dc.creatorGrisales-Noreña, Luis Fernando
dc.creatorCortés-Caicedo, Brandon
dc.creatorAlcalá, Gerardo
dc.creatorMontoya, Oscar Danilo
dc.date.accessioned2023-07-21T15:45:30Z
dc.date.accessioned2023-09-06T15:54:35Z
dc.date.available2023-07-21T15:45:30Z
dc.date.available2023-09-06T15:54:35Z
dc.date.created2023-07-21T15:45:30Z
dc.date.issued2023
dc.identifierGrisales-Noreña, L.F.; Cortés-Caicedo, B.; Alcalá, G.; Montoya, O.D. Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks. Mathematics 2023, 11, 387. https://doi.org/10.3390/math11020387
dc.identifierhttps://hdl.handle.net/20.500.12585/12282
dc.identifierhttps://doi.org/10.3390/math11020387
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8683609
dc.description.abstractThis paper presents an efficient master–slave methodology to solve the problem of integrating photovoltaic (PV) generators into DC grids for a planning period of 20 years. The problem is mathematically formulated as Mixed-Integer Nonlinear Programming (MINLP) with the objective of minimizing the total annual operating cost. The main stage, consisting of a discrete-continuous version of the Crow search algorithm (DCCSA), is in charge of determining the installation positions of the PV generators and their corresponding power ratings. On the other hand, at the slave level, the successive approximation power flow method is used to determine the objective function value. Numerical results on 33- and 69-bus test systems demonstrate the applicability, efficiency and robustness of the developed approach with respect to different methodologies previously discussed in the scientific literature, such as the vortex search algorithm, the generalized normal distribution optimizer and the particle swarm optimization algorithm. Numerical tests are performed in the MATLAB programming environment using proprietary scripts. © 2023 by the authors.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceMathematics 2023, 11, 387
dc.titleApplying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks


Este ítem pertenece a la siguiente institución