dc.creatorBarrios, Erik
dc.creatorPineda, Jesus
dc.creatorRomero, Lenny A
dc.creatorMillán, María S
dc.creatorMarrugo, Andrés G.
dc.date.accessioned2023-07-18T19:17:34Z
dc.date.accessioned2023-09-06T15:44:25Z
dc.date.available2023-07-18T19:17:34Z
dc.date.available2023-09-06T15:44:25Z
dc.date.created2023-07-18T19:17:34Z
dc.date.issued2021-09-02
dc.identifierBarrios, E., Pineda, J., Romero, L.A., Millán, M.S., Marrugo, A.G. Skin color correction via convolutional neural networks in 3D fringe projection profilometry (2021) Proceedings of SPIE - The International Society for Optical Engineering, 11804, art. no. 118041P, . DOI: 10.1117/12.2594331
dc.identifierhttps://hdl.handle.net/20.500.12585/12114
dc.identifier10.1117/12.2594331
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8682688
dc.description.abstractFringe Projection Profilometry (FPP) with Digital Light Projector technology is one of the most reliable 3D sensing techniques for biomedical applications. However, besides the fringe pattern images,often a color texture image is needed for an accurate medical documentation. This image may be acquired either by projecting a white image or a black image and relying on ambient light. Color Constancy is essential for a faithful digital record, although the optical properties of biological tissue make color reproducibility challenging. Furthermore, color perception is highly dependent on the illuminant. Here, we describe a deep learning-based method for skin color correction in FPP. We trained a convolutional neural network using a skin tone color palette acquired under different illumination conditions to learn the mapping relationship between the input color image and its counterpart in the sRGB color space. Preliminary experimental results demonstrate the potential for this approach.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceProceedings of SPIE - The International Society for Optical Engineering - Vol. 11804 (2021)
dc.titleSkin color correction via convolutional neural networks in 3D fringe projection profilometry


Este ítem pertenece a la siguiente institución