dc.contributor | Martínez Carrillo, Fabio [0000738018] | |
dc.contributor | Martínez Carrillo, Fabio [es&oi=ao] | |
dc.creator | Martínez Carrillo, Fabio | |
dc.date.accessioned | 2023-08-31T19:20:07Z | |
dc.date.accessioned | 2023-09-06T15:15:02Z | |
dc.date.available | 2023-08-31T19:20:07Z | |
dc.date.available | 2023-09-06T15:15:02Z | |
dc.date.created | 2023-08-31T19:20:07Z | |
dc.date.issued | 2020 | |
dc.identifier | http://hdl.handle.net/20.500.12749/21582 | |
dc.identifier | instname:Universidad Autónoma de Bucaramanga - UNAB | |
dc.identifier | reponame:Repositorio Institucional UNAB | |
dc.identifier | repourl:https://repository.unab.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8681253 | |
dc.description.abstract | El sistema DeepSARS fue propuesto y desarrollado con el propósito de asistir la identificación temprana y seguimiento de pacientes con riesgo de síndrome de distrés respiratorio agudo producido por COVID-19. Principalmente, el sistema realiza el aprendizaje profundo de patrones visuales relevantes para identificar COVID-19 sobre estudios radiológicos de tórax, digitalizados en secuencias de Tomografía Computarizada (CT) y Rayos X (Rx). Durante el desarrollo del proyecto se lograron desarrollar con éxito un total de 9 modelos, con diferentes propósitos, y codificados para operar en los dos tipos de imágenes radiológicas. Estos modelos realizan las siguientes tareas: detectar si un estudio presenta COVID-19 teniendo en cuenta información 2D o 3D, extraer hallazgos o regiones relevantes donde está expresada la enfermedad, y clasificar si un estudio presenta síndrome respiratorio agudo. Adicionalmente, se desarrollaron dos modelos, uno multimodal que usa los síntomas y signos presentados por el paciente para mejorar la detección de casos con COVID-19, y el modelo restante que estratifica el grado de compromiso o evolución del COVID-19 sobre el estudio radiológico de un paciente. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.publisher | Facultad Ciencias de la Salud | |
dc.relation | 1: Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99) | |
dc.relation | 2: Salvador, A., Giró-i-Nieto, X., Marqués, F., & Satoh, S. I. (2016). Faster r-cnn features for instance search. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 9-16). | |
dc.relation | 3: Boyd, K., Eng, K. H., & Page, C. D. (2013, September). Area under the precision-recall curve: point estimates and confidence intervals. In Joint European conference on machine learning and knowledge discovery in databases (pp. 451-466). Springer, Berlin, Heidelberg. | |
dc.relation | 4: Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003, November). Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003 (Vol. 2, pp. 1398-1402). Ieee. | |
dc.relation | 5: Horadam, K. J., & Nyblom, M. A. (2014). Distances between sets based on set commonality. Discrete Applied Mathematics, 167, 310-314 | |
dc.relation | 6: Kermack, William Ogilvy, A. G. McKendrick, and Gilbert Thomas Walker. “A Contribution to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115, no. 772 (August 1, 1927): 700–721. https://doi.org/10.1098/rspa.1927.0118 | |
dc.relation | 7: Li, Qun, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi Ren, et al. “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia.” New England Journal of Medicine 382, no. 13 (March 26, 2020): 1199–1207. https://doi.org/10.1056/NEJMoa2001316 | |
dc.relation | 8: Chen, Tian-Mu, Jia Rui, Qiu-Peng Wang, Ze-Yu Zhao, Jing-An Cui, and Ling Yin. “A Mathematical Model for Simulating the Phase-Based Transmissibility of a Novel Coronavirus.” Infectious Diseases of Poverty 9, no. 1 (February 28, 2020): 24. https://doi.org/10.1186/s40249-020-00640-3. | |
dc.relation | 9: Korolev, Ivan. “Identification and Estimation of the SEIRD Epidemic Model for COVID-19.” Journal of Econometrics, July 30, 2020. https://doi.org/10.1016/j.jeconom.2020.07.038. | |
dc.relation | 10: “Monitoring Italian COVID-19 Spread by a Forced SEIRD Model.” Accessed November 11, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7410324/ | |
dc.relation | 11: “A Conceptual Model for the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan, China with Individual Reaction and Governmental Action - International Journal of Infectious Diseases.” Accessed November 11, 2020. https://www.ijidonline.com/article/S1201-9712(20)30117-X/fulltext | |
dc.relation | 12: “Phase-Adjusted Estimation of the Number of Coronavirus Disease 2019 Cases in Wuhan, China | Cell Discovery.” Accessed November 11, 2020. https://www.nature.com/articles/s41421-020-0148-0. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | DeepSARS: Sistema de aprendizaje profundo automático para la identificación temprana y seguimiento de pacientes con riesgo de síndrome de distrés respiratorio agudo | |
dc.type | Research report | |