dc.creatorArias, Fabián
dc.creatorBorja, Jerson
dc.creatorRubio, Luis
dc.date.accessioned2023-07-21T16:24:19Z
dc.date.accessioned2023-09-06T15:54:44Z
dc.date.available2023-07-21T16:24:19Z
dc.date.available2023-09-06T15:54:44Z
dc.date.created2023-07-21T16:24:19Z
dc.date.issued2019
dc.identifierArias, F., Borja, J., & Rubio, L. (2018). Counting integers representable as images of polynomials modulo $ n$. arXiv preprint arXiv:1812.11599.
dc.identifierhttps://hdl.handle.net/20.500.12585/12340
dc.identifierhttps://cs.uwaterloo.ca/journals/JIS/
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8683619
dc.description.abstractGiven a polynomial f(x1,x2,…,xt) in t variables with integer coefficients and a positive integer n, let α(n) be the number of integers 0 ≤ a < n such that the polynomialcongruencef(x1,x2,…,xt) ≡ a(modn)issolvable. Wedescribeamethod that allows us to determine the function α associated with polynomials of the form c1xk1+c2xk2+···+ctxkt. Then, we apply this method to polynomials that involve sums and differences of squares, mainly to the polynomials x2 +y2, x2 −y2, and x2 +y2 +z2. © 2019, University of Waterloo. All rights reserved.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceJournal of Integer Sequences
dc.titleCounting integers representable as images of polynomials modulo n


Este ítem pertenece a la siguiente institución