dc.contributorSemilleros de Investigación UNAB
dc.creatorAcelas Ortíz, Diego Agustín
dc.creatorVargas Pérez, Juan Diego
dc.creatorGalvis Quintero, Laura Alejandra
dc.creatorAngarita Parra, Kathalina
dc.date.accessioned2023-09-01T22:51:46Z
dc.date.accessioned2023-09-06T15:17:36Z
dc.date.available2023-09-01T22:51:46Z
dc.date.available2023-09-06T15:17:36Z
dc.date.created2023-09-01T22:51:46Z
dc.date.issued2018-11
dc.identifierISSN 2344-7079
dc.identifierhttp://hdl.handle.net/20.500.12749/21622
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8681419
dc.description.abstractEl actual tratamiento de las patologías que afectan la piel es en ocasiones complicado, y requiere la realización de técnicas de alta complejidad para la reconstrucción quirúrgica basadas en injertos, colgajos y trasplantes. En este contexto, la generación de piel artificial en el laboratorio mediante técnicas de ingeniería de tejidos supone un gran avance en este campo. En el presente proyecto, se generarán y compararán modelos de piel artificial ortotípicos y heterotípicos, utilizando matrices extracelulares derivadas de fibroblastos, queratinocitos y células madre mesenquimales con el objetivo de determinar su posible utilidad potencial. Todos los sustitutos artificiales serán evaluados in vitro mediante marcadores de diferenciación celular, inmunohistoquímica y ensayos de viabilidad celular, finalmente, se analizará el comportamiento y las características estructurales y ultraestructurales de estos nuevos modelos de piel artificial. Este material es presentado al XII Encuentro de Semilleros de Investigación “El Intercambio del Conocimiento: Base para el Desarrollo". Una actividad carácter formativo. La Universidad Autónoma de Bucaramanga se reserva los derechos de divulgación con fines académicos, respetando en todo caso los derechos morales de los autores y bajo discrecionalidad del grupo de investigación que respalda cada trabajo para definir los derechos de autor.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ciencias de la Salud
dc.publisherPregrado Medicina
dc.publisherSistema de Investigación SIUNAB
dc.relationGeneración Creativa : Encuentro de Semilleros de Investigación UNAB
dc.relationhttp://hdl.handle.net/20.500.12749/14242
dc.relationBourget, J. M., Gauvin, R., Larouche, D., Lavoie, A., Labbé, R., Auger, F. A., & Germain, L. (2012). Human fibroblast-derived ECM as a scaffold for vascular tissue engineering. Biomaterials, 33(36), 9205–9213. https://doi.org/10.1016/j.biomaterials.2012.09.015
dc.relationCerqueira, M. T., Pirraco, R. P., Martins, A. R., Santos, T. C., Reis, R. L., & Marques, A. P. (2014). Cell sheet technologydriven re-epithelialization and neovascularization of skin wounds. Acta Biomaterialia, 10(7), 3145–3155. https://doi.org/10.1016/j.actbio.2014.03.006
dc.relationCerqueira, M. T., Pirraco, R. P., Santos, T. C., Rodrigues, D. B., Frias, A. M., Martins, A. R., … Marques, A. P. (2013). Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds. Biomacromolecules, 14(11), 3997–4008. https://doi.org/10.1021/bm4011062
dc.relationChua, A. W. C., Khoo, Y. C., Tan, B. K., Tan, K. C., Foo, C. L., & Chong, S. J. (2016). Skin tissue engineering advances in severe burns: review and therapeutic applications. Burns & Trauma, 4(1), 3. https://doi.org/10.1186/s41038-016-0027
dc.relationFitzpatrick, L. E., & McDevitt, T. C. (2015). Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater. Sci., 3(1), 12–24. https://doi.org/10.1039/C4BM00246F
dc.relationGarzón, I., Miyake, J., González-Andrades, M., Carmona, R., Carda, C., Sánchez-Quevedo, M. del C., … Alaminos, M. (2013). Wharton’s Jelly Stem Cells: A Novel Cell Source for Oral Mucosa and Skin Epithelia Regeneration. STEM CELLS Translational Medicine, 2(8), 625–632. https://doi.org/10.5966/sctm.2012-0157
dc.relationJaimes-Parra, B. D., Garzón, I., Carriel, V., Durand-Herrera, D., Martín-Piedra, M. A., García, J. M., … Campos, A. (2018). Membranes derived from human umbilical cord Wharton’s jelly stem cells as novel bioengineered tissue-like constructs. Histology and Histopathology, 33(2), 147–156. https://doi.org/10.14670/HH-11-897
dc.relationKelm, J. M., & Fussenegger, M. (2010). Scaffold-free cell delivery for use in regenerative medicine. Advanced Drug Delivery Reviews, 62(7–8), 753–764. https://doi.org/10.1016/j.addr.2010.02.003
dc.relationKreisberg, J. I., & Wilson, P. D. (1988). Renal cell culture. Journal of Electron Microscopy Technique, 9(3), 235–263. https://doi.org/10.1002/jemt.1060090303
dc.relationLee, D. Y., Lee, J. H., Yang, J. M., Lee, E. S., Park, K. H., & Mun, G. H. (2006). A new dermal equivalent: The use of dermal fibroblast culture alone without exogenous materials. Journal of Dermatological Science, 43(2), 95–104. https://doi.org/10.1016/j.jdermsci.2006.03.007
dc.relationLiu, Y., Luo, H., Wang, X., Takemura, A., Fang, Y. R., Jin, Y., & Suwa, F. (2013). In vitro construction of scaffold-free bilayered tissue-engineered skin containing capillary networks. BioMed Research International, 2013. https://doi.org/10.1155/2013/561410
dc.relationMartin-Piedra, M. A., Garzon, I., Oliveira, A. C., AlfonsoRodriguez, C. A., Sanchez-Quevedo, M. C., Campos, A., & Alaminos, M. (2013). Average cell viability levels of human dental pulp stem cells: An accurate combinatorial index for quality control in tissue engineering. Cytotherapy, 15(4), 507– 518. https://doi.org/10.1016/j.jcyt.2012.11.017
dc.relationMerchant, D.J. (1990). Primary explant culture of human prostate tissue: a model for the study of prostate physiology and pathology. Prostate, 16(2), 103–126. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve& db=PubMed&dopt=Citation&list_uids=2181418
dc.relationOliveira, A. C., Garzón, I., Ionescu, A. M., Carriel, V., Cardona, J. de la C., González-Andrades, M., … Campos, A. (2013). Evaluation of Small Intestine Grafts Decellularization Methods for Corneal Tissue Engineering. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0066538
dc.relationPaquet, C., Larouche, D., Bisson, F., Proulx, S., Simard-Bisson, C., Gaudreault, M., … Germain, L. (2010). Tissue engineering of skin and cornea: Development of new models for in vitro studies. In Annals of the New York Academy of Sciences (Vol. 1197, pp. 166–177). https://doi.org/10.1111/j.1749-6632.2009.05373.x
dc.relationProulx, S., d’Arc Uwamaliya, J., Carrier, P., Deschambeault, A., Audet, C., Giasson, C. J., … Germain, L. (2010). Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Mol Vis, 16(October), 2192–2201.
dc.relationTeng, Y. J., Li, Y. P., Wang, J. W., Yang, K. H., Zhang, Y. C., Wang, Y. J., … Yan, X. (2010). Bioengineered skin in diabetic foot ulcers. Diabetes, Obesity and Metabolism, 12(4), 307–315. https://doi.org/10.1111/j.1463-1326.2009.01164.x
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceAcelas, D. A., et al. (2018). Utilización de matrices derivadas de células y una fuente alternativa de células madre mesenquimales para la construcción de piel humana artificial mediante ingeniería de tejidos. Recuperado de: http://hdl.handle.net/20.500.12749/21622
dc.titleUtilización de matrices derivadas de células y una fuente alternativa de células madre mesenquimales para la construcción de piel humana artificial mediante ingeniería de tejidos
dc.typeConference


Este ítem pertenece a la siguiente institución