dc.creatorGiraldo-Guzman, Jader
dc.creatorContreras-Ortiz, Sonia H.
dc.creatorCastells, Francisco
dc.creatorKotas, Marian
dc.date.accessioned2023-07-18T19:31:46Z
dc.date.accessioned2023-09-06T15:44:02Z
dc.date.available2023-07-18T19:31:46Z
dc.date.available2023-09-06T15:44:02Z
dc.date.created2023-07-18T19:31:46Z
dc.date.issued2021-10
dc.identifierJ. Giraldo-Guzman, S. H. Contreras-Ortiz, F. Castells and M. Kotas, "Spatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogota D.C., Colombia, 2021, pp. 1-6, doi: 10.1109/CI-IBBI54220.2021.9626098.
dc.identifierhttps://hdl.handle.net/20.500.12585/12140
dc.identifier10.1109/CI-IBBI54220.2021.9626098
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8682638
dc.description.abstractAtrial fibrillation (AF) is the most common cardiac arrhythmia and increases the risk of suffering stroke. Some people with AF do not have symptoms, so, its diagnosis can be difficult, especially in early stages of the disease. In this paper, we propose the use of the spatio-Temporal filter (STF) to characterize atrial activity in ECG recordings and distinguish between normal sinus rhythm (NSR) and atrial arrhythmias. This method allows the effective detection of P waves when they are synchronized with QRS complexes. The distances from the QRS complexes to the detected P waves are characterized by seven dispersion metrics that are used as inputs to three clustering algorithms. The results show classification accuracy of up to 98.88% of NSR and atrial arrhythmias.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.source2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering, CI-IB and BI 2021
dc.titleSpatio Temporal Filtering of Multi-lead ECG Signals for Atrial Arrhythmia Classification


Este ítem pertenece a la siguiente institución