Colombia | Research report
dc.contributorPacheco Sandoval,Leonardo Esteban [
dc.contributorSuárez Arias, Rafael Enrique [0001429372]
dc.contributorGonzález Calderón, William [0001367421]
dc.contributorPacheco Sandoval, Leonardo Esteban [es&oi=ao]
dc.contributorPacheco Sandoval,Leonardo Esteban [0000-0001-7262-382X]
dc.contributorSuárez Arias, Rafael Enrique [0000-0001-9767-210X]
dc.contributorGrupo de Investigación Recursos, Energía, Sostenibilidad - GIRES
dc.contributorPacheco Sandoval, Leonardo Esteban [leonardo-esteban-pacheco-sandoval]
dc.contributorSuárez Arias, Rafael Enrique [rafael-enrique-suarez-arias]
dc.contributorGonzález Calderón, William [william-gonzález-calderón]
dc.creatorPacheco Sandoval, Leonardo Esteban
dc.creatorGonzález Calderón, William
dc.creatorSuárez Arias, Rafael Enrique
dc.date.accessioned2023-07-28T18:28:02Z
dc.date.accessioned2023-09-06T15:15:54Z
dc.date.available2023-07-28T18:28:02Z
dc.date.available2023-09-06T15:15:54Z
dc.date.created2023-07-28T18:28:02Z
dc.date.issued2023-03
dc.identifierhttp://hdl.handle.net/20.500.12749/20824
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8681302
dc.description.abstractPara planificar el aumento de la demanda de energía, las empresas de servicios públicos y los gobiernos se basan en modelos de pronóstico. Usando datos históricos y predictivos, los stakeholders determinan la demanda requerida por los accionistas de transmisión y distribución. Una vez determinada la demanda, los interesados ​​establecen el recurso de generación de electricidad más adecuado para satisfacer la demanda de energía. Las curvas de demanda representan la relación entre el precio de un bien (precio unitario) y cuánto están dispuestos a pagar los consumidores por el bien o servicio. En consecuencia, la demanda se describe como elástica cuando la demanda disminuye rápidamente a medida que aumenta el precio, o inelástica cuando la demanda disminuye ligeramente a medida que aumenta el precio. Además, las curvas de demanda muestran vívidamente la influencia de la economía que contribuye a las elecciones de los consumidores. Para ejemplificar esto, se han utilizado curvas de demanda para cuantificar la demanda de nicotina, alcohol, gasolina, combustible E85 y bronceadores artificiales, entre muchos otros bienes [1]. Por lo tanto, han demostrado una buena validez predictiva [2] y han sido útiles en la elaboración de políticas públicas [3]. En consecuencia, las curvas de demanda son la base para cualquier estudio prospectivo. Desde el punto de vista del modelo energético, la demanda de energía es la base para planificar el suministro de generación de energía [4]. En Colombia la demanda de energía se encuentra dividida por sectores de consumo en los que la mayoría de los casos corresponden al sector económico del país.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.relation[1] E. F. Furrebøe and I. Sandaker, “Contributions of Behavior Analysis to Behavioral Economics,” The Behavior Analyst, vol. 40, no. 2, pp. 315–327, Nov. 2017
dc.relation[2] P. G. Roma, D. D. Reed, F. D. DiGennaro Reed, and S. R. Hursh, “Progress of and Prospects for Hypothetical Purchase Task Questionnaires in Consumer Behavior Analysis and Public Policy,” The Behavior Analyst, vol. 40, no. 2, pp. 329–342, Nov. 2017
dc.relation[3] O. Amir et al., “Psychology, Behavioral Economics, and Public Policy,” Marketing Letters, vol. 16, no. 3–4, pp. 443–454, Dec. 2005
dc.relation[4] J. W. Grimaldo Guerrero, M. A. Mendoza Becerra, and W. P. Reyes Calle, “Modelo para pronosticar la demanda de energía eléctrica utilizando los producto interno brutos sectoriales: Caso de Colombia,” Revista ESPACIOS.
dc.relation[5] UPME, “UPME Unidad de Planeación Minero energética. (2017 Updated), Balance Energetico Colombiano BECO. Available from: http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx,” Unidad de Planeacion Energetica de Colombia, Excel Sheet
dc.relation[6] T. N. Atalla and L. C. Hunt, “Modelling residential electricity demand in the GCC countries,” Energy Economics, vol. 59, pp. 149–158, Sep. 2016.
dc.relation[7] U. European, Climate East, and AGRICONSULTING, “Euro South Mediterranean Initiative -Long Range Energy alternatives Planning System (LEAP) & Green House Gas Modelling,” . INTROduction, p. 31.
dc.relation[8] V. J. P. D. Martinho, “Energy consumption across European Union farms: Efficiency in terms of farming output and utilized agricultural area,” Energy, vol. 103, pp. 543–556, May 2016
dc.relation[9] K. B. Debnath and M. Mourshed, “Forecasting methods in energy planning models,” Renewable and Sustainable Energy Reviews, vol. 88, pp. 297–325, May 2018.
dc.relation[10] 2015 PROCOLOMBIA, “Electric Power in Colombia,” PROCOLOMBIA, Colombia Energy Sector Outlook Year 2015
dc.relation[11] C. Congress, “Law 1715 - Integracion de las Energias renovables no coonvencionales al Sistema Energetico Nacional,” May 2014
dc.relation[12] A. F. Paez et al., “Future Scenarios and Trends of Energy Demand in Colombia using Long-range Energy Alternative Planning,” vol. 7, no. 5, p. 13, 2017.
dc.relation[13] J. M. Santos and T. Jimeenz, “Final Agreement to End the Armed Conflict and Build a Stable and Lasting Peace National Government of Colombia | Commander-in-chief FARC-EP.,” Capital of the Republic of Cuba, Nov. 2016
dc.relation[14] ECOPETROL, UPME, UNAB, UIS, and UPB, Prospectiva energética Colombia 2050 - ISBN 978-958-8956-50-3. Bucaramanga: Universidad Industrial de Santander, 2018.
dc.relation[15] R. Schaeffer et al., “Energy sector vulnerability to climate change: A review,” Energy, vol. 38, no. 1, pp. 1–12, Feb. 2012
dc.relation[16] P. H. Abreu, D. C. Silva, H. Amaro, and R. Magalhães, “Identification of Residential Energy Consumption Behaviors,” Journal of Energy Engineering, vol. 142, no. 4, p. 04016005, Dec. 2016.
dc.relation[17] F. deLlano-Paz, A. Calvo-Silvosa, S. I. Antelo, and I. Soares, “Energy planning and modern portfolio theory: A review,” Renewable and Sustainable Energy Reviews, vol. 77, pp. 636–651, Sep. 2017
dc.relation[18] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for twenty-first century energy challenges,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 74–86, May 2014.
dc.relation[19] V. Engineering, “Engineering Village RSS results for database Compendex and search query of Energy Planning Methods AND Forecasting. Retrieved from https://www.engineeringvillage.com/rss/feed.url?queryID=M70d3afaf16a4fc45c9cM7ffd127001&SYSTEM_PT=t.”
dc.relation[20] J. H. Velasco Castillo and A. M. Castillo, “Prediction Model of Electricity Energy Demand for FCU in Colombia Based on Stacking and Text Mining Methods,” in Advances in Computing, Cham, 2018, vol. 885, pp. 291–300.
dc.relation[21] U. Leiden, VOSviewer. April 3.
dc.relation[22] R. Weron, Modeling and forecasting electricity loads and prices: a statistical approach. Chichester, England ; Hoboken, NJ: John Wiley & Sons, 2006.
dc.relation[23] N. Dementjeva, Energy planning models analysis and their adaptability for Estonian energy sector. Tallinn: TUT Press, 2009.
dc.relation[24] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks:,” International Journal of Forecasting, vol. 14, no. 1, pp. 35–62, Mar. 1998
dc.relation[25] S. P. Curram and J. Mingers, “Neural Networks, Decision Tree Induction and Discriminant Analysis: an Empirical Comparison,” Journal of the Operational Research Society, vol. 45, no. 4, pp. 440–450, Apr. 1994
dc.relation[26] M. Fripp, “Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renewable Energy,” Environmental Science & Technology, vol. 46, no. 11, pp. 6371–6378, Jun. 2012
dc.relation[27] M. Haller, S. Ludig, and N. Bauer, “Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation,” Energy Policy, vol. 47, pp. 282–290, Aug. 2012.
dc.relation[28] S. Awerbuch, “Portfolio-Based Electricity Generation Planning: Implications for Renewables and Energy Security - Prepared as part of a demonstration project funded by REEEP and UNEP and conducted in collaboration with ECN of The Netherlands, the basel agency for sustainable energy (BASE), and project partners: CDER (Morocco), IIE (Mexico) and TERI (India). URL,” p. 13, 2004.
dc.relation[29] E. A. Hickey, J. Lon Carlson, and D. Loomis, “Issues in the determination of the optimal portfolio of electricity supply options,” Energy Policy, vol. 38, no. 5, pp. 2198–2207, May 2010.
dc.relation[30] H. Klinge Jacobsen, “Integrating the bottom-up and top-down approach to energy–economy modelling: the case of Denmark,” Energy Economics, vol. 20, no. 4, pp. 443–461, Sep. 1998.
dc.relation[31] H. L. Lam, P. S. Varbanov, and J. J. Klemeš, “Regional renewable energy and resource planning,” Applied Energy, vol. 88, no. 2, pp. 545–550, Feb. 2011.
dc.relation[32] S. D. Pohekar and M. Ramachandran, “Application of multi-criteria decision making to sustainable energy planning—A review,” Renewable and Sustainable Energy Reviews, vol. 8, no. 4, pp. 365–381, Aug. 2004.
dc.relation[33] V. Bianco, O. Manca, and S. Nardini, “Linear Regression Models to Forecast Electricity Consumption in Italy,” Energy Sources, Part B: Economics, Planning, and Policy, vol. 8, no. 1, pp. 86–93, Jan. 2013
dc.relation[34] X. Shen, L. Ou, X. Chen, X. Zhang, and X. Tan, “The Application of the Grey Disaster Model to Forecast Epidemic Peaks of Typhoid and Paratyphoid Fever in China,” PLoS ONE, vol. 8, no. 4, p. e60601, Apr. 2013.
dc.relation[35] P. K. Adom and W. Bekoe, “Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM,” Energy, vol. 44, no. 1, pp. 367–380, Aug. 2012.
dc.relation[36] LEAP, Heaps, C.G., 2016. Long-range Energy Alternatives Planning (LEAP) system. [Software version: 2018.1.24] Stockholm Environment Institute. Somerville, MA, USA. https://www.energycommunity.org
dc.relation[37] H. Rudnick and C. Velásquez, Learning from Developing Country Power Market Experiences: The Case of Colombia. The World Bank, 2019
dc.relation[38] M. Viviana and O. L. Castillo, “Colombian energy planning - Neither for energy, nor for Colombia,” Energy Policy, vol. 129, pp. 1132–1142, Jun. 2019.
dc.relation[39] C. A. M. Corrales, “Colombia y su inserción a la economía mundial,” Ecos de Economía, p. 23.
dc.relation[40] IEA, “IEA - Bankground Reference Colombia Report January 7. 2019 https://www.eia.gov/beta/international/analysis_includes/countries_long/Colombia/pdf/colombia_bkgd.pdf,” Jan. 2019
dc.relation[41] J. Carbo and A. US Embassy, “ITA USA - Electric Power and Renewable Energy Systems- Colombia Report,” Aug. 2018
dc.relation[42] M. Ministry of Mines and Energy, “Law 1715, regulating the Integration of Non Conventional Renewable Energies to the National Energy System Taken from: http://www.upme.gov.co/Normatividad/Normatividad%20Sectorial/DECRETO_2143_04_N,” Colombia, Mar. 2018.
dc.relation[43] Government of Colombia, “PROCOLOMBIA - Oil & Gas goods and services -,” 2016
dc.relation[44] DANE, “Producto Interno Bruto - Departamento Administrativo Nacional de Estadistica de Colombia (DANE).”
dc.relation[45] J. C. A. Gutiérrez and J. F. A. Mahecha, “República de Colombia Ministerio de Minas y Energía Unidad de Planeación Minero Energética, UPME. www.upme.gov.co Elaboró: Subdirección de Planeación Energética - Grupo de Demanda Energética,” p. 51.
dc.relation[46] DANE, “Dirección de Síntesis y Cuentas Nacionales Cuentas Nacionales Trimestrales de Colombia -Producto Interno Bruto (GDP) por Ramas de Actividad Económica - https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales,” 2018
dc.relation[47] J. A. Ocampo, “Performance and Challenges of the Colombian Economy,” p. 34
dc.relation[48] United Nations, Ed., International Standard industrial classification of all economic activities (ISIC), Rev. 4. New York: United Nations, 2008.
dc.relation[49] M. Amer, T. U. Daim, and A. Jetter, “A review of scenario planning,” Futures, vol. 46, pp. 23–40, Feb. 2013.
dc.relation[50] R. Bradfield, G. Wright, G. Burt, G. Cairns, and K. Van Der Heijden, “The origins and evolution of scenario techniques in long range business planning,” Futures, vol. 37, no. 8, pp. 795–812, Oct. 2005.
dc.relation[51] B. R. Martin, “The origins of the concept of ‘foresight’ in science and technology: An insider’s perspective,” Technological Forecasting and Social Change, vol. 77, no. 9, pp. 1438–1447, Nov. 2010.
dc.relation[52] F. A. van Vught, “Pitfalls of forecasting,” Futures, vol. 19, no. 2, pp. 184–196, Apr. 1987.
dc.relation[53] M. Godet, “From forecasting to ‘la prospective’ a new way of looking at futures,” Journal of Forecasting, vol. 1, no. 3, pp. 293–301, Jul. 1982.
dc.relation[54] M. Godet, “How to be rigorous with scenario planning,” foresight, vol. 2, no. 1, pp. 5–9, 2000
dc.relation[55] D. Mindrila, P. Balentyne, and M. Ed, “Scatterplots and Correlation,” p. 14.
dc.relation[56] S. Loeb, S. Dynarski, D. McFarland, P. Morris, S. Reardon, and S. Reber, “Descriptive analysis in education: A guide for researchers,” p. 53.
dc.relation[57] J. Korhonen, “Environmental planning vs. systems analysis: Four prescriptive principles vs. four descriptive indicators,” Journal of Environmental Management, vol. 82, no. 1, pp. 51–59, Jan. 2007.
dc.relation[58] M. Höök, J. Li, N. Oba, and S. Snowden, “Descriptive and Predictive Growth Curves in Energy System Analysis,” Natural Resources Research, vol. 20, no. 2, pp. 103–116, Jun. 2011
dc.relation[59] N. Gogtay and U. Thatte, “Principles of Correlation Analysis,” p. 4.
dc.relation[60] D. H. Jonassen, “Toward a design theory of problem solving,” Educational Technology Research and Development, vol. 48, no. 4, pp. 63–85, Dec. 2000.
dc.relation[61] M. V. F. Pereira and L. M. V. G. Pinto, “Multi-stage stochastic optimization applied to energy planning,” Mathematical Programming, vol. 52, no. 1–3, pp. 359–375, May 1991.
dc.relation[62] I. BarCharts, Statistics: parameters, variables, intervals, proportions : the basic principles of statistics for introductory courses. 2005
dc.relation[63] A. C. Rencher and G. B. Schaalje, Linear models in statistics, 2nd ed. Hoboken, N.J: Wiley-Interscience, 2008.
dc.relation[64] G. W. Snedecor and W. G. Cochran, Statistical methods, 8 ed., 7. print. Ames, Iowa: Iowa State Univ. Press, 1996
dc.relation[65] N. R. Draper and H. Smith, Applied Regression Analysis, 1st ed. Wiley, 1998.
dc.relation[66] M. Musiela and T. Zariphopoulou, “Stochastic partial di¤erential equations and portfolio choice,” p. 24.
dc.relation[67] T. Dahiru, “P - value, a true test of statistical significance? A cautionary note,” Ann Ib Postgrad Med, vol. 6, no. 1, pp. 21–26, Jun. 2008.
dc.relation[68] J. T. Walker, S. Maddan, and J. T. Walker, Understanding statistics for the social sciences, criminal justice, and criminology. Burlington, Mass: Jones & Bartlett Learning, 2013.
dc.relation[69] S. K. Haldar, Mineral exploration: principles and applications. 2018
dc.relation[70] A. S. Goldberger, A course in econometrics. Cambridge, Mass: Harvard University Press, 1991.
dc.relation[71] P. Toro, A. Garcia, C. Aguilar, J. Perea, and R. Vera, Modelos Econometricos Para el Desarrollo de Funciones de Produccion - ISSN: 1698-4226 DT 13, Vol. 1/2010, Universidad de Cordoba. .
dc.relation[72] C. Alonso, “Modelo de Regression lineal Multiple - Econometria Universidad Carlos III de Madrid,” p. 40
dc.relation[73] R. M. Granados, “Montero Granados. R (2016): Modelos de regresión lineal múltiple. Documentos de Trabajo en Economía Aplicada. Universidad de Granada. España.,” p. 61
dc.relation[74] D. Cardona, M. Rivera, J. González, and E. Cárdenas, “Estimación y predicción con el modelo de regresión cúbica aplicado a un problema de salud,” Ingeniería Solidaria, vol. 10, no. 17, pp. 153–160, Dec. 2014
dc.relation[75] R. L. Scheaffer and J. T. McClave, Probability and statistics for engineers, 3rd ed. Boston: PWS-Kent Pub. Co, 1990.
dc.relation[76] X. A. A. Morales, “MÉTODO DE ANÁLISIS ESTRUCTURAL: MATRIZ DE IMPACTOS CRUZADOS MULTIPLICACIÓN APLICADA A UNA CLASIFICACIÓN (MICMAC),” p. 25
dc.relation[77] M. Godet, Creating futures: scenario planning as a strategic management tool. London: Economica, 2006.
dc.relation[78] R. Saavedra Mesa, “International Transactions of Electricity in Colombia. Impacts on Domestic demand. FCE N-73,” Centro de Investigacion para Desarrollo CID, 2016
dc.relation[79] World Bank, DNP, Enersinc, and G. G. Korea, “Energy Demand Situation in Colombia,” 2017.
dc.relation[80] K. Pilli-Sihvola, P. Aatola, M. Ollikainen, and H. Tuomenvirta, “Climate change and electricity consumption—Witnessing increasing or decreasing use and costs?,” Energy Policy, vol. 38, no. 5, pp. 2409–2419, May 2010.
dc.relation[81] S. J. Parkpoom and G. P. Harrison, “Analyzing the Impact of Climate Change on Future Electricity Demand in Thailand,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1441–1448, Aug. 2008.
dc.relation[82] R. F. Engle, C. W. J. Granger, J. Rice, and A. Weiss, “Semiparametric Estimates of the Relation between Weather and Electricity Sales,” Journal of the American Statistical Association, vol. 81, no. 394, pp. 310–320, Jun. 1986
dc.relation[83] T. J. Considine, “The impacts of weather variations on energy demand and carbon emissions,” Resource and Energy Economics, vol. 22, no. 4, pp. 295–314, Oct. 2000
dc.relation[84] L. Hernández et al., “A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework,” Sensors, vol. 12, no. 9, pp. 11571–11591, Aug. 2012.
dc.relation[85] A. Henley and J. Peirson, “Non‐Linearities in Electricity Demand and Temperature: Parametric Versus Non‐Parametric Methods,” Oxford Bulletin of Economics and Statistics, vol. 59, no. 1, pp. 149–162, Feb. 1997.
dc.relation[86] C.-L. Hor, S. J. Watson, and S. Majithia, “Analyzing the Impact of Weather Variables on Monthly Electricity Demand,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 2078–2085, Nov. 2005
dc.relation[87] M. Nieves Zárate and A. Hernández Vidal, Colombia Energy Investment Report. Energy Charter Secretariat, 2016
dc.relation[88] J. E. M. Bocanegra, “Modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia,” p. 81
dc.relation[89] “XM_ Expertos en Mercados, Informe de Operación del Sistema y Administración del Mercado, 2010.”
dc.relation[90] C. Sheppard, Ed., Ecological Issues and Environmental Impacts, 2nd ed. London: Academic Press, 2018
dc.relation[91] C. Arrango, D. Guzman, and J. F. Ruiz, “Variabilidad climatica de la precipitacion en Colombia Asociada al Ciclo El Niño, La Niña - OSCILACION DEL SUR (ENSO). Subdireccion de Meterologia IDEAM,” Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cambio Climatico.
dc.relation[92] S. B. Bruns, C. Gross, and D. I. Stern, “Is There Really Granger Causality Between Energy Use and Output?,” p. 60.
dc.relation[93] J. Behera, “Examined the Energy-Led Growth Hypothesis in India: Evidence from Time Series Analysis,” Energy Economics Letters, vol. 2, no. 4, pp. 46–65, 2015
dc.relation[94] “Departamento Administrativo Nacional de Estadística. Producto Interno Bruto (PIB) Históricos. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/historicos-producto-interno-bruto-pib#base-2005.”
dc.relation[95] “Comisión de regulación de energía y gas. Resolución CREG 119 de 2007. Costo unitario de prestación del servicio de energía eléctrica. Capitulo III, 21 de diciembre de 2007.”
dc.relation[96] S. Arango-Aramburo et al., “Simulating mining policies in developing countries: The case of Colombia,” Socio-Economic Planning Sciences, vol. 60, pp. 99–113, Dec. 2017.
dc.relation[97] S. Moret, “Strategic energy planning under uncertainty,” p. 269.
dc.relation[98] USCIB, “United States Council for International Business. All Rights Reserved. Privacy Policy,” May 25
dc.relation[99] A. Najmi, H. S. G., and A. Keramati, “Energy consumption in the residential sector: a study on critical factors,” International Journal of Sustainable Energy, vol. 35, no. 7, pp. 645–663, Aug. 2016.
dc.relation[100] G. Michel and Philipe Durance, Strategic Foresight - Fore Corporate annd Regional Development - United Nations Educational, Scientific and Cultural Organization- UNESCO.
dc.relation[101] Godet, M. (2019). Methods of prospective : La prospective. Retrieved from http://en.laprospective.fr/methods-of-prospective.html.
dc.relation[102] J. Geweke, “Endogeneity and Exogeneity,” p. 2.
dc.relation[103] T. Coladarci, Ed., Fundamentals of statistical reasoning in education, Fourth edition. Hoboken, NJ: Wiley, 2014
dc.relation[104] H. Pham, Ed., Springer handbook of engineering statistics. London: Springer, 2006.
dc.relation[105] J. Starmer, Department of Statistics and Operations Research - The University of North Carolina at Chapel Hill. - Statistics and Operations https://statquest.org/.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDevelopment of an Energy-Based Model for Forecasting the Energy Demand of Colombia
dc.typeResearch report


Este ítem pertenece a la siguiente institución