dc.contributorBecerra Bayona, Silvia Milena
dc.contributorSolarte David, Víctor Alfonso
dc.contributorSolarte David, Víctor Alfonso [0001329391]
dc.contributorBecerra Bayona, Silvia Milena [0001568861]
dc.contributorBecerra Bayona, Silvia Milena [es&oi=ao]
dc.contributorSolarte David, Víctor Alfonso [0000-0002-9856-1484]
dc.contributorBecerra Bayona, Silvia Milena [0000-0002-4499-5885]
dc.contributorBecerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]
dc.contributorSolarte David, Víctor Alfonso [víctor-alfonso-solarte-david]
dc.contributorBecerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.creatorOrtiz Galvis, Brithney Johanna
dc.creatorSarabia Quintero, Miguel Angel
dc.creatorMartinez Tello, Andrea Juliana
dc.date.accessioned2023-08-08T16:09:47Z
dc.date.accessioned2023-09-06T15:31:25Z
dc.date.available2023-08-08T16:09:47Z
dc.date.available2023-09-06T15:31:25Z
dc.date.created2023-08-08T16:09:47Z
dc.date.issued2023-07-27
dc.identifierhttp://hdl.handle.net/20.500.12749/21073
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8682155
dc.description.abstractLas células madre mesenquimales (MSC) se utilizan en medicina regenerativa para tratar diversas enfermedades. Sin embargo, durante su expansión in vitro, un alto porcentaje muere debido a las condiciones estándar de cultivo o al tiempo transcurrido. Para el cultivo celular in vitro, hay dos parámetros importantes a tener en cuenta: 1) la fuente de factores de crecimiento, siendo el más utilizado el suero fetal bovino (FBS); sin embargo, puede causar problemas inmunológicos, contaminación por agentes infecciosos como virus, micoplasmas o bacterias, además de plantear dilemas éticos en su obtención y tener un alto costo comercial. 2) las condiciones de incubación, que generalmente presentan un 21% de oxígeno (normoxia), lo cual es elevado en comparación con las condiciones normales del tejido de las MSCs. A pesar de las limitaciones conocidas al cultivar con FBS y en condiciones de 21% de oxígeno, continúa haciéndose de esta manera sin tener en cuenta los daños colaterales que podrían causarse a las células. Por lo tanto, en este proyecto se evaluó el efecto de condiciones hipóxicas (5% de O2) y un medio no xenogénico como el plasma pobre en plaquetas (PPP), mediante el análisis del número de generaciones de población y el tiempo de duplicación de la población durante el tiempo de estudio en el cultivo, con el fin de determinar si las condiciones mencionadas son óptimas o factibles en la implementación de cultivos celulares. Con este propósito, se evaluaron dos condiciones: células cultivadas en normoxia y FBS como grupo de control, normoxia con PPP, hipoxia con FBS e hipoxia con PPP. Los resultados de esta investigación muestran que el grupo de control presentó una tasa de proliferación de 0.989 con 23 generaciones alcanzadas, mientras que los cultivos con las condiciones experimentales tuvieron una tasa de 0.978 para FBS en hipoxia con 22.36 generaciones, 0.964 para PPP en hipoxia con 13.08 generaciones y 0.945 para PPP en normoxia con 15.44 generaciones. A partir de esto, se concluye que la condición de cultivo suplementada con PPP bajo condiciones hipóxicas no es adecuada para expandir las MSCs, ya que es la que presenta la tasa de proliferación más baja y el menor número de generaciones de población en el tiempo de cultivo determinado.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherPregrado Ingeniería Biomédica
dc.relationAlmalki, S. G., & Agrawal, D. K. (2016). Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation; Research in Biological Diversity, 92(1–2), 41–51. https://doi.org/10.1016/j.diff.2016.02.005
dc.relationAlvarado-Moreno, J. A., & Mayani, H. (2007). El ciclo celular y su papel en la biología de las células progenitoras hematopoyéticas. Gaceta medica de Mexico, 143(2), 149–161. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=15150
dc.relationAntebi, B., Rodriguez, L.A., Walker, K.P. et al. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 9, 265 (2018). https://doi.org/10.1186/s13287-018-1007-x
dc.relationBadimon, L., Oñate, B., & Vilahur, G. (2015). Células madre mesenquimales derivadas de tejido adiposo y su potencial reparador en la enfermedad isquémica coronaria. Revista española de cardiologia, 68(7), 599–611. https://doi.org/10.1016/j.recesp.2015.02.025
dc.relationBeccia, E., Carbone, A., Cecchino, L. R., Pedicillo, M. C., Annacontini, L., Lembo, F., Di Gioia, S., Parisi, D., Angiolillo, A., Pannone, G., Portincasa, A., & Conese, M. (2021). Adipose Stem Cells and Platelet-Rich Plasma Induce Vascular-Like Structures in a Dermal Regeneration Template. Tissue engineering. Part A, 27(9-10), 631–641. https://doi.org/10.1089/ten.TEA.2020.0175
dc.relationBui, H. T. H. (2020, 4 noviembre). Influences of Xeno-Free Media on Mesenchymal Stem Cell Expansion for Clinical Application. SpringerLink. https://link.springer.com/article/10.1007/s13770-020-00306- z?error=cookies_not_supported&code=6a08e5ba-c19a-4018-a4cf-c97ea67e0a96#citeas
dc.relationBuravkova, L. B., Andreeva, E. R., Gogvadze, V., & Zhivotovsky, B. (2014). Mesenchymal stem cells and hypoxia: where are we? Mitochondrion, 19 Pt A, 105–112. https://doi.org/10.1016/j.mito.2014.07.005
dc.relationCarmen Lagunas Cruz, M., Mendiola, A. V., & Cruz, I. S. (2014). Ciclo celular: Mecanismos de regulación. Vertientes. Revista Especializada en Ciencias de la Salud, 17(2). http://revistas.unam.mx/index.php/vertientes/article/view/51694
dc.relationChen, C. F., & Liao, H. T. (2018). Platelet-rich plasma enhances adipose-derived stem cell-mediated angiogenesis in a mouse ischemic hindlimb model. World Journal of Stem Cells, 10(12), 212–227. https://doi.org/10.4252/wjsc.v10.i12.212
dc.relationChen, J., Cheng, Y., Fu, Y., Zhao, H., Tang, M., Zhao, H., Lin, N., Shi, X., Lei, Y., Wang, S., Huang, L., Wu, W., & Tan, J. (2020). Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Research & Therapy, 11(1), 97. https://doi.org/10.1186/s13287-020-01610-0
dc.relationChisini, L. A., Karam, S. A., Noronha, T. G., Sartori, L., San Martin, A. S., Demarco, F. F., & Conde, M. (2017). Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin. Acta stomatologica Croatica, 51(2), 133–140. https://doi.org/10.15644/asc51/2/6
dc.relationChisini, L., Conde, M., Grazioli, G., Martin, A., Carvalho, R., Nör, J., & Demarco, F. (2017). Venous Blood Derivatives as FBS-Substitutes for Mesenchymal Stem Cells: A Systematic Scoping Review. Brazilian Dental Journal, 28(6), 657-668. doi: 10.1590/0103- 6440201701646
dc.relationCIBIOGEM. (2019). CIBIOGEM. gob.mx. https://conacyt.mx/cibiogem/index.php/11-letra
dc.relationEgger, D., Lavrentieva, A., Kugelmeier, P., & Kasper, C. (2022). Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell‐based therapy products. Engineering in Life Sciences, 22(3–4), 361–372. https://doi.org/10.1002/elsc.202100097
dc.relationEjtehadifar, M., Shamsasenjan, K., Movassaghpour, A., Akbarzadehlaleh, P., Dehdilani, N., Abbasi, P., Molaeipour, Z., & Saleh, M. (2015). The effect of hypoxia on mesenchymal stem cell biology. Advanced Pharmaceutical Bulletin, 5(2), 141–149. https://doi.org/10.15171/apb.2015.021
dc.relationFelthaus, O., Prantl, L., Skaff-Schwarze, M., Klein, S., Anker, A., Ranieri, M., & Kuehlmann, B. (2017). Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells. Clinical hemorheology and microcirculation, 66(1), 47–55. https://doi.org/10.3233/CH-160203
dc.relationFormigli, L., Benvenuti, S., Mercatelli, R., Quercioli, F., Tani, A., Mirabella, C., Dama, A., Saccardi, R., Mazzanti, B., Cellai, I., & Zecchi-Orlandini, S. (2012). Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration. Journal of tissue engineering and regenerative medicine, 6(2), 125–134. https://doi.org/10.1002/term.405
dc.relationFormigli, L., Benvenuti, S., Mercatelli, R., Quercioli, F., Tani, A., Mirabella, C., Dama, A., Saccardi, R., Mazzanti, B., Cellai, I., & Zecchi-Orlandini, S. (2012). Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration. Journal of tissue engineering and regenerative medicine, 6(2), 125–134. https://doi.org/10.1002/term.405
dc.relationFraga, A., Ribeiro, R., & Medeiros, R. (2009). Hipoxia tumoral: Papel del factor inducible por hipoxia. Actas Urologicas Espanolas, 33(9), 941–951. https://doi.org/10.4321/s0210-48062009000900003
dc.relationFu, X., Liu, G., Halim, A., Ju, Y., Luo, Q., & Song, A. G. (2019). Mesenchymal stem cell migration and tissue repair. Cells (Basel, Switzerland), 8(8), 784. https://doi.org/10.3390/cells8080784
dc.relationGao, S., Xiang, C., Qin, K. & Sun, C. (2018). Mathematical Modeling Reveals the Role of Hypoxia in the Promotion of Human Mesenchymal Stem Cell Long-Term Expansion. Stem Cells International, 2018, 1-13. https://doi.org/10.1155/2018/9283432
dc.relationGarcia, G. A., Oliveira, R. G., Dariolli, R., Rudge, M. V. C., Barbosa, A. M. P., Floriano, J. F., & Ribeiro-Paes, J. T. (2022). Isolation and characterization of farm pig adipose tissue-derived mesenchymal stromal/stem cells. Brazilian Journal of Medical and Biological Research, 55, e12343. https://doi.org/10.1590/1414-431X2022e12343
dc.relationHaque, N., Rahman, M. T., Abu Kasim, N. H., & Alabsi, A. M. (2013). Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. TheScientificWorldJournal, 2013, 1–12. https://doi.org/10.1155/2013/632972
dc.relationHatakeyama, I., Marukawa, E., Takahashi, Y., Omura, K. (2014). Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs. Tissue engineering. Part A, 20(3-4), 874–882. https://doi.org/10.1089/ten.TEA.2013.0058
dc.relationJochems, C. E. A., van der Valk, J. B. F., Stafleu, F. R., & Baumans, V. (2002). The use of fetal bovine serum: ethical or scientific problem? Alternatives to Laboratory Animals: ATLA, 30(2), 219–227. https://doi.org/10.1177/026119290203000208
dc.relationKolios, G., & Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration; International Review of Thoracic Diseases, 85(1), 3–10. https://doi.org/10.1159/000345615
dc.relationKumar, S., & Vaidya, M. (2016). Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27. Molecular And Cellular Biochemistry, 415(1-2), 29-38. doi: 10.1007/s11010-016-2674-5.
dc.relationLavrentieva, A. (2010, 16 julio). Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells - Cell Communication and Signaling. BioMed Central. https://biosignaling.biomedcentral.com/articles/10.1186/1478-811X-8-18
dc.relationLavrentieva, A., Hoffmann, A., & Lee-Thedieck, C. (2020). Limited potential or unfavorable manipulations? Strategies toward efficient mesenchymal stem/stromal cell applications. Frontiers in Cell and Developmental Biology, 8, 316. https://doi.org/10.3389/fcell.2020.00316
dc.relationLe, A., Enweze, L., DeBaun, M. R., & Dragoo, J. L. (2019). Platelet-Rich Plasma. Clinics in sports medicine, 38(1), 17–44. https://doi.org/10.1016/j.csm.2018.08.001
dc.relationMansilla E. Díaz Aquino V. Zambón D. Marin GH. Mártire K. Roque G. etal.Couldmetabolicsyndrome.lipodystrophy.andagingbemesenchymalstemcellexhaustionsy ndromes?StemCellsInt.2011;943216.http://dx.doi.org/10.4061/2011/943216
dc.relationMartínez, C. E., Gómez, R., Kalergis, A. M., & Smith, P. C. (2019). Comparative effect of platelet-rich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clinical oral investigations, 23(5), 2455–2463. https://doi.org/10.1007/s00784-018-2637-1
dc.relationMartínez, C. E., Smith, P. C., & Palma Alvarado, V. A. (2015). The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Frontiers in Physiology, 6, 290. https://doi.org/10.3389/fphys.2015.00290
dc.relationMohamed-Ahmed, S., Fristad, I., Lie, S. A., Suliman, S., Mustafa, K., Vindenes, H., & Idris, S. B. (2018). Adipose-derived and bone marrow mesenchymal stem cells: a donor matched comparison. Stem Cell Research & Therapy, 9(1). https://doi.org/10.1186/s13287- 018-0914-1
dc.relationMoussavi-Harami, F., Duwayri, Y., Martin, J. A., Moussavi-Harami, F., & Buckwalter, J. A. (2004). Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. The Iowa Orthopaedic Journal, 24, 15–20.
dc.relationNATIONAL LIBRARY OF MEDICINE. (1979, enero). THE NLM TECHNICAL BULLETIN. THE NLM TECHNICAL BULLETIN. https://www.nlm.nih.gov/hmd/manuscripts/nlmarchives/techbull/117-128-1979.pdf
dc.relationPacifici, L., Casella, F., & Maggiore, C. (2002). Plasma arricchito di piastrine (PRP): metodi di estrazione e potenzialità d'uso [Platelet rich plasma (PRP): potentialities and techniques of extraction]. Minerva stomatologica, 51(7-8), 341–350.
dc.relationPlasma Rico en Plaquetas vs Plasma Pobre en Plaquetas | National Stem Cell Clinic. (2022). Retrieved 19 August 2022, from https://www.nationalstemcellclinic.com/plasma rico-en-plaquetas-vs-plasma-pobre-en-plaquetas
dc.relationQiu, P., Song, W., Niu, Z., Bai, Y., Li, W., Pan, S., Peng, S., & Hua, J. (2013). Platelet-derived growth factor promotes the proliferation of human umbilical cord-derived mesenchymal stem cells: PDGF PROMOTES THE PROLIFERATION OF hUC-MSCs. Cell Biochemistry and Function, 31(2), 159–165. https://doi.org/10.1002/cbf.2870
dc.relationSantos, F. (2022). Retrieved 2 September 2022, from https://onlinelibrary.wiley.com/doi/10.1002/bit.25187
dc.relationShaikh, M. V., Kala, M., & Nivsarkar, M. (2016). CD90 a potential cancer stem cell marker and a therapeutic target. Cancer Biomarkers: Section A of Disease Markers, 16(3), 301–307. https://doi.org/10.3233/CBM-160590
dc.relationSilva-Carvalho, A. É., Neves, F. A. R., & Saldanha-Araujo, F. (2020). The immunosuppressive mechanisms of mesenchymal stem cells are differentially regulated by platelet poor plasma and fetal bovine serum supplemented media. International Immunopharmacology, 79(106172), 106172. https://doi.org/10.1016/j.intimp.2019.106172
dc.relationSylakowski, K., Bradshaw, A., & Wells, A. (2020). Mesenchymal stem cell/multipotent stromal cell augmentation of wound healing: Lessons from the physiology of matrix and hypoxia support. The American Journal of Pathology, 190(7), 1370–1381. https://doi.org/10.1016/j.ajpath.2020.03.017
dc.relationWenger, R. H., Kurtcuoglu, V., Scholz, C. C., Marti, H. H., & Hoogewijs, D. (2015). Frequently asked questions in hypoxia research. Hypoxia (Auckland, N.Z.), 3, 35– 43. https://doi.org/10.2147/HP.S92198
dc.relationWu, D., & Yotnda, P. (2022). Induction and Testing of Hypoxia in Cell Culture. Retrieved 1 September 2022, from https://pubmed.ncbi.nlm.nih.gov/21860378/
dc.relationYang, YH.K., Ogando, C.R., Wang See, C. et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9, 131 (2018). https://doi.org/10.1186/s13287-018-0876-3
dc.relationZakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 68. https://doi.org/10.1186/s13287-019-1165-5
dc.relationZhao, A., Shah, K., Freitag, J., Cromer, B., & Sumer, H. (2020). Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells International, 2020, 1-11. doi: 10.1155/2020/8898221
dc.relationZheng, X., Baker, H., Hancock, W. S., Fawaz, F., McCaman, M., & Pungor, E., Jr. (2006). Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnology Progress, 22(5), 1294–1300. https://doi.org/10.1021/bp060121o
dc.relationhttps://apolo.unab.edu.co/en/persons/v%C3%ADctor-alfonso-solarte-david
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleEvaluación de la expansión de células madre mesenquimales en condiciones hipóxicas y medio suplementado con plasma pobre en plaquetas para la posible aplicación en la medicina regenerativa


Este ítem pertenece a la siguiente institución