dc.creatorSuarez, Oscar J.
dc.creatorMacias-Garcia, Edgar
dc.creatorVega, Carlos J.
dc.creatorPeñaloza, Yersica C.
dc.creatorHernández Díaz, Nicolás
dc.creatorGarrido, Victor M.
dc.date.accessioned2023-07-21T16:21:09Z
dc.date.accessioned2023-09-06T15:51:59Z
dc.date.available2023-07-21T16:21:09Z
dc.date.available2023-09-06T15:51:59Z
dc.date.created2023-07-21T16:21:09Z
dc.date.issued2023
dc.identifierSuarez, O. J., Macias-Garcia, E., Vega, C. J., Peñaloza, Y. C., Díaz, N. H., & Garrido, V. M. (2022, July). Design of a Segmentation and Classification System for Seed Detection Based on Pixel Intensity Thresholds and Convolutional Neural Networks. In IEEE Colombian Conference on Applications of Computational Intelligence (pp. 1-17). Cham: Springer Nature Switzerland.
dc.identifierhttps://hdl.handle.net/20.500.12585/12322
dc.identifier10.1007/978-3-031-29783-0_1
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8683397
dc.description.abstractDue to the computational power and memory of modern computers, computer vision techniques and neural networks can be used to develop a visual inspection system of agricultural products to satisfy product quality requirements. This chapter employs artificial vision techniques to classify seeds in RGB images. As a first step, an algorithm based on pixel intensity threshold is developed to detect and classify a set of different seed types, such as rice, beans, and lentils. Then, the information inferred by this algorithm is exploited to develop a neural network model, which successfully achieves learning classification and detection tasks through a semantic-segmentation scheme. The applicability and satisfactory performance of the proposed algorithms are illustrated by testing with real images, achieving an average accuracy of 92% in the selected set of classes. The experimental results verify that both algorithms can directly detect and classify the proposed set of seeds in input RGB images. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceCommunications in Computer and Information Science
dc.titleDesign of a Segmentation and Classification System for Seed Detection Based on Pixel Intensity Thresholds and Convolutional Neural Networks


Este ítem pertenece a la siguiente institución