dc.creatorArias, F.A
dc.creatorMalakhaltsev, M.
dc.date.accessioned2023-07-21T15:35:23Z
dc.date.accessioned2023-09-06T15:54:59Z
dc.date.available2023-07-21T15:35:23Z
dc.date.available2023-09-06T15:54:59Z
dc.date.created2023-07-21T15:35:23Z
dc.date.issued2020-12
dc.identifierArias, F.A., Malakhaltsev, M. Topological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold. Lobachevskii J Math 41, 2415–2426 (2020). https://doi.org/10.1134/S1995080220120070
dc.identifierhttps://hdl.handle.net/20.500.12585/12265
dc.identifier10.1134/S1995080220120070
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8683640
dc.description.abstractA contact structure on a three-dimensional manifold is a two-dimensional distribution on this manifold which satisfies the condition of complete non-integrability. If the distribution fails to satisfy this condition at points of some submanifold, we have a contact structure with singularities. The singularities of contact structures were studied by J. Martinet, B. Jakubczyk and M. Zhitomirskii. We consider a contact structure with singularities as a G-structure with singularities, we find some topological and differential invariants of singularities of contact structure and establish their relation to the invariants found by B. Jakubczyk and M. Zhitomirskii. © 2020, Pleiades Publishing, Ltd.
dc.languageeng
dc.publisherCartagena de Indias
dc.publisherCampus Tecnológico
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceLobachevskii Journal of Mathematics - Vol. 41 No.2 (2020)
dc.titleTopological and Differential Invariants of Singularities of Contact Structure on a Three-Dimensional Manifold


Este ítem pertenece a la siguiente institución