dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMussardo, G.
dc.creatorRiva, V
dc.creatorSotkov, G.
dc.date2014-05-20T14:07:43Z
dc.date2016-10-25T17:12:58Z
dc.date2014-05-20T14:07:43Z
dc.date2016-10-25T17:12:58Z
dc.date2003-10-27
dc.date.accessioned2017-04-05T21:42:34Z
dc.date.available2017-04-05T21:42:34Z
dc.identifierNuclear Physics B. Amsterdam: Elsevier B.V., v. 670, n. 3, p. 464-478, 2003.
dc.identifier0550-3213
dc.identifierhttp://hdl.handle.net/11449/23785
dc.identifierhttp://acervodigital.unesp.br/handle/11449/23785
dc.identifier10.1016/j.nuclphysb.2003.08.017
dc.identifierWOS:000186210300006
dc.identifierhttp://dx.doi.org/10.1016/j.nuclphysb.2003.08.017
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/868828
dc.descriptionA semi-classical approach is used to obtain Lorentz covariant expressions for the form factors between the kink states of a quantum field theory with degenerate vacua. Implemented on a cylinder geometry it provides an estimate of the spectral representation of correlation functions in a finite volume. Illustrative examples of the applicability of the method are provided by the sine-Gordon and the broken phi(4) theories in 1 + 1 dimensions. (C) 2003 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationNuclear Physics B
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectform factors
dc.subjectkink solutions in finite volume
dc.subjectspectral density in finite volume
dc.titleFinite-volume form factors in semi-classical approximation
dc.typeOtro


Este ítem pertenece a la siguiente institución