dc.creatorGarcés, Alejandro
dc.creatorMontoya, Oscar Danilo
dc.date.accessioned2023-07-21T16:16:51Z
dc.date.accessioned2023-09-06T15:55:17Z
dc.date.available2023-07-21T16:16:51Z
dc.date.available2023-09-06T15:55:17Z
dc.date.created2023-07-21T16:16:51Z
dc.date.issued2022-09
dc.identifierA. Garcés, O. D. Montoya and W. Gil-González, "Power Flow in Bipolar DC Distribution Networks Considering Current Limits," in IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 4098-4101, Sept. 2022, doi: 10.1109/TPWRS.2022.3181851.
dc.identifierhttps://hdl.handle.net/20.500.12585/12310
dc.identifier10.1109/TPWRS.2022.3181851.
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8683667
dc.description.abstractPower electronics converters are equipped with current controls that protect the converter from over-currents. This protection introduces non-differentiable equations into the power flow problem. The conventional Newton's method is not suitable in that conditions. This letter proposes a fixed-point iteration to overcome this difficulty. The technique is derivative-free, and hence, it can naturally include the saturation given by the converters' current protection. Exact conditions for convergence and uniqueness of the solution are demonstrated using Banach's fixed point theorem. Numerical experiments in Matlab complement the analysis
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceIEEE Transactions on Power Systems - Vol. 37 No 5 (2022)
dc.titlePower Flow in Bipolar DC Distribution Networks Considering Current Limits


Este ítem pertenece a la siguiente institución