dc.creatorSierra, Juan S.
dc.creatorPineda, Jesus
dc.creatorRueda, Daniela
dc.creatorTello, Alejandro
dc.creatorPrada, Angélica M.
dc.creatorGalvis, Virgilio
dc.creatorVolpe, Giovanni
dc.creatorMillan, Maria S.
dc.creatorRomero, Lenny A.
dc.creatorMarrugo, Andres G.
dc.date.accessioned2023-07-21T16:24:39Z
dc.date.accessioned2023-09-06T15:42:38Z
dc.date.available2023-07-21T16:24:39Z
dc.date.available2023-09-06T15:42:38Z
dc.date.created2023-07-21T16:24:39Z
dc.date.issued2023
dc.identifierSierra, J. S., Pineda, J., Rueda, D., Tello, A., Prada, A. M., Galvis, V., ... & Marrugo, A. G. (2023). Corneal endothelium assessment in specular microscopy images with Fuchs’ dystrophy via deep regression of signed distance maps. Biomedical optics express, 14(1), 335-351.
dc.identifierhttps://hdl.handle.net/20.500.12585/12342
dc.identifier10.1364/BOE.477495
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio Universidad Tecnológica de Bolívar
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8682481
dc.description.abstractSpecular microscopy assessment of the human corneal endothelium (CE) in Fuchs’ dystrophy is challenging due to the presence of dark image regions called guttae. This paper proposes a UNet-based segmentation approach that requires minimal post-processing and achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs’ dystrophy. We cast the segmentation problem as a regression task of the cell and gutta signed distance maps instead of a pixel-level classification task as typically done with UNets. Compared to the conventional UNet classification approach, the distance-map regression approach converges faster in clinically relevant parameters. It also produces morphometric parameters that agree with the manually-segmented ground-truth data, namely the average cell density difference of -41.9 cells/mm2 (95% confidence interval (CI) [-306.2, 222.5]) and the average difference of mean cell area of 14.8 µm2 (95% CI [-41.9, 71.5]). These results suggest a promising alternative for CE assessment. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
dc.languageeng
dc.publisherCartagena de Indias
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceBiomedical Optics Express
dc.titleCorneal endothelium assessment in specular microscopy images with Fuchs’ dystrophy via deep regression of signed distance maps


Este ítem pertenece a la siguiente institución