dc.creatorMendoza, Kevin D.
dc.creatorSierra, Juan S
dc.creatorTello, Alejandro
dc.creatorGalvis, Virgilio
dc.creatorRomero, Lenny A.
dc.creatorMarrugo, Andrés G.
dc.date.accessioned2023-07-19T21:23:19Z
dc.date.accessioned2023-09-06T15:52:53Z
dc.date.available2023-07-19T21:23:19Z
dc.date.available2023-09-06T15:52:53Z
dc.date.created2023-07-19T21:23:19Z
dc.date.issued2022
dc.identifierMendoza, K. D., Sierra, J. S., Tello, A., Galvis, V., Romero, L. A., & Marrugo, A. G. (2022, July). Generative Adversarial Networks for Cell Segmentation in Human Corneal Endothelium. In Imaging Systems and Applications (pp. ITh3D-3). Optica Publishing Group
dc.identifierhttps://hdl.handle.net/20.500.12585/12222
dc.identifierhttps://scopus.utb.elogim.com/record/display.uri?eid=2-s2.0-85139550660&origin=resultslist&sort=plf-f&src=s&sid=95182a388077e068fee69a2cc90d4eed&sot=b&sdt=b&s=TITLE-ABS-KEY%28Generative+Adversarial+Networks+for+Cell+Segmentation+in+Human+Corneal+Endothelium%29&sl=97&sessionSearchId=95182a388077e068fee69a2cc90d4eed
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8683468
dc.description.abstractWe generate synthetic images with a generative adversarial network (GAN) model trained with image patches from specular microscopy corneal endothelial cells. Preliminary results show it may be a suitable approach for reliable cell segmentation. © 2022 The Author(s)
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceOptics InfoBase Conference Papers
dc.titleGenerative Adversarial Networks for Cell Segmentation in Human Corneal Endothelium


Este ítem pertenece a la siguiente institución