dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorKraenkel, Roberto André
dc.creatorNoubissie, S.
dc.creatorWoafo, P.
dc.date2014-05-20T14:06:50Z
dc.date2016-10-25T17:12:05Z
dc.date2014-05-20T14:06:50Z
dc.date2016-10-25T17:12:05Z
dc.date2007-12-15
dc.date.accessioned2017-04-05T21:39:20Z
dc.date.available2017-04-05T21:39:20Z
dc.identifierPhysica D-nonlinear Phenomena. Amsterdam: Elsevier B.V., v. 236, n. 2, p. 131-140, 2007.
dc.identifier0167-2789
dc.identifierhttp://hdl.handle.net/11449/23462
dc.identifierhttp://acervodigital.unesp.br/handle/11449/23462
dc.identifier10.1016/j.physd.2007.08.001
dc.identifierWOS:000251500500005
dc.identifierhttp://dx.doi.org/10.1016/j.physd.2007.08.001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/868613
dc.descriptionWe study the propagation of waves in an elastic tube filled with an inviscid fluid. We consider the case of inhomogeneity whose mechanical and geometrical properties vary in space. We deduce a system of equations of the Boussinesq type as describing the wave propagation in the tube. Numerical simulations of these equations show that inhomogeneities prevent separation of right-going from left-going waves. Then reflected and transmitted coefficients are obtained in the case of localized constriction and localized rigidity. Next we focus on wavetrains incident on various types of anomalous regions. We show that the existence of anomalous regions modifies the wavetrain patterns. (c) 2007 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationPhysica D: Nonlinear Phenomena
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectelastic tubes
dc.subjectnonlinear waves propagation
dc.subjectarterial blood flow
dc.subjectreflection phenomenon
dc.titleA mathematical model for wave propagation in elastic tubes with inhomogeneities: Application to blood waves propagation
dc.typeOtro


Este ítem pertenece a la siguiente institución