dc.creatorRomero-Mercado, Caleb D.
dc.creatorContreraz-Ortiz, Sonia H.
dc.creatorMarrugo, Andres G.
dc.date.accessioned2023-07-19T12:57:15Z
dc.date.accessioned2023-09-06T15:45:35Z
dc.date.available2023-07-19T12:57:15Z
dc.date.available2023-09-06T15:45:35Z
dc.date.created2023-07-19T12:57:15Z
dc.date.issued2022
dc.identifierRomero-Mercado, C. D., Contreras-Ortiz, S. H., & Marrugo, A. G. (2022, November). Effect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs. In Workshop on Engineering Applications (pp. 150-159). Cham: Springer Nature Switzerland.
dc.identifierhttps://hdl.handle.net/20.500.12585/12161
dc.identifier10.1007/978-3-031-20611-5_13
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8682813
dc.description.abstractThe convolutional neural networks (CNNs) as tools for ultrasound image segmentation often have their performance affected by the low signal-to-noise ratio of the images. This prevents a correct classification and extraction of relevant information and therefore affects clinical diagnosis. We propose a study of the effect of different speckle filtering methods on CNN performance. For the proposed metrics (Jaccard coefficient and BF-Score), it was obtained that the SRAD filter exhibited the best behavior even in the lowest quality data. In addition, the lowest values were obtained for the standard deviation and variance, which translates into lower data dispersion, better repeatability, and, therefore, greater confidence in its accuracy. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceCommunications in Computer and Information Science
dc.titleEffect of Speckle Filtering in the Performance of Segmentation of Ultrasound Images Using CNNs


Este ítem pertenece a la siguiente institución