dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Mussardo, G. | |
dc.creator | Riva, V | |
dc.creator | Sotkov, G. | |
dc.date | 2014-05-20T14:07:43Z | |
dc.date | 2016-10-25T17:12:58Z | |
dc.date | 2014-05-20T14:07:43Z | |
dc.date | 2016-10-25T17:12:58Z | |
dc.date | 2003-10-27 | |
dc.date.accessioned | 2017-04-05T21:42:34Z | |
dc.date.available | 2017-04-05T21:42:34Z | |
dc.identifier | Nuclear Physics B. Amsterdam: Elsevier B.V., v. 670, n. 3, p. 464-478, 2003. | |
dc.identifier | 0550-3213 | |
dc.identifier | http://hdl.handle.net/11449/23785 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/23785 | |
dc.identifier | 10.1016/j.nuclphysb.2003.08.017 | |
dc.identifier | WOS:000186210300006 | |
dc.identifier | http://dx.doi.org/10.1016/j.nuclphysb.2003.08.017 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/868828 | |
dc.description | A semi-classical approach is used to obtain Lorentz covariant expressions for the form factors between the kink states of a quantum field theory with degenerate vacua. Implemented on a cylinder geometry it provides an estimate of the spectral representation of correlation functions in a finite volume. Illustrative examples of the applicability of the method are provided by the sine-Gordon and the broken phi(4) theories in 1 + 1 dimensions. (C) 2003 Elsevier B.V. All rights reserved. | |
dc.language | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation | Nuclear Physics B | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | form factors | |
dc.subject | kink solutions in finite volume | |
dc.subject | spectral density in finite volume | |
dc.title | Finite-volume form factors in semi-classical approximation | |
dc.type | Otro | |