dc.creator | Barrera Pérez, Carlos Eduardo | |
dc.creator | Serrano, Jairo E. | |
dc.creator | Martinez-Santos, Juan Carlos | |
dc.date.accessioned | 2023-07-21T16:23:36Z | |
dc.date.accessioned | 2023-09-06T15:44:07Z | |
dc.date.available | 2023-07-21T16:23:36Z | |
dc.date.available | 2023-09-06T15:44:07Z | |
dc.date.created | 2023-07-21T16:23:36Z | |
dc.date.issued | 2021 | |
dc.identifier | Pérez, C. E. B., Serrano, J. E., & Martinez-Santos, J. C. (2021, December). Cyberattacks Predictions Workflow using Machine Learning. In 2021 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT) (pp. 1-6). IEEE. | |
dc.identifier | https://hdl.handle.net/20.500.12585/12335 | |
dc.identifier | 10.1109/ICMLANT53170.2021.9690527 | |
dc.identifier | Universidad Tecnológica de Bolívar | |
dc.identifier | Repositorio Universidad Tecnológica de Bolívar | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8682647 | |
dc.description.abstract | This research aims to validate the effectiveness of a machine learning model composed of three classifiers: decision tree, logistic regression, and support vector machines. Through the design of a workflow, we demonstrate the effectiveness of the model. First, we execute a network attack, and then monitoring, processing, storage, visualization, and data transfer tools are implemented to create the most realistic environment possible and obtain more accurate predictions. © 2021 IEEE. | |
dc.language | eng | |
dc.publisher | Cartagena de Indias | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.source | Proceedings of the 2021 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2021 | |
dc.title | Cyberattacks Predictions Workflow using Machine Learning | |