dc.creatorDelahoz-Dominguez, Enrique
dc.creatorZuluaga-Ortiz, Rohemi
dc.creatorMendoza-Mendoza, Adel
dc.creatorEscorcia, Jey
dc.creatorMoreira-Villegas, Francisco
dc.creatorOliveros-Eusse, Pedro
dc.date.accessioned2023-07-14T13:53:26Z
dc.date.accessioned2023-09-06T15:42:59Z
dc.date.available2023-07-14T13:53:26Z
dc.date.available2023-09-06T15:42:59Z
dc.date.created2023-07-14T13:53:26Z
dc.date.issued2022
dc.identifierDelahoz-Dominguez, E., Zuluaga-Ortiz, R., Mendoza-Mendoza, A., Escorcia, J., Moreira-Villegas, F., & Oliveros-Eusse, P. (2022). A recommender system for digital newspaper readers based on random forest. En Computer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing.
dc.identifierhttps://hdl.handle.net/20.500.12585/12106
dc.identifierDOI 10.1007/978-3-031-10539-5_14
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8682531
dc.description.abstractIn this research, the potential of machine learning methods based on decision trees (DT) and Random Forest (RF) models developed in the context of classifying readers of a digital newspaper. For this purpose, the number of visits of users to each section of the newspaper in a 3-month interval has been taken into account. The models of DT and RF developed in this paper classify the profiles of readers who access the journal with an accuracy of 98.07% and AUC value of 99.27%, thus demonstrating that it serves as a valid tool for making strategic and operational decisions when creating, manage and present content in the user – website interaction. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceComputer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing.
dc.titleA Recommender System for Digital Newspaper Readers Based on Random Forest


Este ítem pertenece a la siguiente institución