidents. Ergonomics, 58(10), 1745–1769. https://doi.org/10.1080/00140139.2015.1030460 | |
dc.relation | (24) Dinegro, A. (2020). El mercado laboral peruano y las plataformas de delivery: ¿Qué dicen los derechos laborales? In K. Hidalgo & C. Salazar (Eds.), Precarización laboral en plataformas digitales una lectura desde América Latina. (1st ed., pp. 69–82). Friederich Eber Stifung. | |
dc.relation | (25) Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King, M., & Hankey, J. (2016). Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proceedings of the National Academy of Sciences, 113(10), 2636–2641. https://doi.org/10.1073/pnas.1513271113 | |
dc.relation | (26) Durán-Sánchez, A., Álvarez-García, J., Río-Rama, M. de la C. del, & Maldonado-Erazo, C. P. (2016). Economía Colaborativa: Análisis De La Producción Científica En Revistas Académicas. Revista de Gestão e Secretariado, 7(3), 1–20. https://www.redalyc.org/articulo.oa?id=435649063002. | |
dc.relation | (27) Feng, Z., Ji, N., Luo, Y., Sze, N. N., Tian, J., & Zhao, C. (2021). Exploring the influencing factors of public traffic safety awareness in China. Cognition, Technology & Work, 23(4), 731–742. https://doi.org/10.1007/s10111-020-00655-8 | |
dc.relation | (28) Ferreira, J., Galitzky, M., Montastruc, J., & Rascol, O. (2000). Sleep attacks and Parkinson’s disease treatment. The Lancet, 355(9212), 1333–1334. https://doi.org/10.1016/S0140-6736(00)02119-X | |
dc.relation | (29) Fletcher, L., & Zelinsky, A. (2009). Driver Inattention Detection based on Eye Gaze— Road Event Correlation. The International Journal of Robotics Research, 28(6), 774– 801. https://doi.org/10.1177/0278364908099459 | |
dc.relation | (30) Galindo-Martín, M.-Á., Castaño-Martínez, M.-S., & Méndez-Picazo, M.-T. (2021). Effects of the pandemic crisis on entrepreneurship and sustainable development. Journal of Business Research, 137, 345–353. https://doi.org/10.1016/j.jbusres.2021.08.053 | |
dc.relation | (31) Gallo-García, A. C., & Castillo-Villanueva, G. M. (2018). Análisis de las condiciones de seguridad vial ligadas a temas de infraestructura en las vías rápidas de Bogotá. https://repository.ucatolica.edu.co/handle/10983/16847 | |
dc.relation | (32) García, J., A., & Javier, K. (2020). Los trabajadores de plataformas digitales en la República Dominicana: Caracterización y opciones para su protección social. CEPAL. https://repositorio.cepal.org/bitstream/handle/11362/45893/1/S2000431_es.pdf | |
dc.relation | (33) Ge, Y., Qu, W., Jiang, C., Du, F., Sun, X., & Zhang, K. (2014a). The effect of stress and personality on dangerous driving behavior among Chinese drivers. Accident Analysis & Prevention, 73, 34–40. https://doi.org/10.1016/j.aap.2014.07.024 | |
dc.relation | (34) Ge, Y., Qu, W., Jiang, C., Du, F., Sun, X., & Zhang, K. (2014b). The effect of stress and personality on dangerous driving behavior among Chinese drivers. Accident Analysis & Prevention, 73, 34–40. https://doi.org/10.1016/j.aap.2014.07.024 | |
dc.relation | (35) Gitelman, V., Vis, M., Weijermars, W., & Hakkert, S. (2014). Development of Road Safety Performance Indicators for the European Countries. Advances in Social Sciences Research Journal, 1(4), 138–158. https://doi.org/10.14738/assrj.14.302 | |
dc.relation | (36) Gómez-Barroso, J. L., & Marbán-Flores, R. (2020). Telecommunications and economic development – The 21st century: Making the evidence stronger. Telecommunications Policy, 44(2), 101905. https://doi.org/10.1016/j.telpol.2019.101905 | |
dc.relation | (37) Gopalakrishnan, S. (2012a). A Public Health Perspective of Road Traffic Accidents. Journal of Family Medicine and Primary Care, 1(2), 144. https://doi.org/10.4103/2249- 4863.104987 | |
dc.relation | (38) Gopalakrishnan, S. (2012b). A Public Health Perspective of Road Traffic Accidents. Journal of Family Medicine and Primary Care, 1(2), 144. https://doi.org/10.4103/2249- 4863.104987 | |
dc.relation | (39) Green, W., Gao, X., Li, K., Banz, B., Wu, J., Crowley, M., Camenga, D., & Vaca, F. (2020). The Association of Sleep Hygiene and Drowsiness with Adverse Driving Events in Emergency Medicine Residents. Western Journal of Emergency Medicine, 21(6). https://doi.org/10.5811/westjem.2020.8.47357 | |
dc.relation | (40) Health, P. on R. M. and S. A. to U. D. F. F. in M. C. S. and D., Statistics, C. on N., Integration, B. on H.-S., Education, D. of B. and S. S. and, Board, T. R., & National Academies of Sciences, E. (2016). Fatigue, Hours of Service, and Highway Safety. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK384974/ | |
dc.relation | (41) Hong, J.-H., Margines, B., & Dey, A. K. (2014). A smartphone-based sensing platform to model aggressive driving behaviors. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 4047–4056. https://doi.org/10.1145/2556288.2557321 | |
dc.relation | (42) Jain, A., Koppula, H. S., Raghavan, B., Soh, S., & Saxena, A. (2015). Car that Knows Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models. 2015 IEEE International Conference on Computer Vision (ICCV), 3182–3190. https://doi.org/10.1109/ICCV.2015.364 | |
dc.relation | (43) Jameel, A. K., & Evdorides, H. (2021). Developing a safer road user behaviour index. IATSS Research, 45(1), 70–78. https://doi.org/10.1016/j.iatssr.2020.06.006 | |
dc.relation | (44) Jannat, M., Hurwitz, D. S., Monsere, C., & Funk, K. H. (2018). The role of driver’s situational awareness on right-hook bicycle-motor vehicle crashes. Safety Science, 110, 92–101. https://doi.org/10.1016/j.ssci.2018.07.025 | |
dc.relation | (45) Karasek, R., Brisson, C., Kawakami, N., Houtman, I., Bongers, P., & Amick, B. (1998). The Job Content Questionnaire (JCQ): An instrument for internationally comparative assessments of psychosocial job characteristics. Journal of Occupational Health Psychology, 3(4), 322–355. https://doi.org/10.1037/1076-8998.3.4.322 | |
dc.relation | (46) Korn, L., Weiss, Y., & Rosenbloom, T. (2017). Driving violations and health promotion behaviors among undergraduate students: Self-report of on-road behavior. Traffic Injury Prevention, 18(8), 813–819. https://doi.org/10.1080/15389588.2017.1316842 | |
dc.relation | (47) Kyriacou, E., Christofides, S., & Pattichis, C. S. (2017). Erratum to: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. In E. Kyriacou, S. Christofides, & C. S. Pattichis (Eds.), XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016 (Vol. 57, pp. E1–E14). Springer International Publishing. https://doi.org/10.1007/978-3-319-32703-7_260 | |
dc.relation | (48) Li, G., Lai, W., Sui, X., Li, X., Qu, X., Zhang, T., & Li, Y. (2020). Influence of traffic congestion on driver behavior in post-congestion driving. Accident Analysis & Prevention, 141, 105508. https://doi.org/10.1016/j.aap.2020.105508 | |
dc.relation | (49) Litwiller, B., Snyder, L. A., Taylor, W. D., & Steele, L. M. (2017). The relationship between sleep and work: A meta-analysis. Journal of Applied Psychology, 102(4), 682– 699. https://doi.org/10.1037/apl0000169 | |
dc.relation | (50) Llopis-Castelló, D., Bella, F., Camacho-Torregrosa, F. J., & García, A. (2018). New Consistency Model Based on Inertial Operating Speed Profiles for Road Safety Evaluation. Journal of Transportation Engineering, Part A: Systems, 144(4), 04018006. https://doi.org/10.1061/JTEPBS.0000126 | |
dc.relation | (51) López, E. (2020). El trabajo en las plataformas digitales de reparto en Argentina: Análisis y recomendaciones de política (1st ed.). OIT. | |
dc.relation | (52) Lv, C., Cao, D., Zhao, Y., Auger, D. J., Sullman, M., Wang, H., Dutka, L. M., Skrypchuk, L., & Mouzakitis, A. (2018). Analysis of autopilot disengagements occurring during autonomous vehicle testing. IEEE/CAA Journal of Automatica Sinica, 5(1), 58–68. https://doi.org/10.1109/JAS.2017.7510745 | |
dc.relation | (53) Malin, F., Norros, I., & Innamaa, S. (2019). Accident risk of road and weather conditions on different road types. Accident Analysis & Prevention, 122, 181–188. https://doi.org/10.1016/j.aap.2018.10.014 | |
dc.relation | (54) Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014). Exploratory Structural Equation Modeling: An Integration of the Best Features of Exploratory and Confirmatory Factor Analysis. Annual Review of Clinical Psychology, 10(1), 85–110. https://doi.org/10.1146/annurev-clinpsy-032813-153700 | |
dc.relation | (55) Martínez-Licerio, K. A., Marroquín-Arreola, J., & Ríos-Bolívar, H. (2019). Precarización laboral y pobreza en México. Análisis económico, 34(86), 113–131. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2448- 66552019000200113&lng=es&nrm=iso&tlng=es | |
dc.relation | (56) Masuri, M. G., Isa, K. A. M., & Tahir, M. P. M. (2012). Children, Youth and Road Environment: Road Traffic Accident. Procedia - Social and Behavioral Sciences, 38, 213–218. https://doi.org/10.1016/j.sbspro.2012.03.342 | |
dc.relation | (58) Meiring, G., & Myburgh, H. (2015). A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms. Sensors, 15(12), 30653–30682. https://doi.org/10.3390/s151229822 | |
dc.relation | (59) Minka, N. S., & Ayo, J. O. (2007). Effects of loading behaviour and road transport stress on traumatic injuries in cattle transported by road during the hot-dry season. Livestock Science, 107(1), 91–95. https://doi.org/10.1016/j.livsci.2006.10.013 | |
dc.relation | (60) Montoro, L., Useche, S., Alonso, F., & Cendales, B. (2018). Work Environment, Stress, and Driving Anger: A Structural Equation Model for Predicting Traffic Sanctions of Public Transport Drivers. International Journal of Environmental Research and Public Health, 15(3), 497. https://doi.org/10.3390/ijerph15030497 | |
dc.relation | (61) Nguyen, T. T., Pham, T. A. T., & Tram, H. T. X. (2020). Role of information and communication technologies and innovation in driving carbon emissions and economic growth in selected G-20 countries. Journal of Environmental Management, 261, 110162. https://doi.org/10.1016/j.jenvman.2020.110162 | |
dc.relation | (62) Nordentoft, M., Rod, N. H., Bonde, J. P., Bjorner, J. B., Cleal, B., Madsen, I. E. H., Magnusson Hanson, L. L., Nexo, M. A., Sterud, T., & Rugulies, R. (2020). Changes ineffort-reward imbalance at work and risk of onset of sleep disturbances in a populationbased cohort of workers in Denmark. Sleep Medicine: X, 2, 100021. https://doi.org/10.1016/j.sleepx.2020.100021 | |
dc.relation | (63) Nordfjærn, T., & Şimşekoğlu, Ö. (2014). Empathy, conformity, and cultural factors related to aberrant driving behaviour in a sample of Urban Turkish drivers. Safety Science, 68, 55–64. https://doi.org/10.1016/j.ssci.2014.02.020 | |
dc.relation | (64) Olivero, L., & Crawford-Visbal, J. L. (2018). Domicilios, aplicaciones y economía colaborativa: el caso de Rappi. Corporación universidad de la costa. https://repositorio.cuc.edu.co/handle/11323/6149 | |
dc.relation | (65) Papakostopoulos, V., & Nathanael, D. (2021). The Complex Interrelationship of Work- Related Factors Underlying Risky Driving Behavior of Food Delivery Riders in Athens, Greece. Safety and Health at Work, 12(2), 147–153. https://doi.org/10.1016/j.shaw.2020.10.006 | |
dc.relation | (66) Philip, P., & Akerstedt, T. (2006). Transport and industrial safety, how are they affected by sleepiness and sleep restriction? Sleep Medicine Reviews, 10(5), 347–356. https://doi.org/10.1016/j.smrv.2006.04.002 | |
dc.relation | (67) Qi, W., Shen, B., & Yu, Y. (2019). Assessment Model on Cyclists’ Road Behaviors in University of China: A Case of Simplified Cycling Behavior Questionnaire. 302–308. https://doi.org/10.1061/9780784482292.029 | |
dc.relation | (68) Salminen, S. (2000). Traffic accidents during work and work commuting. International Journal of Industrial Ergonomics, 26(1), 75–85. https://doi.org/10.1016/S0169- 8141(00)00003-2 | |
dc.relation | (69) Salmon, P. M., Lenné, M. G., Stanton, N. A., Jenkins, D. P., & Walker, G. H. (2010). Managing error on the open road: The contribution of human error models and methods. Safety Science, 48(10), 1225–1235. https://doi.org/10.1016/j.ssci.2010.04.004 | |
dc.relation | (70) Sarmiento Suárez, J. E., & Garcés Bautista, J. L. (2017). De la Economía Tradicional a la Economía Digital Compartida. INNOVA Research Journal, 2(10.1), 12–17. https://doi.org/10.33890/innova.v2.n10.1.2017.432 | |
dc.relation | (71) Sawyer, S. F. (2009a). Analysis of Variance: The Fundamental Concepts. Journal of Manual & Manipulative Therapy, 17(2), 27E-38E. https://doi.org/10.1179/jmt.2009.17.2.27E | |
dc.relation | (72) Sawyer, S. F. (2009b). Analysis of Variance: The Fundamental Concepts. Journal of Manual & Manipulative Therapy, 17(2), 27E-38E. https://doi.org/10.1179/jmt.2009.17.2.27E | |
dc.relation | (73) Shin, J., & Kim, J. K. (2018). How a Good Sleep Predicts Life Satisfaction: The Role of Zero-Sum Beliefs About Happiness. Frontiers in Psychology, 9, 1589. https://doi.org/10.3389/fpsyg.2018.01589 | |
dc.relation | (74) Siedlecka, J., & Bortkiewicz, A. (2012). [Driving simulators in risk assessment of traffic accident among drivers with obstructive sleep apnea]. Medycyna pracy, 63(2), 229–236. | |
dc.relation | (75) Siegrist, J., Starke, D., Chandola, T., Godin, I., Marmot, M., Niedhammer, I., & Peter, R. (2004). The measurement of effort–reward imbalance at work: European comparisons. Social Science & Medicine, 58(8), 1483–1499. https://doi.org/10.1016/S0277- 9536(03)00351-4 | |
dc.relation | (76) Stanley, T. D., Doucouliagos, H., & Steel, P. (2018). Does ICT generate economic growth? A meta-regression analysis. Journal of Economic Surveys, 32(3), 705–726. https://doi.org/10.1111/joes.12211 | |
dc.relation | (77) Svatý, Z., Kocián, K., & Mičunek, T. (2019). INTEGRATION OF SAFETY ASSESSMENT IN BIM FOR TRANSPORTATION INFRASTRUCTURE. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W3, 143–148. https://doi.org/10.5194/isprs-archives-XLII-5-W3-143- 2019 | |
dc.relation | (78) Taylor, C. B., Fitzsimmons‐Craft, E. E., & Graham, A. K. (2020). Digital technology can revolutionize mental health services delivery: The COVID-19 crisis as a catalyst for change. International Journal of Eating Disorders, 53(7), 1155–1157. https://doi.org/10.1002/eat.23300 | |
dc.relation | (79) Tirado, G., Llorente-Alonso, M., & Topa, G. (2019). Desequilibrio esfuerzo-recompensa y quejas subjetivas de salud: Estudio exploratorio entre médicos en España. European Journal of Investigation in Health, Psychology and Education, 9(2), 59. https://doi.org/10.30552/ejihpe.v9i2.320 | |
dc.relation | (80) Todolí, A., Jalil, M., & Llorens, J. (2020). Riesgos Laborales Específicos del Trabajo en Plataformas Digitales (1st ed.). OSALAN-Instituto Vasco de Seguridad y Salud Laborales. | |
dc.relation | (81) Topolšek, D., Babić, D., & Fiolić, M. (2019). The effect of road safety education on the relationship between Driver’s errors, violations and accidents: Slovenian case study. | |
dc.relation | (82) Twisk, D., & Senserrick, T. (2021). Risky road behaviours cluster and share predictor variables with smoking and drinking, and anti-social behaviours during early adolescence. Journal of Transport & Health, 20, 101024. https://doi.org/10.1016/j.jth.2021.101024 | |
dc.relation | (83) Uhegbu, U. N., & Tight, M. R. (2021). Road User Attitudes and Their Reported Behaviours in Abuja, Nigeria. Sustainability, 13(8), 4222. https://doi.org/10.3390/su13084222 | |
dc.relation | (84) Useche, S. A., Alonso, F., & Montoro, L. (2020). Validation of the Walking Behavior Questionnaire (WBQ): A tool for measuring risky and safe walking under a behavioral perspective. Journal of Transport & Health, 18, 100899. https://doi.org/10.1016/j.jth.2020.100899 | |
dc.relation | (85) Useche, S. A., Cendales, B., Alonso, F., & Orozco-Fontalvo, M. (2020). A matter of style? Testing the moderating effect of driving styles on the relationship between job strain and work-related crashes of professional drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 72, 307–317. https://doi.org/10.1016/j.trf.2020.05.015 | |
dc.relation | (86) Useche, S. A., Esteban, C., Alonso, F., & Montoro, L. (2021). Are Latin American cycling commuters “at risk”? A comparative study on cycling patterns, behaviors, and crashes with non-commuter cyclists. Accident Analysis & Prevention, 150, 105915. https://doi.org/10.1016/j.aap.2020.105915 | |
dc.relation | (87) Useche, S. A., Gómez, V., Cendales, B., & Alonso, F. (2018). Working Conditions, Job Strain, and Traffic Safety among Three Groups of Public Transport Drivers. Safety and Health at Work, 9(4), 454–461. https://doi.org/10.1016/j.shaw.2018.01.003 | |
dc.relation | (88) Useche, S. A., Hezaveh, A. M., Llamazares, F. J., & Cherry, C. (2021). Not gendered… but different from each other? A structural equation model for explaining risky road behaviors of female and male pedestrians. Accident Analysis & Prevention, 150, 105942. https://doi.org/10.1016/j.aap.2020.105942 | |
dc.relation | (89) Useche, S. A., Montoro, L., Alonso, F., & Tortosa, F. M. (2018). Does gender really matter? A structural equation model to explain risky and positive cycling behaviors. Accident Analysis & Prevention, 118, 86–95. https://doi.org/10.1016/j.aap.2018.05.022 | |
dc.relation | (90) Useche, S., Cendales, B., & Gómez, V. (2017). Work stress, fatigue and risk behaviors at the wheel: Data to assess the association between psychosocial work factors and risky driving on Bus Rapid Transit drivers. Data in Brief, 15, 335–339. https://doi.org/10.1016/j.dib.2017.09.032 | |
dc.relation | (91) Vu, K., Hanafizadeh, P., & Bohlin, E. (2020). ICT as a driver of economic growth: A survey of the literature and directions for future research. Telecommunications Policy, 44(2), 101922. https://doi.org/10.1016/j.telpol.2020.101922 | |
dc.relation | (92) Wang, C., Wang, D., Abbas, J., Duan, K., & Mubeen, R. (2021). Global Financial Crisis, Smart Lockdown Strategies, and the COVID-19 Spillover Impacts: A Global Perspective Implications From Southeast Asia. Frontiers in Psychiatry, 12, 643783. https://doi.org/10.3389/fpsyt.2021.643783 | |
dc.relation | (93) Wang, F.-Y. (2017). Computational Social Systems in a New Period: A Fast Transition Into the Third Axial Age. IEEE Transactions on Computational Social Systems, 4(3), 52– 53. https://doi.org/10.1109/TCSS.2017.2738238 | |
dc.relation | (94) Wang, K., Zhang, W., Feng, Z., & Wang, C. (2020). Research on the classification for road traffic visibility based on the characteristics of driving behaviour – a driving simulator experiment. Journal of Intelligent and Connected Vehicles, 3(1), 30–36. https://doi.org/10.1108/JICV-10-2019-0011 | |
dc.relation | (95) Washington, S., Karlaftis, M., Mannering, F., & Anastasopoulos, P. (2020). Statistical and Econometric Methods for Transportation Data Analysis (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429244018 | |
dc.relation | (96) Way, P., Roland, J., Sartipi, M., & Osman, O. (2021). Spatio-Temporal Crash Prediction: Effects of Negative Sampling on Understanding Network-Level Crash Occurrence. Transportation Research Record: Journal of the Transportation Research Board, 2675(6), 225–234. https://doi.org/10.1177/0361198121991836 | |
dc.relation | (97) Wright, N. A., & Lee, L.-T. (2021). Alcohol-related traffic laws and drunk-driving fatal accidents. Accident Analysis & Prevention, 161, 106358. https://doi.org/10.1016/j.aap.2021.106358 | |
dc.relation | (98) Wunder, S., Kaimowitz, D., Jensen, S., & Feder, S. (2021). Coronavirus, macroeconomy, and forests: What likely impacts? Forest Policy and Economics, 131, 102536. https://doi.org/10.1016/j.forpol.2021.102536 | |
dc.relation | (99) Xing, Y., Lv, C., & Cao, D. (2020). Driver Behavior Recognition in Driver Intention Inference Systems. In Advanced Driver Intention Inference (pp. 99–134). Elsevier. https://doi.org/10.1016/B978-0-12-819113-2.00005-1 | |
dc.relation | (100) Xing, Y., Lv, C., Cao, D., Wang, H., & Zhao, Y. (2018). Driver workload estimation using a novel hybrid method of error reduction ratio causality and support vector machine. Measurement, 114, 390–397. https://doi.org/10.1016/j.measurement.2017.10.002 | |
dc.relation | (101) Yang, L., Ma, R., Zhang, H. M., Guan, W., & Jiang, S. (2018). Driving behavior recognition using EEG data from a simulated car-following experiment. Accident Analysis & Prevention, 116, 30–40. https://doi.org/10.1016/j.aap.2017.11.010 | |
dc.relation | (102) Zhang, T., Chan, A. H. S., Ba, Y., & Zhang, W. (2016). Situational driving anger, driving performance and allocation of visual attention. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 376–388. https://doi.org/10.1016/j.trf.2015.05.008 | |
dc.relation | (103) Zhao, T., Tu, W., Fang, Z., Wang, X., Huang, Z., Xiong, S., & Zheng, M. (2021). Optimizing Living Material Delivery During the COVID-19 Outbreak. IEEE Transactions on Intelligent Transportation Systems, 1–11. https://doi.org/10.1109/TITS.2021.3061076 | |
dc.relation | (104) Zuluaga, G. (2019). Los determinantes de la experiencia y calidad de servicio de los restaurantes en el canal de domicilios, mediante la aplicación Rappi. http://repository.cesa.edu.co/handle/10726/2260 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | Acceso abierto | |
dc.subject | ACCIDENTES DE TRANSITO | |
dc.subject | CONDICIONES DE LOS EMPLEADOS | |
dc.subject | Digital platforms | |
dc.subject | domiciliary, road behavior | |
dc.subject | no road behavior | |
dc.subject | accidents | |
dc.subject | Plataformas digitales | |
dc.subject | domiciliarios | |
dc.subject | comportamiento en la vía | |
dc.subject | comportamientos no viales | |
dc.subject | accidentalidad | |
dc.title | Accidentalidad vial en domiciliarios de plataformas tecnológicas y su relación con las condiciones laborales y operacionales caso Bogotá - Colombia | |
dc.title | Road accidents in home workers of technological platforms and their relationship with working and operational conditions in the case of Bogotá - Colombia | |
dc.type | Tesis/Trabajo de grado - Monografía - Maestría | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.coverage | Bogotá - Colombia | |
dc.coverage | Calle 100 |