Interpretación paleoambiental de los sedimentos del último milenio en la Ciénaga de Marriaga, Delta de Atrato, Colombia

dc.creatorBetancurth Montes, Liliana
dc.creatorCañón Barriga, Julio Eduardo
dc.date2021-07-23
dc.date2023-03-22T18:49:11Z
dc.date2023-03-22T18:49:11Z
dc.date.accessioned2023-09-06T17:37:33Z
dc.date.available2023-09-06T17:37:33Z
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5071
dc.identifier10.18359/rcin.5071
dc.identifierhttp://hdl.handle.net/10654/42606
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8691824
dc.descriptionThis paper presents the first paleoenvironmental reconstruction of the last 1,130 a of the Marriaga Swamp in the Atrato River delta in northwestern Colombia. The geochemical analyses of a 220 cm sediment core retrieved from the swamp reveal interesting climatic episodes and sedimentary changes in the last millennium. We split the core into three segments, according to sediment features, organic carbon content (OC), and geological ages. Records show different alternations of humid and dry periods, biological productivity, carbonate precipitation, weathering grade, and high heavy metal concentrations. The segments also concur with the geochemical differences determined by (Zr+Rb)/Sr, Ca/Ti Mn/Fe, OC/Ti, Mg/Ca Ba/Al, Sr/Al, and Ca/Al ratios. The older sequence (between 1,130 ± 90 a and 870 ± 70 a) shows a dry period with intermittent flooding events and high OC production in subareal conditions, followed by a more humid environment between 870 ± 70 a and 530 ± 40 a, with depletion of trace element ratios and OC. The more recent period (530 ± 40 a to present) evinces an environment dominated by the fluvial regime, based on a lower Ca/Al ratio and a rise of OC. The statistical correlations display three main clusters that distinguish among organic-biological productivity, bedrock source components, and heavy metal inputs.
dc.descriptionEn este estudio se presenta la primera reconstrucción paleoambiental de los últimos 1130 años de la Ciénaga de Marriaga en el delta del río Atrato, en el noroeste de Colombia. Los análisis geoquímicos de un núcleo de sedimento de 220 cm recuperado en la ciénaga revelan episodios climáticos interesantes y cambios sedimentarios en el último milenio. Se dividió el núcleo en tres segmentos, según las características de los sedimentos, el contenido de carbono orgánico (CO) y las edades geológicas. Los registros muestran diferentes alternancias de períodos húmedos y secos, la productividad biológica, precipitación de carbonato, grado de meteorización y altas concentraciones de metales pesados. Los segmentos también coinciden con las diferencias geoquímicas determina- das por las relaciones (ZR+RB)/Sr, Ca/Ti Mn/Fe, CO/Ti, Mg/Ca Ba/Al, Sr/Al Ca/Al. La secuencia inferior (entre 1130 ± 90 a y 870 ± 70 a) muestra un período seco con inundaciones intermitentes y una alta producción de CO en condiciones subaéreas, seguida de un entorno más húmedo entre 870 ± 70 años y 530 ± 40 años, con agotamiento de las proporciones de oligoelementos y CO. El período más reciente (530 ± 40 a al presente) evidencia un ambiente dominado por el régimen fluvial, basado en una relación Ca/Al más baja y un aumento de CO. Las correlaciones estadísticas muestran tres gru- pos principales que distinguen entre la productividad biológica orgánica, los componentes de la roca madre y los aportes de metales pesados.
dc.formatapplication/pdf
dc.formattext/xml
dc.languageeng
dc.publisherUniversidad Militar Nueva Granada
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5071/4764
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/5071/4803
dc.relation/*ref*/S. Lojen and N. Williams, “Geochemical and mineralogical characterization of sediments from Lake Futalaufquen (42.8°S, Andean Patagonia) to evaluate their potential as paleoclimatic proxies,” Quat. Res., vol. 98, pp. 1–18, 2020. https://doi.org/10.1017/qua.2020.34
dc.relation/*ref*/A. K. M. Hasberg et al., “Modern sedimentation processes in Lake Towuti, Indonesia, revealed by the composition of surface sediments,” Sedimentology, vol. 66, no. 2, pp. 675–698, 2019. https://doi.org/10.1111/sed.12503
dc.relation/*ref*/X. Zhang, D. E. Walling, X. He, and Y. Long, “Use of landslide-dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century,” Catena, vol. 79, no. 3, pp. 205–213, 2009. http://dx.doi.org/10.1177/0959683615574584
dc.relation/*ref*/I. Matthias and T. Giesecke, “Insights into pollen source area, transport and deposition from modern pollen accumulation rates in lake sediments,” Quat. Sci. Rev., vol. 87, pp. 12–23, 2014. http://doi.org/10.1016/j.quascirev.2013.12.015
dc.relation/*ref*/H. Sakai, R. Fujii, M. Sugimoto, R. Setoguchi, and M. Paudel, “Two times lowering of lake water at around 48 and 38 ka, caused by possible earthquakes, recorded in the Paleo-Kathmandu lake, central Nepal Himalaya,” Earth Planets Space, vol. 68, no. 1. pp. 1–10, 2016. https://doi.org/10.1007/s11368-019-02420-5
dc.relation/*ref*/A. E. Self et al., “The relative influences of climate and volcanic activity on Holocene lake development inferred from a mountain lake in central Kamchatka,” Glob. Planet. Chang., vol. 134, pp. 67–81, 2015. https://doi.org/10.1016/j.sedgeo.2006.04.006
dc.relation/*ref*/J. P. Corella et al., “Sediment dynamics in the subaquatic channel of the Rhone delta (Lake Geneva, France/Switzerland),” Aquat. Sci., vol. 76, no. S1, pp. 73–87, 2014. https://doi.org/10.1007/s00027-013-0309-4
dc.relation/*ref*/F. Ocakoğlu et al., “A 2800-year multi-proxy sedimentary record of climate change from Lake Çubuk (Göynük, Bolu, NW Anatolia),” Holocene, vol. 26, no. 2, pp. 205–221, 2016. https://doi.org/10.1177/0959683615596818
dc.relation/*ref*/M. L. Carrevedo et al., “A 700-year record of climate and environmental change from a high Andean lake: Laguna del Maule, central Chile (36°S),” Holocene, vol. 25, no. 6, pp. 956–972, 2015. https://doi.org/10.1177/0959683615574584
dc.relation/*ref*/M. S. Tonello et al., “Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability,” J. Soils Sediments, vol. 20, no. 2, pp. 1060-1073, 2020. https://doi.org/10.1007/s11368-019-02420-5
dc.relation/*ref*/N. Fagel, E. Thamó-bózsó, and B. Heim, “Mineralogical signatures of Lake Baikal sediments: Sources of sediment supplies through Late Quaternary,” Sediment. Geol., vol. 194, no. 1-2, pp. 37–59, 2007. https://doi.org/10.1016/j.sedgeo.2006.04.006
dc.relation/*ref*/S. Purnawan, I. Setiawan, and Z. A. Muchlisin, “Sediment grain-size distribution in the Lake Laut Tawar, Aceh Province, Indonesia,” Aquac. Aquarium, Conserv. Legis. Int. J. Bioflux Soc., vol. 8, no. 3, pp. 404–410, 2015. http://www.bioflux.com.ro/aacl
dc.relation/*ref*/J. D. Correa, “Calidad del agua en humedales del plano de inundación del río Atrato,” Rev. Cienc. Ambient. Sostenibilidad cas, vol. 1, no. 1, pp. 93–109, 2014.
dc.relation/*ref*/A. F. Rúa Cardona, M. T. Flórez Molina, and J. P. Baena, “Variación espacial y temporal en los contenidos de mercurio, plomo, cromo y materia orgánica en sedimento del complejo de humedales de Ayapel, Córdoba, noroccidente colombiano,” Rev. Fac. Ing., no. 69, pp. 244–255, 2013.
dc.relation/*ref*/G. Bernal and J. Betancur, “Sedimentología de las lagunas costeras: Ciénaga Grande de Santa Marta y Ciénaga de Pajarales,” Bol. Investig. Mar. Costeras, vol. 25, pp. 49–76, 1996. https://doi.org/10.25268/bimc.invemar.1996.25.0.370
dc.relation/*ref*/J. D. Restrepo and S. A. López, “Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America,” South Am. Earth Sci., vol. 25, no. 1, pp. 1–21, 2008. https://doi.org/10.1016/j.jsames.2007.09.002
dc.relation/*ref*/G. Poveda, “La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna,” Rev. Acad. Colomb. Cienc. Exactas Fís. Nat., vol. 28, no. 107, pp. 201–222, 2004.
dc.relation/*ref*/Y. Thomas, M. Cesaraccio, C. García, and L. Ménanteau, “Contribución de la hidrografía histórica al estudio de la cinemática de los fondos marinos: evolución del golfo de Urabá, Colombia,” Bolet.Cientif. cioh, vol. 25, pp. 110–119, 2007.
dc.relation/*ref*/G. Rodríguez and G. Zapata, “Características del plutonismo Mioceno Superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del Noroccidente colombiano,” Bolet. Cienc. Tierra, no. 31, pp. 5–22, 2012. https://revistas.unal.edu.co/index.php/rbct/article/view/31250
dc.relation/*ref*/E. Lugo, R. Rodríguez, and G. Domínguez, “Prospección Geológica y Geoquímica Regional en el Área de Mandé,” Ingeominas, Bogotá, Colombia, Inf. Tecn. , 2003.
dc.relation/*ref*/G. Bedoya et al., “Inventario, compilación, interpretación y evaluación integral de la información geológica, geofísica y geoquímica de lIIa cuenca Atrato y cuenca San Juan,” anh, Bogotá, Colombia, Inf. Técn. , 2007.
dc.relation/*ref*/H. Gonzalez, Investigación Integral del Andén Pacífico Colombiano. Tomo 1 Geología, Bogotá, Colombia: igac-Ingeominas, 2001.
dc.relation/*ref*/L. Betancurth, F. Preusser, D. Mueller, C. Rambeau, and J. Cañón. “First luminescence chronology of late Holocene deposits of the tropical Atrato Delta, Colombia,” J. South Am. Earth Sci., vol. 104, p. 102813, 2020. https://doi.org/10.1016/j.jsames.2020.102813
dc.relation/*ref*/C. Martin-Puertas et al., “Geochemical processes in a Mediterranean Lake: a high-resolution study of the last 4,000 years in Zoñar Lake, southern Spain,” J. Paleolimnol., vol. 46, no. 3, pp. 405-421, 2011. https://doi.org/10.1007/s10933-009-9373-0
dc.relation/*ref*/M. Carbonell Ventura, A. Navarro Flores, and Borrell Ruscalleda, “Heavy metals contamination and seawater intrusion in the northeastern of delta river Foix (Barcelona),” Bolet. Geolog. y Min., pp. 1–24, 2014.
dc.relation/*ref*/R. M. Joeckel and B. A. Clement, “Surface features of the Salt Basin of Lancaster County, Nebraska,” Catena, vol. 34, no. 3–4, pp. 243–275, 1999. https://doi.org/10.1016/S0341-8162(98)00114-3
dc.relation/*ref*/M. Haberzettl et al., “Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina,” Holocene, vol. 17, no. 3, pp. 297–310, 2007. https://doi.org/10.1177/0959683607076437
dc.relation/*ref*/J. Ridgway, N. Breward, W. J. Langston, R. Lister, J. G. Rees, and S. M. Rowlatt, “Distinguishing between natural and anthropogenic sources of metals entering the Irish Sea,” Appl. Geochemistry, vol. 18, no. 2, pp. 283–309, 2003. https://doi.org/10.1016/S0883-2927(02)00126-9
dc.relation/*ref*/P. Negrel, “Multi-element Chemistry of Loire Estuary Sediments: Anthropogenic vs. Natural Sources,” Estuar. Coast. Shelf Sci., vol. 44, no. 4, pp. 395–410, 1997. https://doi.org/10.1006/ecss.1996.0139
dc.relation/*ref*/Y. Palacios-Torres, K. Caballero-Gallardo, and J. Olivero-Verbel, “Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region,” Chemosphere, vol. 193, pp. 421–430, 2018. https://doi.org/10.1016/j.chemosphere.2017.10.160
dc.relation/*ref*/S. M. Mclennan, “Relationships between the trace elements composition of sedimentary rocks and upper continental crust,” Geochem. GeophyGeosy., vol. 2, no. 4, pp. 1–24, 2001. https://doi.org/10.1029/2000GC000109
dc.relation/*ref*/K. H. Wedepohl, “The composition of the continental crust,” Geochim. Cosmochim. Acta, vol. 59, no. 7, pp. 1217–1232, 1995. https://doi.org/10.1016/0016-7037(95)00038-2
dc.relation/*ref*/E. Parra, “Potencial de recursos del subsuelo en la cordillera occidental zona Norte, fase 0,” Ingeominas, Bogotá, Colombia, Inf. Tecn. , 2006.
dc.relation/*ref*/M. A. H. Bhuiyan, M. J. J. Rahman, S. B. Dampare, and S. Suzuki, “Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra-Jamuna River, Bangladesh: Inference from geochemistry,” J. Geochemical Explor., vol. 111, no. 3, pp. 113–137, 2011. https://doi.org/10.1016/j.gexplo.2011.06.008
dc.relation/*ref*/L. Bénat-Tachot, “Santa María la Antigua del Darién: chronique d’une infortune locale,” e-Spania, no. 2006, pp. 12–32, 2015. https://doi.org/10.4000/e- spania.25105
dc.relation/*ref*/D. Meunier, A. Caner, L. Hubert, F. El Albani, and A. Pret, “The weathering intensity scale (wis): an alternative approach of the chemical index of alteration (cia),” Am. J. Sci., vol. 313, no. 2, pp. 113–143, 2013. https://doi.org/10.2475/02.2013.03
dc.relation/*ref*/G. E. Qian, X. U. E. Z. George, Y. E. Liming, and X. U. Dong, “Distribution Patterns of Major and Trace Elements and Provenance of Surface Sediments on the Continental Shelf off Western Guangdong Province and Northeastern Hainan Island,” J. Ocean Univ. China, vol. 18, no. 4, pp. 1–10, 2019. https://doi.org/10.1007/s11802-019-3738-4
dc.relation/*ref*/K. Goldberg and M. Humayun, “The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil,” Palaeogeogr. Palaeoclimatol. Palaeoecol., vol. 293, no. 1–2, pp. 175–183, 2010. https://doi.org/10.1016/j.palaeo.2010.05.015
dc.relation/*ref*/G. M. Nesbitt and H. W. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature, vol. 299, no. 5885, pp. 715–717, 1982. https://doi.org/10.1038/299715a0
dc.relation/*ref*/S. O. Oni and A. S. Olatunji, “Depositional environments signatures, maturity and source weathering of Niger Delta sediments from an oil well in southeastern Delta State, Nigeria,” Eurasian J. Soil Sci., vol. 6, no. 3, pp. 259–274, 2017. https://doi.org/10.18393/ejss.297245
dc.relation/*ref*/L. Harnois, “The ciw index: A new chemical index of weathering,” Sediment. Geol., vol. 55, no. 3-4, pp. 319–322, 1988. https://doi.org/10.1016/0037-0738(88)90137-6
dc.relation/*ref*/C. Vélez- Agudelo and N. Aguirre-Ramírez, “Influencia del río Atrato en el golfo de Urabá durante el holoceno tardío, mar caribe colombiano,” Bol. Investig. Mar. Costeras, vol. 45, no. 1, pp. 73–97, 2016. https://doi.org/10.25268/bimc.invemar.2016.45.1.631
dc.relation/*ref*/A. Rua, G. Liebezeit, R. Molina, and J. Palacio, “Unmixing Progradational Sediments in a Southwestern Caribbean Gulf through Late Holocene: Backwash of Low-Level Atmospheric Jets,” J. Coast. Res., vol. 32, no. 2, pp. 397–408, 2015. https://doi.org/10.2112/JCOASTRES-D-14-00216.1
dc.relation/*ref*/R. J. Smith and F. E. Mayle, “Impact of mid to late Holocene precipitation changes on vegetation across lowland tropical South America: a paleo-data synthesis,” Quat. Res., vol. 89, no. 1, pp. 1–22, 2017. https://doi.org/10.1017/qua.2017.89
dc.relation/*ref*/S. Sachs, J. P. Sachse, D. Smittenberg, R. H. Zhang, Z. Battisti, D. S., and Golubic, “Southward movement of the Pacific intertropical convergence zone AD 1400–1850,” Nat. Geosci., vol. 2, no. 7, pp. 519–525, 2009. https://doi.org/10.1038/ngeo554
dc.relation/*ref*/A. Jerardino, “Late Holocene Neoglacial episodes in southern South America and southern Africa: comparison,” Holocene, vol. 5, no. 3, pp. 361–368, 1995. https://doi.org/10.1177/095968369500500313
dc.relation/*ref*/N. Tribovillard, T. J. Algeo, T. Lyons , and A. Riboulleau, “Trace metals as paleoredox and paleoproductivity proxies: an update,” Chem. Geol., vol 232, no. 1-2, pp. 12–32, 2006. https://doi.org/10.1016/j.chemgeo.2006.02.012
dc.rightsDerechos de autor 2021 Ciencia e Ingeniería Neogranadina
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 31 No. 1 (2021); 9-24
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 31 Núm. 1 (2021); 9-24
dc.sourceCiencia e Ingeniería Neogranadina; v. 31 n. 1 (2021); 9-24
dc.source1909-7735
dc.source0124-8170
dc.subjectSwamp sediments
dc.subjectenvironmental reconstruction
dc.subjecttrace elements
dc.subjectpaleoclimate
dc.subjectweathering
dc.subjectreconstrucción ambiental
dc.subjectelementos traza
dc.subjectpaleoclima
dc.subjectmeteorización
dc.subjectsedimentos de ciénagas
dc.titlePaleoenvironmental Interpretation of Last Millennium Sediments in the Marriaga Swamp, Atrato Delta, Colombia
dc.titleInterpretación paleoambiental de los sedimentos del último milenio en la Ciénaga de Marriaga, Delta de Atrato, Colombia
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución