Home range and movement of Caiman crocodilus and Crocodylus acutus during a dry season in Tayrona National Natural Park, Colombia: an approach using radiotelemetry as a conservation tool

dc.contributorBalaguera Reina, Sergio Alejandro
dc.contributorPinto Sánchez, Nelsy Rocio
dc.creatorPinzón-Barrera, María Catalina
dc.date2023-03-23T22:38:13Z
dc.date2023-03-23T22:38:13Z
dc.date2022-09-26
dc.date.accessioned2023-09-06T17:43:18Z
dc.date.available2023-09-06T17:43:18Z
dc.identifierhttp://hdl.handle.net/10654/43602
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8692444
dc.descriptionColombia es uno de los países más diversos en crocodylianos del mundo. Sin embargo, se desconoce ampliamente la ecología espacial de Crocodylus acutus (Caimán aguja) y Caiman crocodilus (babilla) en estado silvestre. Actualmente, no se han realizado estudios en el país para conocer la dinámica espacial de estas especies y su relación con el medio ambiente a través de radiotelemetría. Se evaluó la ecología espacial de Crocodylus acutus y Caiman crocodilus en el sector oriental del Parque Nacional Natural Tayrona (Arrecifes y Cañaveral) usando transmisores VHF durante el primer semestre del 2021. Se obtuvieron 275 registros a partir de seis individuos monitoreados con rangos etarios de juvenil y adulto para C. acutus y subadultos para C. crocodilus. Específicamente, se monitorearon dos machos y una hembra para cada especie, con un porcentaje de error del 12.69% y frecuencia de monitoreos por día de 1.02±0.56 y 0.61±0.37, respectivamente. Se determinó el rango de hogar mediante los métodos del Mínimo Polígono Convexo (MPC), cascos convexos locales (LoCoH) y estimación de densidad kernel (KDE) con isopletas al 100%, 95% y 50%, encontrando en los tres métodos un rango máximo para C. acutus de 0.189 km 2 y de 0.042 km 2 para C. crocodilus, siendo LoCoH el método más preciso. Solo dos individuos presentaron autocorrelación espacial significativa (I-Moran z-score:2.65, p-value:0.08e-01 y z-score:2.23, p-value:0.26e-01) correspondiente a una distribución agrupada con confianza superior al 97%. No obstante, todos los individuos tuvieron distancias medias recorridas (DMR) < 1 km en un periodo de cinco meses (Feb-Jul), con una época de sequía extendida en campo del 2021. Se comprobó que C. acutus presentó significativamente mayores desplazamientos que C. crocodilus ( p-value = 3.82e-06, p-value = 1.53e-05, respectivamente). Por otro lado, con el inicio de lluvias en julio aumentaron las DMR semanales de C. acutus, se encontró un efecto positivo con la precipitación promedio (PP) (z-value: 2.04, p-value:0.04, 95% de confianza), a través de regresiones lineales generalizadas con base en distribuciones negativas binomiales. En contraste, las DMR semanales de C. crocodilus se vieron afectadas por más co-variables ambientales (radiación solar, PP, temperatura media y mínima). Se resalta que el modelo más robusto que se obtuvo para C. crocodilus tiene una fuerza explicativa del 87.76%, contrastado con C. acutus de 31.41%. Por lo tanto, es necesario aumentar el número de individuos y tiempo de monitoreo, al igual que explorar más variables abióticas y bióticas que pueden estar influenciando las DMR de las especies de estudio. Finalmente, estos datos espaciales aportan información valiosa en planes de manejo y futuras investigaciones dentro y fuera del área protegida para la conservación y manejo de crocodylianos, así mismo de los ecosistemas asociados a su distribución.
dc.descriptionGrupo de Especialistas de Cocodrilos (CSG), de la Comisión para la Supervivencia de Especies (SSC) de la Unión Internacional para la Conservación de la Naturaleza (UICN).
dc.descriptionUniversidad de Ibagué
dc.descriptionCrocFest
dc.descriptionNaturalSIG
dc.descriptionÍNDICE PÁG AGRADECIMIENTOS 4 RESUMEN 5 1.MARCO TEÓRICO 7 1.1. Tipos de sistemas de radiotelemetría 9 1.1.1 Telemetría VHF 9 1.1.2 Telemetría UHF 10 1.1.3 Telemetría satelital / GPS 11 1.1.4 Telemetría acústica 12 1.2 Métodos estadísticos para analizar datos de telemetría 13 1.2.1 Análisis espacial: autocorrelación y patrones espaciales 13 1.2.2 Mínimo Polígono convexo 14 1.2.3 Análisis de cascos convexos locales 14 1.2.4 Densidad de kernel 15 1.2.5 Análisis de puntos calientes 15 1.3 Ecología espacial en el orden Crocodylia 16 1.3.1 Contexto regional y local 19 2. ANTECEDENTES 21 2.1. Familia Crocodylidae 21 2.2. Familia Alligatoridae 22 2.3. Familia Gavialidae 26 2.4. La mujer y los crocodylianos: ¿existe una brecha de género en estudios de ecología espacial por radiotelemetría? 27 2.5 Perspectivas y oportunidades 29 3. ARTÍCULO CIENTÍFICO 31 3.1 Resumen 31 3.2 Abstract 32 3.3 Introducción 33 3.4 Materiales y métodos 35 3.4.1 Área de estudio 35 3.4.2 Captura, marcaje e instalación de transmisores 35 3.4.3 Rutas de registros y triangulación 36 3.4.4 Análisis espacial: autocorrelación, patrones espaciales y rangos de hogar 37 3.4.5 Análisis estadístico 38 3.5 Resultados 38 3.6 Discusión 45 3.7 Conclusiones y recomendaciones 50 3.8 Agradecimientos 51 4. Literatura citada 52 5. Anexos 71
dc.descriptionColombia is one of the most diverse countries regarding crocodylians in the world. However, the spatial ecology of Crocodylus acutus (American crocodile) and Caiman crocodilus (Spectacled caiman) in the wild is largely unknown. To date, no studies have been carried out in the country to understand the spatial dynamics of these species and their relationship with the environment through radiotelemetry. We evaluated the spatial ecology of C. acutus and C. crocodilus in the eastern sector of Tayrona National Natural Park (Arrecifes and Cañaveral) using VHF transmitters during February through July 2021. We collected 275 records from six monitored individuals with age ranges of juvenile and adult for C. acutus and subadults for C. crocodilus. Specifically, two males and one female were monitored for each species with an error rate of 12.69% and frequency of records per day of 1.02±0.56 and 0.61±0.37 respectively. The home range was determined with Minimum Convex Polygon (MCP), Local Convex hull (LoCoH), and the kernel density estimation (KDE) with isopleths at 100%, 95%, and 50%, finding in this method a maximum range for C. acutus of 0.189 km2 and 0.042 km2 for C. crocodilus, with LoCoH being the most accurate method. Only two individuals showed significant spatial autocorrelation (I-Moran z-score:2.65, p-value:0.08e-01 and z-score:2.23, p-value:0.26e-01) corresponding to a clustered distribution with confidence greater than 97%. However, all individuals had mean distances traveled (DMR) <1km in a period of five months (Feb-Jul), with an extended dry season in the field from 2021. It was checked that C. acutus presented significantly greater movements than C. crocodilus (p-value = 3.82e-06, p-value = 1.53e-05, respectively). On the other hand, with the onset of rains in July, the weekly DMR of C. acutus increased, a positive effect was found with the average precipitation (PP) (z-value: 2.04, p-value: 0.04, 95% confidence) , through generalized linear regressions based on binomial negative distributions. In contrast, the weekly DMRs of C. crocodilus were affected by more environmental co-variables: solar radiation, PP, mean and minimum temperature (z-value: 2.12, p- value: 0.33e-01; z-value: -2.01, p-value: 0.45e-01; z value: -2.42, p-value:0.16e-01, respectively). The most robust model obtained for C. crocodilus has an explanatory power of 87.76%, compared to 31.41% for C. acutus. Therefore, it is necessary to increase the number of individuals and monitoring time, as well as to explore more abiotic and biotic variables that may be influencing the DMR of the study species. Finally, these spatial data provide valuable information for management plans and future research inside and outside the protected area for the conservation and management of crocodylians and associated ecosystems.
dc.descriptionPregrado
dc.formatapplicaction/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherBiología Aplicada
dc.publisherFacultad de Ciencias Básicas
dc.publisherUniversidad Militar Nueva Granada
dc.relationARAUJO, M. B. 2002. Biodiversity hotspots and zones of ecological transition. Conservation Biology, 16: 662–1663
dc.relationARBELAEZ-MUÑOZ, I. 2013. Patrones de Dispersión y Home Range de Crocodylus acutus (Cuvier, 1807) en El Parque Nacional Coiba, Panamá. Tesis de Pregrado, Universidad De Bogotá Jorge Tadeo Lozano, Colombia.
dc.relationBADDELEY, A. 2010. Multivariate and marked point processes. Handbook of spatial statistics 34: 371–402.
dc.relationBALAGUERA-REINA, S., ESPINOSA-BLANCO, A., ANTELO, R., MORALES-BETANCOURT, M. AND SEIJAS, A. 2018. Crocodylus intermedius. The IUCN Red List of Threatened Species 2018: e.T5661A181089024. Available from: https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T5661A181089024.en. Accessed on 07 December 2021.
dc.relationBALAGUERA-REINA, S. A., FARFÁN-ARDILA, N., VARGAS-ORTEGA, D., Y MEDRANO-BITAR, S. 2019. ¿Cómo lograr coexistencia entre cocodrilos y humanos? relaciones etnozoológicas entre el Caimán aguja y comunidades en el Parque Nacional Natural Tayrona, Caribe colombiano. Pp. 89-98 en M. C. Ardila, W. Martínez, M. C. Ardila y W. Martínez (Edits.), Homenaje a Federico Medem, aportes a la herpetología colombiana. Instituto de Ciencias Naturales, Universidad Nacional de Colombia.
dc.relationBALAGUERA-REINA, S., MONCADA-JIMÉNEZ, J. F., PRADA-QUIROGA, C. F., HERNANDEZ-GONZALEZ, F., BOLAÑOS-CUBILLOS, N. W., FARFÁN-ARDILA, N., GARCIA-CALDERÓN, L. M. AND DENSMORE, L. D. 2021. Tracking a voyager: Mitochondrial DNA analyses reveal mainland-to-island dispersal of an American crocodile (Crocodylus acutus) across the Caribbean. Biological Journal of the Linnean Society 131:647–655.
dc.relationBALAGUERA-REINA, S., NAVARRETE, S., PESCADOR, F. AND RODRÍGUEZ, K. 2012. First report of Caimán aguja (Crocodylus acutus) population in the Tayrona National Natural Park, Colombia. Crocodile Specialist Group Newsletter 31:7–10.
dc.relationBALAGUERA-REINA, S. A., PINZÓN-BARRERA, C., FARFÁN-ARDILA, N., VARGAS-ORTEGA, D., AND DENSMORE, L. D., III. 2020. Individual identification patterns as a monitoring strategy for American crocodiles: Tayrona National Natural Park as a study case. Amphibia-Reptilia 42:73–80.
dc.relationBALAGUERA-REINA, S. AND VELASCO, A. 2019. Caiman crocodilus. The IUCN Red List of Threatened Species 2019: e.T46584A3009688. Available from: https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T46584A3009688.en. Accessed on 07 December 2021.
dc.relationBALAGUERA-REINA, S.A., VENEGAS-ANAYA, M., RIVERA-RIVERA, B. AND DENSMORE, L.D III. 2015. The Biology and Conservation Status of the American Crocodile in Colombia. Journal of Herpetology 49: 200–206.
dc.relationBALAGUERA-REINA, S.A., VENEGAS-ANAYA, M., RIVERA-RIVERA, B., AND DENSMORE, L.D. III. 2017. Scute patterns as an individual identification tool in an American crocodile (Crocodylus acutus) population on Coiba Island, Panama. Journal of Herpetology 51:523–531.
dc.relationBALAGUERA-REINA, S. A., VENEGAS-ANAYA, M., SÁNCHEZ, A., ARBELAEZ, I., LESSIOS, H. A., AND DENSMORE, L. D. 2016. Spatial Ecology of the American Crocodile in a Tropical Pacific Island in Central America. PLOS ONE 11:1–20.
dc.relationBEAUCHAMP, J. S. 2014. Spatial Ecology of the American Crocodile, Crocodylus Acutus, in Everglades National Park, Fl. Ph.D Dissertation, University of Florida, USA.
dc.relationBEAUCHAMP, J. S., HART, K. M., CHERKISS, M. S., AND MAZZOTTI, F. J. 2018. Variation in home range size and patterns in adult female American crocodiles Crocodylus acutus. Endangered Species Research 36:161–171.
dc.relationBEAUCHAMP, J. S., WILSON, B., MCLAREN, K., WASILEWSKI, J. A., AND HENRIQUES, L. P., MAZZOTTI, F. J. 2019. Satellite Telemetry of Crocodylus acutus in Jamaica: Habitat Selection and Management Implications. Caribbean Naturalist 61:1–13.
dc.relationBEZUIJEN, M.R., SHWEDICK, B., SIMPSON, B.K., STANIEWICZ, A. AND STUEBING, R. 2014. Tomistoma schlegelii. The IUCN Red List of Threatened Species 2014: e.T21981A2780499. Available from: https://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T21981A2780499.en. Accessed on 09 June 2021
dc.relationBONKE, R., IHLOW, F., BÖHME, W., AND RÖDDER, D. 2014. Movement patterns of Tomistoma schlegelii in the Sekonyer Kanan River (Tanjung Puting National Park, Central Kalimantan, Indonesia): preliminary range size estimates. Salamandra 50: 40–52.
dc.relationBÖRGER, L., FRANCON, N., DE MICHELE, G., GANTZ, A., MESCHI, F., MANICA, A., LOVARI, S. AND COULSON, T. 2006. Effects of sampling regime on the mean and variance of home range size estimates. Journal of Animal Ecology 75:1393–1405.
dc.relationBRANDER, R. B. AND COCHRAN, W. W. 1971. Radio-location telemetry. Pp. 95-105 in R. J. Giles (Eds.), Wildlife management techniques manual. Third edition. The Wildlife Society, USA.
dc.relationBRIEN, M. L., READ, M. A., MCCALLUM, H. I. AND GRIGG, G. C. 2008. Home range and movements of radio-tracked estuarine crocodiles (Crocodylus porosus) within a non-tidal waterhole. Wildlife Research 35:140-149.
dc.relationBRIEN, M., WEBB, G., MANOLIS, C., LINDERK, G. AND OTTAWAY, D. 2010. A Method for Attaching Tracking Devices to Crocodilians. Herpetological Review 41: 305–308.
dc.relationBROWNING, E., GIBB, R., GLOVER-KAPFER, P., AND JONES, K. E. 2017. Passive acoustic monitoring in ecology and conservation. Pp. 75 in WWF (Eds.) WWF Conservation Technology Series.WWF, United Kingdom.
dc.relationBRÜGGEMANN. J., RODRÍGUEZ, E. AND TAPPER, R. 2002. Biodiversidad y turismo en el marco de la Convención de Diversidad Biológica: El caso del Parque Nacional Natural Tayrona, Colombia. Reporte de taller en Cañaveral, Parque Nacional Natural Tayrona, Agencia Federal para la Conservación de la Naturaleza y Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales.
dc.relationBURGMAN, M. A., AND FOX, J. C. 2003. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation 6:19–28.
dc.relationBURT, W. H. 1943. Territoriality and Home Range Concepts as Applied to Mammals. Journal of Mammalogy 24: 346–352.
dc.relationCABRERA, J. A., MOLINA, E., GONZÁLEZ, T. AND ARMENTERAS, D. 2016. Does Plan B work? Home range estimations from stored on board and transmitted data sets produced by GPS-telemetry in the Colombian Amazon. Revista de Biología Tropical 64:1441–1450.
dc.relationCALVERLEY, P. M., AND DOWNS, C. T. 2015. Movement and home range of nile crocodiles in Ndumo game reserve, South Africa. Koedoe: African Protected Area Conservation and Science 57:1–13.
dc.relationCAMPBELL, H. A., WATTS, M. E., SULLIVAN, S., READ, M. A., CHOUKROUN, S., IRWIN, S. R., AND FRANKLIN, C. E. 2010. Estuarine crocodiles ride surface currents to facilitate long‐distance travel. Journal of Animal Ecology 79:955–964.
dc.relationCAMPBELL, H. A., DWYER, R. G., IRWIN, T. R., AND FRANKLIN, C. E. 2013. Home Range Utilization and Long-Range Movement of Estuarine Crocodiles during the Breeding and Nesting Season. PLOS ONE 8:1–9.
dc.relationCAMPBELL, H. A., DWYER, R. G., WILSON, H., IRWIN, T. R., AND FRANKLIN, C. E. 2014. Predicting the probability of large carnivore occurrence: a strategy to promote crocodile and human coexistence. Animal Conservation 18:387–395.
dc.relationCAMPOS, Z., COUTINHO, M., MOURÃO, G., BAYLISS, P., AND MAGNUSSON, W. E. 2006. Long distance movements by Caiman crocodilus yacare: implications for management of the species in the Brazilian Pantanal. The Herpetological Journal 16:123–132.
dc.relationCAMPOS, Z., SANAIOTTI, T., MUNIZ, F., FARIAS, I., AND MAGNUSSON, W. E. 2012. Parental care in the dwarf caiman, Paleosuchus palpebrosus Cuvier, 1807 (Reptilia: Crocodilia: Alligatoridae). Journal of Natural History 46:2979–2984.
dc.relationCAMPOS, Z., MOURÃO, G., COUTINHO, M. AND MAGNUSSON, W. E. 2004. Movimento e área de uso do jacaré-do-Pantanal. In IV Simpósio sobre Recursos Naturais e Sócio-económicos do Pantanal Corumbá/MS-23 a 26 Nov 2004. SIMPAN Sustentabilidade Regional, Brasil.
dc.relationCAMPOS, Z., MOURÃO, G., AND MAGNUSSON, W. E. 2017. The effect of dam construction on the movement of dwarf caimans, Paleosuchus trigonatus and Paleosuchus palpebrosus, in Brazilian Amazonia. Plos one, 12(11), e0188508.
dc.relationCAMPOS, Z., MAGNUSSON, W.E. AND MUNIZ, F. 2019. Paleosuchus trigonatus. The IUCN Red List of Threatened Species 2019: e.T46588A3010035. Available from: https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T46588A3010035.en. Accessed on 07 December 2021.
dc.relationCAMPOS, Z. E MOURÃO, GUILHERME 2021. Distância movida e área de uso de crocodilianos em área de usina hidrelétrica, Amazônia área de usina hidrelétrica, Amazônia 1 Material e métodos Os jacarés foram capturados à noite e :1–9.
dc.relationCARLI, L. L., ALAWA, L., LEE, Y., ZHAO, B. AND KIM, E. 2016. Stereotypes about gender and science: Women≠ scientists. Psychology of Women Quarterly 40:244-260.
dc.relationCAUT, S., FRANCOIS, V., BACQUES, M., GUIRAL, D., LEMAIRE, J., LEPOINT, G., AND STURARO, N. 2019. The dark side of the black caiman: Shedding light on species dietary ecology and movement in Agami Pond, French Guiana. PLOS ONE, 14: e0217239.
dc.relationCHABRECK, R. H. 1963. Methods of capturing, marking, and sexing alligators. Proceedings of the Annual Conference of the Southeast. Game and Fish Commission 17:47–50.
dc.relationCHAPE, S., HARRISON, J., SPALDING, M., AND LYSENKO, I. 2005. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 360: 443–455
dc.relationCHERKISS, M. S., MAZZOTTI, F. J., HORD, L., AND ALDECOA, M. 2014. Remarkable Movements of an American Crocodile (Crocodylus acutus) in Florida. Southeastern Naturalist 13:52–56.
dc.relationCHOUDHURY, B. C. AND DE SILVA, A. 2013. Crocodylus palustris. The IUCN Red List of Threatened Species 2013: e.T5667A3046723. Available from: https://dx.doi.org/10.2305/IUCN.UK.2013-2.RLTS.T5667A3046723.en. Downloaded on 10 December 2021.
dc.relationCHULIVER, M., GROSSO, J., FONTANARROSA, G., FRATANI, J., PAOLA FERRARO, D., DUPORT-BRU, A. S., SCHNEIDER, R., CASAGRANDA, M., PEREYRA, L., VICENTE, N., SALICA, M., MEDINA, R., BESSA, C., SEMHAN, R. AND CORINA VERA, M. 2021. Gender inequities in herpetology: the case of the Argentine community. Cuadernos de Herpetología 35:195-205.
dc.relationCLUTTON-BROCK, T. H., GUINNESS, F. E., AND ALBON, S. D. 1982. Red deer: behavior and ecology of two sexes. University of Chicago press, USA.
dc.relationCOMBRINK, A.S. 2014. Spatial and reproductive ecology and population status of the Nile Crocodile (Crocodylus niloticus) in the Lake St Lucia estuarine system, South Africa. Ph.D. Dissertation, University KwaZulu-Natal, South Africa.
dc.relationCOMBRINK, X., WARNER, J. K., AND DOWNS, C. T. 2017. Nest-site selection, nesting behavior and spatial ecology of female Nile crocodiles (Crocodylus niloticus) in South Africa. Behavioral Processes 135:101–112.
dc.relationCOOKE, S.J., HINCH, S.G., WIKELSKI, M., ANDREWS, R.D., KUCHEL, L.J., WOLCOTT, T.G. AND BUTTLER, P.J. 2004. Biotelemetry: a mechanistic approach to ecology. Trends in Ecology and Evolution 19:334–343.
dc.relationCORPAMAG. 2021. Con tecnologia satelital Corpamag continúa haciendo monitoreo permanente al caiman aguja liberado en la Cienaga grande. Asocars. Disponible en: https://www.asocars.org/con-tecnologia-satelital-corpamag-continua-haciendo-monitoreo-permanente-al-caiman-aguja-liberado-en-la-cienaga-grande/.
dc.relationCORPOGUAJIRA. 2022a. Con equipos de telemetría monitorean el estado del caimán aguja en La Guajira. Corpoguajira. Disponible en: https://corpoguajira.gov.co/wp/con-equipos-de-telemetria-monitorean-estado-del-caiman-aguja-en-la-guajira/.
dc.relationCORPOGUAJIRA. 2022b. En Dibulla liberan caimanes aguja que serán monitoreados con equipos de telemetría. Corporación Autónoma Regional de La Guajira. Disponible en:https://corpoguajira.gov.co/wp/en-dibulla-liberan-caimanes-aguja-que-seran-monitoreados-con-equipos-de-telemetria/.
dc.relationCROCODILE SPECIALIST GROUP. 1996. Osteolaemus tetraspis. The IUCN Red List of Threatened Species 1996: e.T15635A4931429. Available from: https://dx.doi.org/10.2305/IUCN.UK.1996.RLTS.T15635A4931429.en. Downloaded on 10 December 2021.
dc.relationCUI, D., LIANG, S., AND WANG, D. 2021. Observed and projected changes in global climate zones based on Köppen climate classification. WIREs Climate Change 12: 1-28.
dc.relationDA SILVEIRA, R., AMARAL, J. V., MAGNUSSON, W. E., AND THORBJARNARSON, J. B. 2011. Melanosuchus niger (black caiman). Long distance movement. Herpetological Review 4:424–425.
dc.relationDE LA OSSA, J. 2001. Guía para el manejo y cría del caimán del Magdalena o caimán aguja Crocodylus acutus (Cuvier). In Convenio Andrés Bello, Colombia.
dc.relationDE LA QUINTANA, P., APARICIO, J., AND PACHECO, L. F. 2020. Home range and habitat use of two sympatric crocodylians (Melanosuchus Niger and Caiman yacare) under changing habitat conditions. Amphibia Reptilia 42:115–123.
dc.relationDIGGLE, P. J. 1990. Time series: a biostatistical introduction. Oxford Statistical Science Series, Volume 5. Clarendon Press, Oxford, United Kingdom.
dc.relationDÍAZ-FAES, A. A., OTERO-HERMIDA, P., OZMAN, M. AND D’ESTE, P. 2020. Do women in science form more diverse research networks than men? An analysis of Spanish biomedical scientists. PloS one 15: e0238229.
dc.relationDOWNS, J. A., HORNER, M. W., AND TUCKER, A. D. 2011. Time geographic density estimation for home range analysis. Annals of GIS 17:163-171.
dc.relationDWYER, R. G., CAMPBELL, H. A., IRWIN, T. R., AND FRANKLIN, C. E. 2015. Does the telemetry technology matter? Comparing estimates of aquatic animal space-use generated from GPS-based and passive acoustic tracking. Marine and Freshwater Research 66:654–664.
dc.relationEAM, S. U., SAM, H., HOR, L., MIZRAHI, M., AND FRECHETTE, J. L. 2017. Movement of captive-reared Siamese crocodiles Crocodylus siamensis released in the Southern Cardamom National Park, Cambodia. Cambodian Journal of Natural History 2017, 102–108.
dc.relationESRI (Environmental Systems Research Institute). 2018. ArcGIS Version 10.6. ESRI. Redlands.
dc.relationESRI (Environmental Systems Research Institute). 2021. ArcGIS Pro (Version 2.8). Esri Inc. Available from: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview.
dc.relationESRI (Environmental Systems Research Institute). 2022. Optimized Hot Spot Analysis (Spatial Statistics), ArcGIS Pro (Version 2.8). Esri Inc. Available from: https://pro.arcgis.com/es/pro-app/2.8/tool-reference/spatial-statistics/optimized-hot-spot-analysis.htm on 4 april 2022.
dc.relationEATON, M.J., MARTIN, A., THORBJARNARSON, J., AMATO, G. 2009. Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Molecular Phylogenetics and Evolution 50: 496–506.
dc.relationEVANS, L. J., DAVIES, A. B., GOOSSENS, B., AND ASNER, G. P. 2017. Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles. PLOS ONE 12: e0184804.
dc.relationFARFÁN-ARDILA, N. 2013. Ecología poblacional de Crocodylus acutus en el Parque Nacional Natural Tayrona. Tesis de pregrado. Universidad Pedagógica y Tecnológica de Colombia, Colombia.
dc.relationFARFÁN-ARDILA, N., VARGAS-ORTEGA, D., MEDRANO-BITAR, S. AND BALAGUERA-REINA, S. A. 2019. Ecología poblacional del Caimán aguja (Crocodylus acutus, Cuvier 1807) en el Parque Nacional Natural Tayrona, Caribe colombiano. Pp. 49–59 en M. C. Ardila-Robayo and W. Martínez-Barreto (Eds.), Homenaje a Federico Medem, aportes a la Herpetología Colombiana. Universidad Nacional de Colombia.
dc.relationFLETCHER, R. AND FORTIN, M.J. 2018. Spatial Ecology and Conservation Modeling: Applications with R. Springer Nature, Switzerland.
dc.relationFORD, R. G., AND KRUMME, D. W. 1979. The analysis of space use patterns. Journal of theoretical biology 76:125–155.
dc.relationFRAIR, J. L., FIEBERG, J., HEBBLEWHITE, M., CAGNACCI, F., DECESARE, N. J., AND PEDROTTI, L. 2010. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2187-2200.
dc.relationFRANKLIN, C. E., READ, M. A., KRAFT, P. G., LIEBSCH, N., IRWIN, S. R., AND CAMPBELL, H. A. 2009. Remote monitoring of crocodilians: implantation, attachment and release methods for transmitters and data-loggers. Marine and freshwater research 60:284–292.
dc.relationFUJISAKI, I., HART, K. M., MAZZOTTI, F. J., CHERKISS, M. S., SARTAIN, A. R., JEFFERY, B. M., BEAUCHAMP, J. S. AND DENTON, M. 2014. Home range and movements of American alligators (Alligator mississippiensis) in an estuary habitat. Animal Biotelemetry 2:1–10.
dc.relationFUKUDA, Y., WEBB, G., MANOLIS, C., LINDNER, G., AND BANKS, S. 2019. Translocation, genetic structure and homing ability confirm geographic barriers disrupt saltwater crocodile movement and dispersal. PLOS ONE 14: e0205862.
dc.relationGABY R., MCMAHON M.P., MAZZOTTI F.J., GILLES W.N. AND WILCOX J.R. 1985. Ecology of a population of Crocodylus acutus at a power plant site in Florida. Journal of Herpetology 19:184–198.
dc.relationGALLINA, S. Y LÓPEZ, C. 2011. Manual de Técnicas para el Estudio de la Fauna. Universidad Autónoma de Querétaro, México. Disponible en: http:www.uaq.mx.
dc.relationGARCÍA-GRAJALES, J. AND BUENROSTRO-SILVA, A. 2019. Assessment of human–crocodile conflict in Mexico: patterns, trends and hotspots areas. Marine and Freshwater Research, 70:708-720.
dc.relationGARTON, E.O., WISDOM, M.J., LEBAN, F.A. AND JOHNSON, B.K. 2001. Experimental design for radiotelemetry studies. Pp. 15–42 in J.J. Millspaugh and J. M. Marzluffe (Eds.), Radio tracking and animal populations. Academic Press, USA.
dc.relationGAY-ANTAKI, M. AND LIVERMAN, D. 2018. Climate for women in climate science: Women scientists and the Intergovernmental Panel on Climate Change. Proceedings of the National Academy of Sciences 115:2060-2065.
dc.relationGETZ, W. M., AND WILMERS, C. C. 2004. A local nearest‐neighbor convex‐hull construction of home ranges and utilization distributions. Ecography 27:489–505.
dc.relationGETZ, W.M., FORTMANN-ROE, S., CROSS, P.C., LYONS, A.J., RYAN, S.J. AND WILMERS, C.C. 2007. LoCoH: Nonparametric Kernel Methods for Constructing Home Ranges and Utilization Distributions. PLOS ONE 2: e207.
dc.relationGONZÁLEZ-MAYA, J. F., VELA-VARGAS, I. M., MURILLO-SÁNCHEZ, J. A., PINEDA-GUERRERO, A. AND FARFÁN-ARDILA, N. 2011. Proceso de liberación y monitoreo de Babillas (Caiman crocodilus fuscus) en el Complejo Cenagoso de Zapatosa. Boletín Oficial Del Proyecto de Conservación de Aguas y Tierras (ProCAT) 4: 13–14.
dc.relationGOODWIN, T. AND W. R. MARION 1979. Seasonal activity ranges and habitat preferences of adult alligators in a north-central Florida lake. Journal of herpetology 13:157–164.
dc.relationGRIGG, G. AND KIRSHNER, D. 2015. Biology and evolution of crocodylians. 1st ed. Cornell University Press, USA.
dc.relationGROSSO, J., FRATANI, J., FONTANARROSA, G., CHULIVER, M., DUPORT-BRU, A. S., SCHNEIDER, R. G., CASAGRANDA, M. D., FERRARO, D.P., VICENTE, N., SALICA, M., PEREYRA, L., MEDIAN, R. G., BESSA, C., SEMHAN, R. AND VERA, M. C. 2021. Male homophily in South American herpetology: one of the major processes underlying the gender gap in publications. Amphibia-Reptilia 42:407-418.
dc.relationHANSON, J. O., SALISBURY, S. W., CAMPBELL, H. A., DWYER, R. G., JARDINE, T. D., AND FRANKLIN, C. E. 2014. Feeding across the food web: The interaction between diet, movement and body size in estuarine crocodiles (Crocodylus porosus). Austral Ecology 40:275–286.
dc.relationHARVEY, G. K. A., NELSON, T. A., FOX, C. H., AND PAQUET, P. C. 2017. Quantifying marine mammal hotspots in British Columbia, Canada. Ecosphere 8:1–22.GAY-ANTAKI, M. AND LIVERMAN, D. 2018. Climate for women in climate science: Women scientists and the Intergovernmental Panel on Climate Change. Proceedings of the National Academy of Sciences 115:2060-2065.
dc.relationHEKKALA, E., SHIRLEY, M. H., AMATO, G., AUSTIN, J. D., CHARTER, S., THORBJARNARSON, J., VLIET, K. A., HOUCK, M. L., DESALLE, R., AND BLUM, M. J. 2011. An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Molecular ecology 20:4199–4215.
dc.relationHEMSON, G., JOHNSON, P., SOUTH, A., KENWARD, R., RIPLEY, R. AND MACDONALD, D. 2005. Are kernels the mustard? Data from global positioning systems (GPS) collars suggests problems for kernel home-range analyses with least-squares cross-validation. Journal of Animal Ecology 74:455–463.
dc.relationHOCUTT, C. H., LOVERIDGE, J. P., AND HUTTON, J. M. 1992. Biotelemetry monitoring of translocated Crocodylus niloticus in Lake Ngezi, Zimbabwe. Journal of Zoology 226:231-242.
dc.relationHORNE, J. S., GARTON, E. O., KRONE, S. M. AND LEWIS, J. S. 2007. Analyzing animal movements using Brownian bridges. Ecology 88:2354–2363.
dc.relationHUCHZERMEYER, F. W. 2003. Crocodiles: biology, husbandry and diseases. CABI Publishing, USA.
dc.relationHUTTON, J. 1989. Movements, Home Range, Dispersal and the Separation of Size Classes in Nile Crocodiles. American Zoologist 29:1033–1049.
dc.relationIUCN (INTERNATIONAL UNION FOR CONSERVATION OF NATURE). 2022. Order Crocodylia (spatial data). The IUCN Red List of Threatened Species. Version 2022. https://www.iucnredlist.org. Accessed on 14 June 2022.
dc.relationJOANEN, T., AND MCNEASE, L. 1970. A telemetric study of nesting female alligators on Rockefeller Refuge, Louisiana. In Proceedings of the Annual Conference of the Southeastern Association of Game and Fish Commissioners 24:175–193.
dc.relationJOANEN, T., AND MCNEASE, L. 1972. A telemetric study of adult male alligators on Rockefeller Refuge, Louisiana. In Proceedings of the Annual Conference of the Southeastern Association of Game and Fish Commissioners 26:252–275.
dc.relationJOLLIFFE, I. T., AND CADIMA, J. 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374: 20150202.
dc.relationKAY, W. R. 2004. Movements and home ranges of radio-tracked Crocodylus porosus in the Cambridge Gulf region of Western Australia. Wildlife Research 31:495–508.
dc.relationKAYS, R., CROFOOT, M. C., JETZ, W., AND WIKELSKI, M. 2015. ECOLOGY. Terrestrial animal tracking as an eye on life and planet. Science 348: aaa2478.
dc.relationKENWARD, R.E. 2001a. A manual for wildlife radio tagging. Academic Press, USA
dc.relationKENWARD, R.E. 2001b. Historical and practical perspectives. Pp. 3–12 in J. J. Millspaugh and J.M. Marzluff (Eds.), Radio tracking and animal populations. Academic Press, USA.
dc.relationKERNOHAN, B.J., GITZEN, R. A. AND MIL, J.J. 2001. Analysis of Animal Space Use and Movements. Pp. 126–164 in J. J. Millspaugh and J.M. Marzluff (Eds.), Radio tracking and animal populations. Academic Press, USA.
dc.relationKEUCHLE, V.B., HAYNES, J.M. AND REICHLE, R.A. 1989. Use of small computers as telemetry data collectors. Pp. 695–699 in C. I. Amlaner (Ed.), Biotelemetry X. University of Arkansas Press, USA.
dc.relationKIE, J. G., MATTHIOPOULOS, J., FIEBERG, J., POWELL, R. A., CAGNACCI, F., MITCHELL, M. S., GAILLARD, J. M. AND MOORCROFT, P. R. 2010. The home-range concept: are traditional estimators still relevant with modern telemetry technology? Philosophical Transactions of the Royal Society B 365:2221–2231.
dc.relationKINGSBURY, B. A. AND ROBINSON, N. J. 2016. Movement patterns and telemetry Pp.110–120 in C. K. Dodd (Ed.). Reptile ecology and conservation. A hand- book of techniques. Oxford University Press, United Kingdom.
dc.relationKOLZ, A.L. AND JOHNSON, R.E. 1981. The human hearing response to pulsed-audio tones: implications for wildlife telemetry design. Proceedings of the Third International Conference on Wildlife Biotelemetry 27–34.
dc.relationKOUMAN, C.Y., EBOME, A.E.A., AHIZI, M.N., OUATTARA, M., OUATTARA, A., FAIRET, E. AND SHIRLEY, M.H. 2021. Space use and social interactions of Central African slender-snouted crocodiles Mecistops leptorhynchus (Bennett, 1835) in Loango National Park, Gabon. African Journal of Ecology 59:866–879.
dc.relationKRUSKAL, W. H., AND WALLIS, W. A. 1952. Journal of the American Statistical Analysis. Journal of the American Statistical Association 47: 583–621
dc.relationKUSHLAN, J. A., AND MAZZOTTI, F. J. 1989. Population Biology of the American Crocodile. Journal of Herpetology 23:7–21.
dc.relationLANG, J. AND WHITAKER, S. 2010. Application of telemetry techniques in crocodilian research: Gharial (Gavialis gangeticus) Spatial Ecology in the Chambal River, India. Pp. 161–171 in K. Sivakumar and B. Habib (Eds.), Telemetry in Wildlife Science ENVIS Bulletin Wildlife and Protected Areas. Wildlife Institute of India, India.
dc.relationLANG, J, CHOWFIN, S. AND ROSS, J.P. 2019. Gavialis gangeticus (errata version published in 2019). The IUCN Red List of Threatened Species 2019: e.T8966A149227430. Available from: https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T8966A149227430.en. Accessed on 09 December 2021.
dc.relationLAWSON, K., KANWISHER, J. AND WILLIAMS, T. C. 1976. A UHF Radiotelemetry System for Wild Animals. The Journal of Wildlife Management, 40: 360-362.
dc.relationLEE, M. S. AND YATES, A. M. 2018. Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proceedings of the Royal Society B, 285:20181071.
dc.relationLEMMER, H. H. 1987. A Modified Mann-Whitney-Wilcoxon Test for the Two-Sample Location Problem. Journal of Statistical Computation and Simulation 27: 307–319.
dc.relationLEWIS, J. D., CAIN, J. W., AND DENKHAUS, R. 2014. Home Range and Habitat Selection of an Inland Alligator (Alligator mississippiensis) Population at the Northwestern Edge of the Distribution Range. Southeastern Naturalist 13:261–279.
dc.relationLICHTI, N. I. AND SWIHART, R. K. 2011. Estimating utilization distributions with kernel versus local convex hull methods. Journal of Wildlife Management 75:413–422.
dc.relationMACGREGOR, J. 2006. The call of the wild: Captive crocodilian production and the shaping of conservation incentives. Traffic International, Cambridge, UK.
dc.relationMAGNUSSON, W. E., AND LIMA, A. P. 1991. The ecology of a cryptic predator, Paleosuchus trigonatus, in a tropical rainforest. Journal of Herpetology 41–48.
dc.relationMAGNUSSON, W.E., CAMPOS, Z. AND MUNIZ, F. 2019. Paleosuchus palpebrosus. The IUCN Red List of Threatened Species 2019: e.T46587A3009946. Available from: https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T46587A3009946.en. Accessed on 07 December 2021
dc.relationMARIONI, B., MAGNUSSON, W. E., VOGT, R. C., AND VILLAMARÍN, F. 2022. Home range and movement patterns of male dwarf caimans (Paleosuchus palpebrosus and Paleosuchus trigonatus) living in sympatry in Amazonian floodplain streams. Neotropical Biodiversity 8: 156–166.
dc.relationMARQUES, T. S., BASSETTI, L. A. B., LARA, N. R. F., PORTELINHA, T. C. G., PIÑA, C. I., AND VERDADE, L. M. 2020. Home Range and Movement Pattern of the Broad-Snouted Caiman (Caiman latirostris) in a Silviculture Dominated Landscape. South American Journal of Herpetology 16:16–25.
dc.relationMARTIN, A. R., AND DA SILVA, V. M. 1998. Tracking aquatic vertebrates in dense tropical forest using VHF telemetry. Marine Technology Society. Marine Technology Society Journal 32:82–88.
dc.relationMASCARENHAS-JUNIOR, P., MAFFEI, F., MUNIZ, F., FREITAS-FILHO, R. F., PORTELINHA, T. C. G., CAMPOS, Z. AND BASSETTI, L. A. 2021. Conflicts between humans and crocodilians in urban areas across Brazil: a new approach to support management and conservation. Ethnobiology and Conservation, 10:37
dc.relationMAZZOTTI, F. 1983. The ecology of Crocodylus acutus in Florida. Ph.D. Dissertation, Pennsylvania State University Park, USA.
dc.relationMCDONALD, J.H. 2014. Handbook of Biological Statistics (3rd ed.). Printed version Sparky House Publishing, USA.
dc.relationMCNEASE, L., AND JOANEN, T. 1974. A study of immature alligators on Rockefeller Refuge, Louisiana. Proceedings of the Southeastern Association of Game and Fish Commissioners 28:482–500.
dc.relationMEDEM, F. 1981. Los Crocodylia de Sur América. Los Crocodylia de Colombia. Ministerio de Educación Nacional, Colombia,
dc.relationMILLSPAUGH, J. J. 1995. Seasonal movements, habitat use patterns, and the effects of human disturbances on elk in Custer State Park, South Dakota. M.S. Dissertation, South Dakota State University, USA.
dc.relationMILLSPAUGH, J. J., AND MARZLUFF, J. M. 2001. Radio-tracking and animal populations: past trends and future needs. Pp. 383–393 in J. J. Millspaugh and J.M. Marzluff (Eds.), Radio tracking and animal populations. Academic Press, USA.
dc.relationMILLSPAUGH, J. J., SKALSKI, J. R., KERNOHAN, B.J., RAEDEKE, K.J., BRUNDIGE, G. C. AND COOPER, A. B. 1998. Some comments on spatial independence in studies of resource selection. Wildlife Society Bulletin 26:232–236.
dc.relationMOHR, C. O. 1947. Table of equivalent populations of North American small mammals. American Midland Naturalist 37:223–449.
dc.relationMORALES-BETANCOURT, M. A., LASSO, C. A., OSSA, J. D. AND FAJARDO-PATIÑO, A. 2013. Biología y conservación de los Crocodylia de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Colombia.
dc.relationMORAN, R A. 1950. Notes on continuous stochastic phenomena. Biometrika 37:17–23.
dc.relationMOREA, C. R., RICE, K. G., PERCIVAL, H. F., AND HOWARTER, S. R. 2000. Home range and daily movement of the American alligator in the Everglades. In Proceedings of the Working Meeting of the Crocodile Specialist Group 15:486–505.
dc.relationMORENO-ARIAS, R. AND ARDILA-ROBAYO, M. C. 2020. Journeying to freedom: the spatial ecology of a reintroduced population of Orinoco crocodiles (Crocodylus intermedius) in Colombia. Animal Biotelemetry 8:1–13.
dc.relationMUÑOZ, M. D. C., AND THORBJARNARSON, J. 2000. Movement of captive-released Orinoco crocodiles (Crocodylus intermedius) in the Capanaparo River, Venezuela. Journal of Herpetology 397–403.
dc.relationMYERS, N. 1988. Threatened biotas: “Hot spots” in tropical forests. The Environmentalist 8: 187–208.
dc.relationNELDER, J. A., AND WEDDERBURN, R. W. M. 1972. Generalized Linear Models. Journal of the Royal Statistical Society Series A: 370–384.
dc.relationNICOLAÏ, M. P. J., AND MATZKE, N. J. 2019. Trait‐based range expansion aided in the global radiation of Crocodylidae. Global Ecology and Biogeography 28:1244–1258.
dc.relationNILSEN, E. B., PEDERSEN, S., AND LINNELL, J. D. C. 2007. Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? Ecological Research 23:635–639.
dc.relationOUBOTER, P. E., AND NANHOE, L. M. R. 1988. Habitat Selection and Migration of Caiman crocodilus crocodilus in a Swamp and Swamp-Forest Habitat in Northern Suriname. Journal of Herpetology 22:283–294.
dc.relationPAN, T., MIAO, J.-S., ZHANG, H.-B., YAN, P., LEE, P.-S., JIANG, X.-Y., OUYANG, J.-H., DENG, Y.-P, ZHANG, B. -W. AND WU, X.-B. 2020. Near-complete phylogeny of extant Crocodylia (Reptilia) using mitogenome-based data. Zoological Journal of the Linnean Society 191: 1075–1089.
dc.relationPNNT - PARQUE NACIONAL NATURAL TAYRONA. 2006. Plan De Manejo 2005-2009. Parque Nacional Natural Tayrona. Parques Nacionales Naturales de Colombia, Pp. 283. Disponible en : https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2013/12/PMPNNTayrona.pdf.
dc.relationPARQUES NACIONALES NATURALES DE COLOMBIA DIRECCIÓN TERRITORIAL CARIBE 2020. Plan de manejo de los parques nacionales naturales Sierra Nevada de Santa Marta y Tayrona. Parques nacionales naturales de Colombia, Santa Marta, Pp 531.Disponible:https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2020/10/plan-de-manejo-del-pnn-sierra-nevada-de-santa-marta-y-tayrona.pdf
dc.relationPÉREZ-SOLANO, L. Y MANDUJANO, S. 2018. Radiotelemetría GPS: aplicación en el monitoreo del ganado caprino en la reserva de la biosfera de Tehuacán-Cuicatlán, Oaxaca, México. Agro productividad 11:63–69.
dc.relationPINEDA-GUERRERO, A., AND HERNÁNDEZ, E. 2016. Four new reports of mammal species from Tayrona National Park, Colombia. Mammalogy Notes 3:44–45.
dc.relationPRENDERGAST, J., QUINN, R. M., LAWTON, J. H., EVERSHAM, B. C., AND GIBBONS, D. W. 1993. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337.
dc.relationPRIEDE, I. G. AND SWIFT S.M. 1992. Wildlife telemetry: remote monitoring and tracking of animals. Ellis Horwood, England.
dc.relationPRIMACK, R.B. 2010. Essentials of conservation biology. Fifth Edition. Sunderland: Sinauer Associates, USA.
dc.relationRAINWATER, T. R., PLATT, S. G., CHARRUAU, P., BALAGUERA-REINA, S. A., SIGLER, L., CEDEÑO-VÁZQUEZ, J. R. AND THORBJARNARSON, J. B. 2021. Crocodylus acutus. The IUCN Red List of Threatened Species 2021: E.T5659A168712617. Available from: https://dx.doi.org/10.2305/IUCN.UK.2021-3.RLTS.T5659A168712617.en. Accessed on 07 December 2021.
dc.relationREAD M. A., GRIGG G. C., IRWIN S. R., SHANAHAN D. AND FRANKLIN C. E. 2007 Satellite Tracking Reveals Long Distance Coastal Travel and Homing by Translocated Estuarine Crocodiles, Crocodylus porosus. PLOS ONE 2: e949.
dc.relationRODDA, G. H. 1984a Homeward paths of displaced juvenile alligators as determined by radiotelemetry. Behavioral Ecology and Sociobiology 14:241–246.
dc.relationRODDA, G. 1984b. Movements of Juvenile American Crocodiles in Gatun Lake, Panama. Herpetologica 40:444–451.
dc.relationRODGERS, R. A. 2001. Recent Telemetry Technology Pp 79–121 In: Millspaugh, J.J. and J.M. Marzluff (Eds.). Radio tracking and animal populations. Academic Press, USA.
dc.relationROOTES, W. L. 1989. Behavior of the American alligator in a Louisiana freshwater marsh. Ph.D. Dissertation, Louisiana State University and Agricultural and Mechanical College, USA.
dc.relationROOTES, W. L., AND CHABRECK, R. H. 1993. Reproductive Status and Movement of Adult Female Alligators. Journal of Herpetology 27:121–126.
dc.relationROSENBLATT, A. E., AND HEITHAUS, M. R. 2011. Does variation in movement tactics and trophic interactions among American alligators create habitat linkages? Journal of Animal Ecology 80:786–798.
dc.relationROSENBLATT, A. E., HEITHAUS, M. R., MAZZOTTI, F. J., CHERKISS, M., AND JEFFERY, B. M. 2013. Intra-population variation in activity ranges, diel patterns, movement rates, and habitat use of American alligators in a subtropical estuary. Estuarine, Coastal and Shelf Science 135:182–190.
dc.relationROSS, J.P. 2000. Melanosuchus niger. The IUCN Red List of Threatened Species 2000: e.T13053A3407604. Available from: https://dx.doi.org/10.2305/IUCN.UK.2000.RLTS.T13053A3407604.en. Accessed on 07 December 2021.
dc.relationRSTUDIO TEAM. 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA Available from: http://www.rstudio.com/.
dc.relationRUEDA-ALMONACID, J. V., CARR, J. L., MITTERMEIER, R. A., RODRÍGUEZ-MAHECHA, J. V., MAST, R. B., VOGT, R. C., RHODIN, A. G. J., VELÁSQUEZ, J., DE LA O., RUEDA, J. N. AND MITTERMEIER, C. G. 2007. Las tortugas y los cocodrilianos de los países andinos del Trópico. Serie de guías tropicales de campo N° 6. Conservación internacional. Editorial Panamericana.
dc.relationRUEDA-SOLANO, L.A. Y CASTELLANOS-BARLIZA, J. 2010. Herpetofauna De Neguanje, Parque Nacional Natural Tayrona, Caribe Colombiano. Acta Biológica Colombiana 15: 195–206.
dc.relationRUSKAI, M. B. 1989. How stereotypes about science affect the participation of women. Washington, DC: Association for Women in Science.
dc.relationSAALFELD, D. T. 2010. American Alligator (Alligator mississippiensis) ecology in inland wetlands of east Texas. Ph.D. Dissertation, Stephen F. Austin State University, USA.
dc.relationSAMUEL, M. D., PIERCE, D. J. AND GARTON, E. O. 1985. Identifying areas of concentrated use within the home range. Journal of Animal Ecology 54:711–719.
dc.relationSÁNCHEZ-MARÍN, F. A. 2014. Evaluación de la ecología espacial del Cocodrilo Americano Crocodylus acutus (Crocodylidae – Crocodilia; Cuvier, 1807) en el Parque Nacional Coiba, Panamá. Trabajo de grado, Universidad del Quindío, Colombia.
dc.relationSCHOENER, T.W., 1981. An empirical based estimate of home range. Theoretical Population Biology 20: 281–325.
dc.relationSEAMAN, D. E., MILLSPAUGH, J. J., KERNOHAN, B.J., BRUNDIGE, G. C., RAEDEKE, K.J. AND GITZEN, R. A. 1999. Effects of sample size on kernel home range estimates. Journal of Wildlife Management 63:739–747
dc.relationSIABATO, W. AND GUZMÁN-MANRIQUE, J. 2019. La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografía. Revista Colombiana de Geografía 28:1–22.
dc.relationSHIRLEY, M. H. 2014. Mecistops cataphractus. The IUCN Red List of Threatened Species 2014: e.T5660A3044332. Available from: https://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T5660A3044332.en. Downloaded on 10 December 2021.
dc.relationSHIRLEY, M.H., VLIET, K.A, CARR, A.N. AND AUSTIN, J. D. 2014. Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proceedings of the Royal Society B: Biological Sciences 281: 20132483.
dc.relationSHIRLEY, M. H., CARR, A. N., NESTLER, J. H., VLIET, K. A., AND BROCHU, C. A. 2018. Systematic revision of the living African slender-snouted crocodiles (Mecistops gray, 1844). Zootaxa 4504:151–193.
dc.relationSKUPIEN, G. M., ANDREWS, K. M., AND NORTON, T. M. 2016. Benefits and biases of VHF and GPS telemetry: A case study of American alligator spatial ecology. Wildlife Society Bulletin 40: 772–780.
dc.relationSMITH, E. N. 1975. Thermoregulation of the American Alligator, Alligator mississippiensis. Physiological Zoology 48: 177–194.
dc.relationSOMAWEERA, R., BRIEN, M. L., SONNEMAN, T., DIDHAM, R. K., AND WEBBER, B. L. 2019. Absence of evidence is not evidence of absence: Knowledge shortfalls threaten the effective conservation of freshwater crocodiles. Global Ecology and Conservation 20: e00773.
dc.relationSOMAWEERA, R., NIFONG, J., ROSENBLATT, A., BRIEN, M., COMBRINK, X., ELSEY, R., GRIGG, G., MAGNUSSON, W., MAZZOTTI, F., PEARCY, A., PLATT, S., SHIRLEY, M., TELLEZ, M., VAN DER PLOEG, J., WEBB, G., WHITAKER, R. AND WEBBER, B. 2020. The ecological importance of crocodylians: towards evidence‐based justification for their conservation. Biological Reviews. Cambridge Philosophical Society 95: 936–959.
dc.relationSTEIN, P. J. 2011. Active acoustic monitoring systems for detecting, localizing, tracking, and classifying marine mammals and fish. The Journal of the Acoustical Society of America 129: 2369–2369.
dc.relationSTRAUSS, M., BOTHA, H., AND VAN HOVEN, W. 2008. Nile crocodile Crocodylus niloticus telemetry: observations on transmitter attachment and longevity. African Journal of Wildlife Research 38:189–192.
dc.relationSTRICKLAND, B. A., GASTRICH, K., MAZZOTTI, F. J., MASSIE, J. A., PAZ, V., VIADERO, N., REHAGE, J. AND HEITHAUS, M. R. 2020. Variation in movement behavior of alligators after a major hurricane. Animal Biotelemetry 8:1-10.
dc.relationSTRICKLAND, B. A., GASTRICH, K., BEAUCHAMP, J. S., MAZZOTTI, F. J., AND HEITHAUS, M. R. 2022. Effects of hydrology on the movements of a large-bodied predator in a managed freshwater marsh. Hydrobiologia 849:861–878.
dc.relationSUBALUSKY, A. L., FITZGERALD, L. A., AND SMITH, L. L. 2009. Ontogenetic niche shifts in the American Alligator establish functional connectivity between aquatic systems. Biological Conservation 142:1507–1514.
dc.relationSWIHART, R.K. AND SLADE, N.A. 1985. Testing for independence of observations in animal movements. Ecology 66: 1176–1184.
dc.relationTARGARONA, R. R., SOBERÓN, R. R., COTAYO, L., TABET, M. A. AND THORBJARNARSON, J. 2008. Crocodylus rhombifer. The IUCN Red List of Threatened Species 2008: e.T5670A112902585. Available from: https://dx.doi.org/10.2305/IUCN.UK.1996.RLTS.T5670A11516438.en. Downloaded on 10 December 2021.
dc.relationTAYLOR, D., JOANEN, T. AND MCNEASE, L. 1976. A comparison of native and introduced immature alligators in northeast Louisiana. Proceedings of the Southeastern Association of Fish and Wildlife Agencies 30:362–370.
dc.relationTAYLOR, D. 1984. Management implications of an adult female alligator telemetry study. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 38:222–227.
dc.relationTELENAX. (2020). Mochilas VHF para cocodrilos y caimanes: an online reference. Available from: https://telenax.com/product-details/mochilas-vhf/ on 3 March 2022.
dc.relationTELONICS S.A (2020). TR-8 Receiver Manual. 480. Available from: https://www.telonics.com/products/vhfReceivers/TR-8 User Manual.pdf
dc.relationTHOMAS, B., HOLLAND, J. D., AND MINOT, E. O. 2010. Home range and movement patterns of an estuarine crocodile Crocodylus porosus: a satellite tracking pilot study. Northern Territory Naturalist 22:60–74.
dc.relationTOMKIEWICZ, S.M., FULLER, MR., KIE, J.G. AND BATES, K.K. 2010. Global positioning system and associated technologies in animal behavior and ecological research. Philosophical Transactions of the Royal Society. Biological Sciences 365: 2163–2176.
dc.relationTHORBJARNARSON, J., MAZZOTTI, F., SANDERN, E., BUITRAGO F., LAZCANO, M., MINKOWSKI, K., MUÑOZ, M., PONCE, P., SIGLER, L., SOBERON, R., TRELANCIA, A., AND VELASCO A. 2006. Regional habitat conservation priorities for the American crocodile. Biological Conservation 128:25–36.
dc.relationTUCKER, A. D., LIMPUS, C. J., MCCALLUM, H. I. AND MCDONALD, K. R. 1997. Movements and home ranges of Crocodylus johnstoni in the Lynd River, Queensland. Wildlife Research 24:379–396.
dc.relationVAN WEERD, M., VAN DER PLOEG, J., RODRIGUEZ, D., GUERRERO, J., TARUN, B., TELAN, S., AND DE JONGE, J. 2006. Philippine crocodile conservation in Northeast Luzon: an update of population status and new insights into Crocodylus mindorensis ecology. Proceedings 17th Working Meeting of the IUCN-SSC Crocodile Specialist Group: 306–321.
dc.relationVAN DE VEN, W., TELAN, S., JOSÉ, E., LINDEYER, F., TUBBS, N., DE JONGE, J., RODRIGUEZ, D. BALBAS, M., GUERRERO, J., VAN WEERD, M., PLOEG, V. D. AND DE IONGH, H. 2017. Movements and Home Ranges of Philippine crocodiles in San Mariano, Isabela. Journal of Natural History 2:40–46.
dc.relationVARGAS-ORTEGA, D. 2014. Estructura poblacional, distribución espacial y estudio de hábitat de Crocodylus acutus (Cuvier 1807) en Parque Nacional Natural Tayrona-(PNNT), Caribe colombiano. Tesis de pregrado. Universidad Pedagógica y Tecnológica de Colombia, Colombia.
dc.relationVOIGT, D. R. AND TINLINE, R. R. 1980. Strategies for analyzing radio tracking data. Pp. 387–404 in C. J. Jr. Amlaner and D. W. Macdonald. A. handbook on biotelemetry and radio tracking. Pergamon, United Kingdom.
dc.relationWALL, J. 2014. Movement Ecology Tools for ArcGIS (ArcMET). Version 10.6.1. Available from: http://www.movementecology.net/arcmet_software.html on 1 March 2022.
dc.relationWALTER, W. D., FISCHER, J. W., BARUCH-MORDO, S. AND VERCAUTEREN, K. C. 2011. What Is the Proper Method to Delineate Home Range of an Animal Using Today’s Advanced GPS Telemetry Systems: The Initial Step. Pp. 249–268 in O. Krejcar (Ed.) Modern Telemetry, Tech Open Access Publisher, England.
dc.relationWANG, Z., YAO, H., DING, Y., THORBJARNARSON, J., AND WANG, X. 2011. Testing reintroduction as a conservation strategy for the critically endangered Chinese alligator: movements and home range of released captive individuals. Chinese Science Bulletin 56:2586–2593.
dc.relationWATANABE, Y. Y., REYIER, E. A., LOWERS, R. H., IMHOFF, J. L., AND PAPASTAMATIOU, Y. P. 2013. Behavior of American alligators monitored by multi-sensor data loggers. Aquatic Biology 18: 1–8.
dc.relationWEBB, G., AND MESSEL, H. 1978. Movement and Dispersal Patterns of Crocodylus porosus in some Rivers of Arnhem Land, Northern Australia. Wildlife Research 5: 263–283.
dc.relationWEBB, G. J. W., MANOLIS, S. C. AND BUCKWORTH, R. 1983. Crocodylus johnstoni in the McKinlay River area N. T, III. Growth, movement and the population age structure. Wildlife Research 10:383-401.
dc.relationWEBB G. AND MANOLIS S. 1989. Crocodiles of Australia. Reed New Holland, Australia.
dc.relationWHITE, G. C, AND GARROTT, R. A. 1990. Analysis of wildlife radio-tracking data. Academic Press, USA.
dc.relationWITHEY, J.C., BLOXTON, T.D. AND MARZLUFF, J.M. 2001. Effects of Tagging and Location Error in Wildlife Radiotelemetry Studies Pp. 43-75 in J. J. Millspaugh and J.M. Marzluff (Eds.), Radio tracking and animal populations. Academic Press, USA.
dc.relationWORTON, B. J. 1987. A review of models of home range for animal movement. Ecological Modeling 38: 277–298.
dc.relationWORTON, B. J. 1989. Kernel methods for estimating the utilization distribution in homerange studies. Ecology 70:164–168.
dc.relationZANDONÀ, E. 2022. Female ecologists are falling from the academic ladder: A call for action. Perspectives in Ecology and Conservation. https://doi.org/10.1016/j.pecon.2022.04.001
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.subjectSpatial ecology
dc.subjectAmerican crocodile
dc.subjectSpectacled caiman
dc.subjectCrocodylia
dc.subjectProtected area
dc.subjectCAIMAN CROCODILUS
dc.subjectCROCODYLUS ACUTUS
dc.subjectRADIOTELEMETRIA
dc.subjectEcología espacial
dc.subjectCaimán aguja
dc.subjectBabilla
dc.subjectCrocodylia
dc.subjectÁrea protegida
dc.titleRangos de hogar y desplazamiento de Caiman crocodilus y Crocodylus acutus en temporada seca del Parque Nacional Natural Tayrona, Colombia: una aproximación a través de la radiotelemetría como herramienta de conservación
dc.titleHome range and movement of Caiman crocodilus and Crocodylus acutus during a dry season in Tayrona National Natural Park, Colombia: an approach using radiotelemetry as a conservation tool
dc.typeTesis/Trabajo de grado - Monografía - Pregrado
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.coverageParque Nacional Natural Tayrona
dc.coverageCampus UMNG


Este ítem pertenece a la siguiente institución