dc.contributorRodríguez Macias, Juan David
dc.contributorMéndez López, Maximiliano Ernesto
dc.creatorMuñoz Fontalvo, Luis Alberto
dc.date.accessioned2023-08-08T20:29:02Z
dc.date.accessioned2023-09-06T14:43:40Z
dc.date.available2023-08-08T20:29:02Z
dc.date.available2023-09-06T14:43:40Z
dc.date.created2023-08-08T20:29:02Z
dc.identifierhttps://hdl.handle.net/10901/26088
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8680896
dc.description.abstractLa nanotecnología ha venido consolidándose como una tecnología clave para una amplia gama de aplicaciones siendo una herramienta prometedora tanto en diagnóstico y terapéutica, dadas sus funciones inherentes a nanoescala sobre los componentes biológicos de las células. En la presente investigación se informa sobre la síntesis de nanopartículas de Hierro (FeNPs) usando extracto de Annona Muricata L. controladas mediante micela inversa y su eficacia antimicrobiana frente a bacterias de interés clínico. Las FeNPs biosintetizadas posiblemente esféricas, discretas y estabilizadas por entidades fitoquímicas se caracterizaron mediante espectroscopía ultravioleta visible, dispersión de la luz dinámica, espectroscopia infrarroja por transformada de Fourier. los resultados de DLS para tamaño hidrodinámico de partícula promedio es de 27.98 nm con un RSD de 4.2% usando extracto al 20 % en la síntesis controlada por micela inversa. El resultado de evaluación antimicrobiana mostró que las nanopartículas de hierro sintetizadas, a los diferentes tratamientos no presentaron halos de inhibición indiscutibles, por tanto, no tuvieron actividad antibacteriana frente a p. aeruginosa, s. aureus, enterococcus y e. coli
dc.relationAbadie, R. E., Medina, R., Ruiz, L., & Tresierra-ayala, A. (2014). Actividad antibacteriana de extractos vegetales frente a cepas intrahospitalarias, Iquitos-Perú. 31–38. https://doi.org/https://doi.org/10.33017/RevECIPeru2014.0005
dc.relationAbdel-Rahman, T., Hussein, A. S., Beshir, S., Hamed, A. R., Ali, E., & El-Tanany, S. S. (2019). Antimicrobial Activity of Terpenoids Extracted from Annona muricata Seeds and its Endophytic Aspergillus niger Strain SH3 Either Singly or in Combination. Open Access Macedonian Journal of Medical Sciences, 7(19), 3127. https://doi.org/10.3889/OAMJMS.2019.793
dc.relationAcevedo Pizarro, B. (2015). ESTUDIO DE SISTEMAS MICELARES ORIGINADOS EN MEDIO ACUOSO POR COPOLÍMEROS ANFIFÍLICOS EN BLOQUE Y RAMIFICADOS (2015).pdf. In Tesis. http://repositorio.uchile.cl/bitstream/handle/2250/133560/Estudio-desistema-micelares-originados-en-medio-acuoso-porcopolímeros.pdf?sequence=1&isAllowed=y
dc.relationAguilar-Tapia, A., & Zanella, R. (2018). Las nanopartículas bimetálicas y algunas de sus aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencia y Nanotecnología, 10(19), 72. https://doi.org/10.22201/CEIICH.24485691E.2017.19.61783
dc.relationAhn, E. Y., Jin, H., & Park, Y. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering C, 101(August 2018), 204–216. https://doi.org/10.1016/j.msec.2019.03.095
dc.relationAlabdallah, N. M., & Hasan, M. M. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi Journal of Biological Sciences, 28(10), 5631–5639. https://doi.org/10.1016/J.SJBS.2021.05.081
dc.relationArmenta-González, A. J., Carrera-Cerritos, R., Moreno-Zuria, A., Álvarez-Contreras, L., Ledesma-García, J., Cuevas-Muñiz, F. M., & Arriaga, L. G. (2016). An improved ethanol microfluidic fuel cell based on a PdAg/MWCNT catalyst synthesized by the reverse micelles method. Fuel, 167, 240–247. https://doi.org/10.1016/J.FUEL.2015.11.057
dc.relationArmijo, L. M., Wawrzyniec, S. J., Kopciuch, M., Brandt, Y. I., Rivera, A. C., Withers, N. J., Cook, N. C., Huber, D. L., Monson, T. C., Smyth, H. D. C., & Osiński, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/S12951-020-0588-6
dc.relationArreche, R. A., Montes de Oca-Vásquez, G., Vega-Baudrit, J. R., & Vázquez, P. G. (2020). Synthesis of Silver Nanoparticles Using Extracts from Yerba Mate (Ilex paraguariensis) Wastes. Waste and Biomass Valorization, 11(1), 245–253. https://doi.org/10.1007/s12649-018-0394-7
dc.relationAsghar, M. A., Zahir, E., Arif, M., Id, A., Iqbal, J., & Rehman, A. (2020). characterization of iron , copper and silver nanoparticles using Syzygium cumini leaf extract : As an effective antimicrobial and aflatoxin B 1 adsorption agents. 1–17. 63 https://doi.org/10.1371/journal.pone.0234964
dc.relationAvilés, J., Locarno-lara, E., & González-Delgado, Á. D. (2020). Exergetic analysis of TiO 2 nanoparticle production from lemongrass and titanium isopropoxide. Prospectiva, 18.2
dc.relationBadmus, J. A., Oyemomi, S. A., Adedosu, O. T., Yekeen, T. A., Azeez, M. A., Adebayo, E. A., Lateef, A., Badeggi, U. M., Botha, S., Hussein, A. A., & Marnewick, J. L. (2020). Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon, 6(11). https://doi.org/10.1016/J.HELIYON.2020.E05413
dc.relationBaetke, S. C., Lammers, T., & Kiessling, F. (2015). Applications of nanoparticles for diagnosis and therapy of cancer. The British Journal of Radiology, 88(1054). https://doi.org/10.1259/BJR.20150207
dc.relationBahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 19(86), 1–26. https://doi.org/10.1186/S12951-021-00834-3
dc.relationBaig, M. M., Yousuf, M. A., Zulfiqar, S., Safeer, A., Agboola, P. O., Shakir, I., & Warsi, M. F. (2021). Structural and electrical properties of La3+ ions substituted MnFe2O4 ferrite nanoparticles synthesized via cost-effective reverse micelles strategy. Materials Research Express, 8(3). https://doi.org/10.1088/2053-1591/ABD73B
dc.relationBaig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/d0ma00807a
dc.relationBaláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J. M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F. J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., & Wieczorek-Ciurowa, K. (2013). Hallmarks of mechanochemistry: from nanoparticles to technology. Chemical Society Reviews, 42(18), 7571–7637. https://doi.org/10.1039/c3cs35468g
dc.relationBayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2020). The History of Nanoscience and Nanotechnology : From Chemical – Physical Applications to Nanomedicine. Molecules, 25(1), 1–15
dc.relationBelanova, A. A., Gavalas, N., Makarenko, Y. M., Belousova, M. M., Soldatov, A. V., & Zolotukhin, P. V. (2018). Physicochemical Properties of Magnetic Nanoparticles: Implications for Biomedical Applications In Vitro and In Vivo. Oncology Research and Treatment, 41(3), 139–143. https://doi.org/10.1159/000485020
dc.relationBellah, M., Christensen, S. M., & Iqbal, S. M. (2012). Nanostructures for Medical Diagnostics. https://doi.org/10.1155/2012/486301
dc.relationBernal, R., Gandestein, S. R., & Celis, M. (2020). Catálogo de plantas y líquenes de Colombia. Universidad Nacional de Colombia. https://doi.org/https://doi.org/10.15472/7avdhn
dc.relationBezza, F. A., Tichapondwa, S. M., & Chirwa, E. M. N. (2020). Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. Journal of Hazardous Materials, 393(October 2019), 122319. https://doi.org/10.1016/j.jhazmat.2020.122319
dc.relationBiswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., & Faupel, F. (2012). Advances in top – down and bottom – up surface nanofabrication : Techniques , 64 applications & future prospects. Advances in Colloid and Interface Science, 170(1– 2), 2–27. https://doi.org/10.1016/j.cis.2011.11.001
dc.relationBorcherding, J., Baltrusaitis, J., Chen, H., Stebounova, L., Wu, C. M., Rubasinghege, G., Mudunkotuwa, I. A., Caraballo, J. C., Zabner, J., Grassian, V. H., & Comellas, A. P. (2014). Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environmental Science. Nano, 1(2), 123. https://doi.org/10.1039/C3EN00029
dc.relationBoutonnet, M., Kizling, J., Stenius, P., & Maire, G. (1982). The preparation of monodisperse colloidal metal particles from microemulsions. Colloids and Surfaces, 5(3), 209–225. https://doi.org/10.1016/0166-6622(82)80079-6
dc.relationBustos, R. H. (2020, May 26). La nanotecnología, una solución eficaz para el cuidado de la salud. https://www.unisabana.edu.co/programas/carreras/facultad-demedicina/medicina/noticias/detalle-de-noticias/noticia/la-nanotecnologia-unasolucion-eficaz-para-el-cuidado-de-la-salud
dc.relationCavazzini, G., Cugini, F., Delmonte, D., Trevisi, G., Nasi, L., Ener, S., Koch, D., Righi, L., Solzi, M., Gutfleisch, O., & Albertini, F. (2021). Multifunctional Ni-Mn-Ga and NiMn-Cu-Ga Heusler particles towards the nanoscale by ball-milling technique. Journal of Alloys and Compounds, 872, 159747. https://doi.org/10.1016/j.jallcom.2021.159747
dc.relationChan, P., Ah, R., Mh, K., & A, Z. (2010). Anti-arthritic activities of Annona muricata L. leaves extract on complete Freund’s adjuvant (CFA) – induced arthritis in rats. Planta Medica, 76(12), P166. https://doi.org/10.1055/S-0030-1264464
dc.relationCórdova-Cisneros, K. C. (2021). Revista Mexicana de I ngeniería Q uímica. 8(3
dc.relationDas Nelaturi, P., Huthur Sriramaia, N., Nagaraj, S., Subbaiah Kotakadi, V., Veetil Veeran, A., & Pamidimukkala, Kiranmayee Pamidimukkala, K. (2017). An in-vitro Cytotoxic and Genotoxic Properties of Allamanda Cathartica L. Latex Green NPs on Human Peripheral Blood Mononuclear Cells. Nano Biomed Eng, 9(4), 314–323. https://doi.org/10.5101/nbe.v9i4.p314-323.1
dc.relationDeshmukh, A. R., Gupta, A., & Kim, B. S. (2019). Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities. 2019. https://doi.org/10.1155/2019/1714358
dc.relationDinali, R., Ebrahiminezhad, A., Manley-harris, M., Ghasemi, Y., & Berenjian, A. (2017). Critical Reviews in Microbiology Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology, 0(0), 000. https://doi.org/10.1080/1040841X.2016.1267708
dc.relationDoolittle, J. W., & Dutta, P. K. (2006). Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system. Langmuir, 22(10), 4825–4831. https://doi.org/10.1021/la060047
dc.relationDrummer, S., Madzimbamuto, T., & Chowdhury, M. (2021). Green Synthesis of Transition-Metal Nanoparticles and Their Oxides : A Review. Materials, 14(11). /pmc/articles/PMC8196554/%0A/pmc/articles/PMC8196554/?report=abstract %0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196554
dc.relationEbrahiminezhad, A., Davaran, S., Rasoul-amini, S., Barar, J., & Moghadam, M. (2012). Synthesis , Characterization and Anti- Listeria monocytogenes Effect of Amino Acid Coated Magnetite Nanoparticles. 868–874
dc.relationEbrahiminezhad, A., Zare, A., Ajit, H., Saeed, K. S., & Younes, T. (2018). Plant - Mediated Synthesis and Applications of Iron Nanoparticles. Molecular Biotechnology, 60(2), 154–168. https://doi.org/10.1007/s12033-017-0053-4
dc.relationEl-Seedi, H. R., El-Shabasy, R. M., Khalifa, S. A. M., Saeed, A., Shah, A., Shah, R., Iftikhar, F. J., Abdel-Daim, M. M., Omri, A., Hajrahand, N. H., Sabir, J. S. M., Zou, X., Halabi, M. F., Sarhan, W., & Guo, W. (2019). Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances, 9(42), 24539–24559. https://doi.org/10.1039/c9ra02225b
dc.relationErrayes, A., Mohammed, W., Errayes, A. O., Abdussalam-Mohammed, W., & Darwish, M. O. (2020). Review of Phytochemical and Medical Applications of Annona Muricata Fruits. Journal of Chemical Reviews, 2(1), 70–79. https://doi.org/10.33945/SAMI/JCR.2020.1.5
dc.relationEscudero, A., Carrillo-carri, C., Romero-ben, E., Franco, A., Rosales-barrios, C., Castillejos, M. C., & Khiar, N. (2021). Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics, 9(7), 58
dc.relationEzealisiji, K. M., Noundou, X. S., & Ukwueze, S. E. (2017). Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of annona muricata linn and their antimicrobial activity. Applied Nanoscience (Switzerland), 7(8), 905–911. https://doi.org/10.1007/S13204-017- 0632-5/FIGURES/7
dc.relationFarouk, F., Abdelmageed, M., Azam, M., & Azzazy, H. M. E. (2019). Synthesis of magnetic iron oxide nanoparticles using pulp and seed aqueous extract of Citrullus colocynth and evaluation of their antimicrobial activity. Biotechnology Letters, 7. https://doi.org/10.1007/s10529-019-02762-7
dc.relationGarcía Negrete, C., & Paucar Álvarez, C. (2009). SÍNTESIS DE NANOPARTÍCULAS DE Ca 10 (PO 4 ) 6 (OH) 2 Y Al 2 O 3 PARA EL UNIVERSIDAD NACIONAL DE COLOMBIASEDE MEDELLÍN. https://repositorio.unal.edu.co/handle/unal/70305
dc.relationGavamukulya, Y., Maina, E. N., Meroka, A. M., Madivoli, E. S., El-Shemy, H. A., Wamunyokoli, F., & Magoma, G. (2020). Green Synthesis and Characterization of Highly Stable Silver Nanoparticles from Ethanolic Extracts of Fruits of Annona muricata. Journal of Inorganic and Organometallic Polymers and Materials, 30(4), 1231–1242. https://doi.org/10.1007/s10904-019-01262-5
dc.relationGómez-Garzón, M. (2018). Nanomateriales, nanopartículas y síntesis verde. Revista Repertorio de Medicina y Cirugía, 27(2), 75–80. https://doi.org/10.31260/repertmedcir.v27.n2.2018.191
dc.relationGómez Garzón, M. (2019). Usos terapéuticos de nanomateriales y nanopartículas. Revista Repertorio de Medicina y Cirugía, 28(1), 5–11. https://doi.org/10.31260/repertmedcir.v28.n1.2019.871
dc.relationGonzález-Pedroza, M. G., Argueta-Figueroa, L., García-Contreras, R., Jiménez-Martínez, Y., Martínez-Martínez, E., Navarro-Marchal, S. A., Marchal, J. A., Morales-Luckie, R. A., & Boulaiz, H. (2021). Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool. Nanomaterials, 11(5). https://doi.org/10.3390/NANO11051273
dc.relationGutiérrez-Santana, J. C., Toscano-Garibay, J. D., López-López, M., & Coria-Jiménez, V. R. (2020). Aptamers coupled to nanoparticles in the diagnosis and treatment of microbial infections. Enfermedades Infecciosas y Microbiologia Clinica (English 66 Ed.), 38(7), 331–337. https://doi.org/10.1016/j.eimce.2020.05.001
dc.relationHasrat, J. A., Peters, L., De Backer, J. P., Vauquelin, G., & Vlietinck, A. J. (1997). Screening of medicinal plants from Suriname for 5-HT1A ligands: Bioactive isoquinoline alkaloids from the fruit of Annona muricata. Phytomedicine, 4(2), 133–140. https://doi.org/10.1016/S0944-7113(97)80059-1
dc.relationHeikkila, R. E., & Cabbat, F. S. (1983). Ascorbate-Induced Lipid Peroxidation and Inhibition of [3H]Spiroperidol Binding in Neostriatal Membrane Preparations. Journal of Neurochemistry, 41(5), 1384–1392. https://doi.org/10.1111/J.1471- 4159.1983.TB00836.X
dc.relationHekmati, M., Hasanirad, S., Khaledi, A., & Esmaeili, D. (2020). Green synthesis of silver nanoparticles using extracts of Allium rotundum l, Falcaria vulgaris Bernh, and Ferulago angulate Boiss, and their antimicrobial effects in vitro. Gene Reports, 19(January), 100589. https://doi.org/10.1016/j.genrep.2020.100589
dc.relationHulla, J. E., Sahu, S. C., & Hayes, A. W. (2015). Nanotechnology : History and future. 34(12), 1318–1321. https://doi.org/10.1177/0960327115603588
dc.relationHuynh, K., Pham, X., Kim, J., Lee, S. H., Chang, H., Rho, W., & Jun, B. (2020). Synthesis , Properties , and Biological Applications of Metallic Alloy Nanoparticles. International Journal of Molecular Sciences, 21(14), 1–29. /pmc/articles/PMC7404399/%0A/pmc/articles/PMC7404399/?report=abstract %0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404399
dc.relationIbrahim, R. M., Markom, M., & Abdullah, H. (2014). Optical Properties of Ni2+-, Co2+-, and Mn2+-doped ZnS Nanoparticles Synthesized Using Reverse Micelle Method. ECS Journal of Solid State Science and Technology, 4(2). https://doi.org/10.1149/2.0181502JSS
dc.relationIndiarto, R., Indriana, L. P. A., Andoyo, R., Subroto, E., & Nurhadi, B. (2021). Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. European Food Research and Technology 2021, 1–24. https://doi.org/10.1007/S00217-021-03867-Y
dc.relationIQBAL, Y., BAE, H., AHMAD, A., RHEE*, I., & HONG, S. (2015). Silica-coated Cobalt Ferrite Nanoparticles for Magnetic Hyperthermia. New Physics: Sae Mulli, 65, 147–151. https://doi.org/10.3938/NPSM.65.147
dc.relationJain, N., Jain, P., Rajput, D., & Patil, U. K. (2021). Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters, 9(1), 1–24. https://doi.org/10.1186/S40486-021- 00131-6
dc.relationJaramillo Gómez, N. I. (2014). Encapsulación de un fármaco en nanopartículas de sílice sintetizadas vía sol – gel asistido por microemulsión de micelas inversas [Universidad Nacional]. https://repositorio.unal.edu.co/handle/unal/47615
dc.relationJaramillo, N. I. (2013). Encapsulación de un fármaco en nanopartículas de sílice sintetizadas vía sol-gel asistido por microemulsión de micelas inversas (p. 108). http://www.bdigital.unal.edu.co/40923/1/43987191.2014.pdf
dc.relationKarpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043
dc.relationKitchens, C. L., McLeod, M. C., & Roberts, C. B. (2005). Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane 67 microemulsions. Langmuir, 21(11), 5166–5173. https://doi.org/10.1021/la047785x
dc.relationKumar, U., Kaviraj, M., Rout, S., Chakraborty, K., Swain, P., Nayak, P. K., & Nayak, A. K. (2021). Combined application of ascorbic acid and endophytic N-fixing Azotobacter chroococcum Avi2 modulates photosynthetic efficacy, antioxidants and growth-promotion in rice under moisture deficit stress. Microbiological Research, 250
dc.relationLaane, C. (1985). Reverse micelles: Biological and technological relevance of amphiphilic structures in apolar media. In Trends in Biotechnology (Vol. 3, Issue 1). https://doi.org/10.1016/0167-7799(85)90075-7
dc.relationLewis, K. (2020). The Science of Antibiotic Discovery. Cell, 181(1), 29–45. https://doi.org/10.1016/J.CELL.2020.02.056
dc.relationLi, B., & Lane, L. A. (2019). Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 11(3). https://doi.org/10.1002/WNAN.1542
dc.relationLifang, M., Xinran, S., Yongchun, Y., & Chen, Y. (2021). Two-Dimensional Silicene / Silicon Nanosheets : An Emerging Silicon-Composed Nanostructure in Biomedicine. Advanced Materials, 33(31), 1–16. https://doi.org/10.1002/adma.202008226
dc.relationLiu, Y., Friesen, J. B., McAlpine, J. B., & Pauli, G. F. (2015). Solvent System Selection Strategies in Countercurrent Separation. Planta Medica, 81(17), 1582. https://doi.org/10.1055/S-0035-1546246
dc.relationLohrasbi, S., Amin, M., Kouhbanani, J., Beheshtkhoo, N., & Ghasemi, Y. (2019). Green Synthesis of Iron Nanoparticles Using Plantago major Leaf Extract and Their Application as a Catalyst for the Decolorization of Azo Dye
dc.relationLone, I. H., Radwan, N. R. E., Aslam, J., & Akhter, A. (2018). Concept of Reverse Micelle Method For the Synthesis of Nano-Structured Materials. Current Nanoscience, 15(2), 129–136. https://doi.org/10.2174/1573413714666180611075115
dc.relationMachowska, A., & Lundborg, C. S. (2019). Drivers of irrational use of antibiotics in Europe. International Journal of Environmental Research and Public Health, 16(1). https://doi.org/10.3390/ijerph16010027
dc.relationMadubuonu, N., Aisida, S. O., Ali, A., Ahmad, I., & Zhao, T. (2019). Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja- Moringa oleifera and their antibacterial and photocatalytic study. Journal of Photochemistry & Photobiology, B: Biology, 199(July), 111601. https://doi.org/10.1016/j.jphotobiol.2019.111601
dc.relationMajerič, P., & Rudolf, R. (2020). Advances in Ultrasonic Spray Pyrolysis Processing of. Materials, 13(16), 3485
dc.relationMakarov, V. V, Makarova, S. S., Love, A. J., Sinitsyna, O. V, Dudnik, A. O., Yaminsky, I. V, Taliansky, M. E., & Kalinina, N. O. (2014). Biosynthesis of Stable Iron Oxide Nanoparticles in Aqueous Extracts of Hordeum vulgare and Rumex acetosa Plants
dc.relationMaldonado Vega, G., Olivero Sierra, M., & Rodríguez Macías, J. (2021). COMPOSICIÓN QUÍMICA Y ACTIVIDADES BIOLÓGICAS DE Annona muricata L [Unilibre]. https://hdl.handle.net/10901/23784
dc.relationMandal, S., & De, S. (2016). Copper nanoparticles in AOT “revisited”-direct micelles versus reverse micelles. In Materials Chemistry and Physics (Vol. 183, pp. 410– 68 421). Elsevier Ltd. https://doi.org/10.1016/j.matchemphys.2016.08.046
dc.relationMansoori, G. A., & Soelaiman, T. A. F. (2005). Nanotechnology – An Introduction for the Standards Community. Journal of ASTM International, 2(6), 1–21
dc.relationMaría, N. A., & Patricia, H. A. (2017). Evaluación de la propiedad antimicrobial de las nanopartículas de oro sintetizadas con extractos de tamarindus indica L y mangifera indica L Evaluation of the antimicrobial property of gold nanoparticles synthesized with. número 4, 389–398
dc.relationMasteri-Farahani, M., & Ghorbani, M. (2016). Heteropolytungstate nanoparticles: Microemulsion-mediated preparation and investigation of their catalytic activity in the epoxidation of olefins. Materials Research Bulletin, 76, 332–337. https://doi.org/10.1016/J.MATERRESBULL.2015.12.036
dc.relationMayadeen, A. (2022, June 22). La OMS alerta de que el desarrollo de nuevos antibióticos está “estancado” | Noticias ONU. https://news.un.org/es/story/2022/06/1510742
dc.relationMbuyi, P. L., Assumani, Z., Za, J., Ntezolo, N., Kabasele, D. M., Wale, S., Massamba, P., Lesse, M., Kiala, R. I., Sansi Nzinga, P., Mananga Bongo, R., Mbembo, B., Mbembo, W., Divengi, J.-P. N., Biduaya Mukeba, F., Longo, B. M., Manzo Lusakibanza, M., Kapepula Mutwale, P., & Kahunu Mesia, G. (2022). Annona muricata (Graviola) (Annonaceae): Phytochemistry, Pharmacology and Future Directions, a Review. Asian Plant Research Journal, 10(1), 9–45. https://doi.org/10.9734/APRJ/2022/V10I1181
dc.relationMelot, A., Fall, D., Gleye, C., & Champy, P. (2009). Apolar Annonaceous Acetogenins from the Fruit Pulp of Annona muricata. Molecules, 14(11), 4387. https://doi.org/10.3390/MOLECULES14114387
dc.relationMenger, F. M. (1979). On the Structure of Micelles. Accounts of Chemical Research, 12(4), 111–117. https://doi.org/10.1021/ar50136a001
dc.relationMerkoçi, A., Marín, S., Castãeda, M. T., Pumera, M., Ros, J., & Alegret, S. (2006). Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via reverse micelles and arrested precipitation. Nanotechnology, 17(10), 2553–2559. https://doi.org/10.1088/0957-4484/17/10/019
dc.relationMiethke, M., & Marahiel, M. A. (2007). Siderophore-Based Iron Acquisition and Pathogen Control. 71(3), 413–451. https://doi.org/10.1128/MMBR.00012-07
dc.relationMitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews. Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/S41573-020-0090-8
dc.relationMoghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H. M., & Kadir, H. A. (2015). Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. International Journal of Molecular Sciences, 16(7), 15625. https://doi.org/10.3390/IJMS160715625
dc.relationMohammad Soleimani Zohr Shiri, W. H. and M. R. M. (2019). Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble. Materials, 12, 1–8
dc.relationMonclou-Salcedo, S. A., Correa-Torres, S. N., Kopytko, M. I., Santoyo-Muñóz, C., VesgaGuzmán, D. M., Castellares-Lozano, R., López-Amaris, M., Saavedra-Mancera, A. D., Herrera-Barros, A. P., Monclou-Salcedo, S. A., Correa-Torres, S. N., Kopytko, M. I., Santoyo-Muñóz, C., Vesga-Guzmán, D. M., Castellares-Lozano, R., López-Amaris, 69 M., Saavedra-Mancera, A. D., & Herrera-Barros, A. P. (2020). Evaluación antifúngica de nanopartículas de TiO2 para inhibición de Fusarium solani en Palma Africana. International Journal of Agriculture and Natural Resources, 47(2), 126–133. https://doi.org/10.7764/IJANR.V47I2.2170
dc.relationMonti, G. A., Fernández, G. A., Correa, N. M., Falcone, R. D., Moyano, F., & Silbestri, G. F. (2017). Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles. Royal Society Open Science, 4(7). https://doi.org/10.1098/RSOS.170481
dc.relationMosquera, E., Montero, P., Gomez, C., & Gimenez, B. (2014). NANOENCAPSULACIÓN DE HIDROLIZADOS PEPTÍDICOS CON ACTIVIDADES BIOLÓGICAS PROCEDENTES DE SUBPRODUCTOS DE LA PESCA. https://www.researchgate.net/publication/263180788_NANOENCAPSULACION_ DE_HIDROLIZADOS_PEPTIDICOS_CON_ACTIVIDADES_BIOLOGICAS_PROCEDENT ES_DE_SUBPRODUCTOS_DE_LA_PESCA
dc.relationMosselhy, D. A., Assad, M., Sironen, T., & Elbahri, M. (2021). Nanotheranostics: A possible solution for drug-resistant staphylococcus aureus and their biofilms? Nanomaterials, 11(1), 1–36. https://doi.org/10.3390/nano11010082
dc.relationNajahi-Missaoui, W., Arnold, R. D., & Cummings, B. S. (2021). Safe Nanoparticles: Are We There Yet? International Journal of Molecular Sciences, 22(1), 1–22. https://doi.org/10.3390/IJMS22010385
dc.relationNath, S., Jana, S., Pradhan, M., & Pal, T. (2010). Ligand-stabilized metal nanoparticles in organic solvent. Journal of Colloid And Interface Science, 341(2), 333–352. https://doi.org/10.1016/j.jcis.2009.09.049
dc.relationNational nanotechnology initiative. (2021). Qué es la nanotecnología
dc.relationNavarrete Barragán, N. A., Pita-Ospina, E. F., Sánchez Mora., R. M., Giraldo Quintero, S. E., & Bernal Lizarazú, M. C. (2020). Actividad in vitro de los extractos etanólicos de Lantana camara L., Petiveria alliacea L. y Lippia dulcis T. frente a bacterias patógenas. Nova, 18(33), 53–71. https://doi.org/10.22490/24629448.3700
dc.relationNgom, I., Ngom, B. D., Sackey, J., & Khamlich, S. (2020). Biosynthesis of zinc oxide nanoparticles using extracts of Moringa Oleifera: Structural & optical properties. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.05.323
dc.relationObjetivos y metas de desarrollo sostenible - Desarrollo Sostenible. (2021). https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollosostenible
dc.relationOdintsov, A. A., Revina, A. A., Zhavoronkova, K. N., & Boeva, O. A. (2016). Catalytic Properties of Gold Nanoparticles Prepared in Reverse Micelles. Protection of Metals and Physical Chemistry of Surfaces 2016 52:2, 52(2), 223–226. https://doi.org/10.1134/S2070205116020210
dc.relationOkkeh, M., Bloise, N., Restivo, E., De Vita, L., Pallavicini, P., & Visai, L. (2021). Gold nanoparticles: Can they be the next magic bullet for multidrug-resistant bacteria? Nanomaterials, 11(2), 1–30. https://doi.org/10.3390/nano11020312
dc.relationOnitsuka, S., Hamada, T., & Okamura, H. (2019). Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids and Surfaces B: Biointerfaces, 173(September 2018), 242–248. https://doi.org/10.1016/j.colsurfb.2018.09.055
dc.relationOrellano, M. S., Longo, G. S., Porporatto, C., Correa, N. M., & Falcone, R. D. (2020). Role of micellar interface in the synthesis of chitosan nanoparticles formulated by 70 reverse micellar method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 599. https://doi.org/10.1016/j.colsurfa.2020.124876
dc.relationPabón-guerrero, S. E., Benítez-benítez, R., Sarria-villa, R. A., & Antonio, J. (2021). Synthesis of iron oxide nanoparticles using aqueous extract of Eucalyptus grandis • Síntesis de nanopartículas de óxido de hierro usando extracto acuoso de Eucalyptus grandis. 88(216), 220–226
dc.relationPan, S., Li, X., & Yadav, J. (2021). Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Physical Chemistry Chemical Physics, 23(35), 19120–19129. https://doi.org/10.1039/D1CP02801D
dc.relationPan, Z., Lin, Y., Sarkar, B., Owens, G., & Chen, Z. (2020). Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. Journal of Colloid and Interface Science, 558, 106–114. https://doi.org/10.1016/J.JCIS.2019.09.106
dc.relationPaola, D., Ardila, R., & Pataquiva-mateus, A. (2019). Síntesis de nanopartículas de magnetita a partir del extracto de cáscara de papaya para la degradación de colorantes azoicos en soluciones acuosas Synthesis of magnetite nanoparticles using papaya peel extract. 27, 431–442
dc.relationPark, B., Kim, J., Lee, J. Y., Bhang, S. H., Mun, J., & Yu, T. (2018). Studies on the Change of Lithium Ion Battery Performance According to Length and Type of Surfactant on the Surface of Manganese Oxide Nanoparticles Prepared by Reverse Micelle Method. Macromolecular Research , 26(12), 1167–1172. https://doi.org/10.1007/S13233-018-6147-4
dc.relationPileni, M. P. (1993). Reverse micelles as microreactors. Journal of Physical Chemistry, 97(27), 6961–6973. https://doi.org/10.1021/j100129a008
dc.relationPileni, M. P. (2003). The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2(3), 145–150. https://doi.org/10.1038/nmat817
dc.relationPlan Nacional de Desarrollo 2018-2022. (n.d.). Retrieved December 6, 2021, from https://colaboracion.dnp.gov.co/CDT/Prensa/Resumen-PND2018-2022-final.pdf
dc.relationPopovetskiy, P. S., & Kolodin, A. N. (2020). Hydrodynamic Diameter of Silver Nanoparticles in Solutions of Nonionic Surfactants. Russian Journal of Physical Chemistry A 2020 94:10, 94(10), 2126–2134. https://doi.org/10.1134/S0036024420100246
dc.relationPoulose, S., Panda, T., Nair, P. P., & Théodore, T. (2014). Biosynthesis of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 14(2), 2038–2049. https://doi.org/10.1166/jnn.2014.9019
dc.relationQasim, S., Zafar, A., Saif, M. S., Ali, Z., Nazar, M., Waqas, M., Haq, A. U., Tariq, T., Hassan, S. G., Iqbal, F., Shu, X. G., & Hasan, M. (2020). Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. Journal of Photochemistry and Photobiology B: Biology, 204(September 2019), 111784. https://doi.org/10.1016/j.jphotobiol.2020.111784
dc.relationRady, I., Bloch, M. B., Chamcheu, R. C. N., Banang Mbeumi, S., Anwar, M. R., Mohamed, H., Babatunde, A. S., Kuiate, J. R., Noubissi, F. K., El Sayed, K. A., Whitfield, G. K., & Chamcheu, J. C. (2018). Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review. Oxidative Medicine and Cellular Longevity, 71 2018. https://doi.org/10.1155/2018/1826170
dc.relationRanoszek-Soliwoda, K., Tomaszewska, E., Małek, K., Celichowski, G., Orlowski, P., Krzyzowska, M., & Grobelny, J. (2019). The synthesis of monodisperse silver nanoparticles with plant extracts. Colloids and Surfaces B: Biointerfaces, 177(October 2018), 19–24. https://doi.org/10.1016/j.colsurfb.2019.01.037
dc.relationRidley, R. E., Fathi-Kelly, H., Kelly, J. P., Vasquez, V. R., & Graeve, O. A. (2020). Predicting the size of salt-containing aqueous Na-AOT reverse micellar water-inoil microemulsions with consideration for specific ion effects. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2020.11.007
dc.relationSaad, A. M., El-Saadony, M. T., El-Tahan, A. M., Sayed, S., Moustafa, M. A. M., Taha, A. E., Taha, T. F., & Ramadan, M. M. (2021). Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi Journal of Biological Sciences, 28(10), 5674–5683. https://doi.org/10.1016/j.sjbs.2021.06.011
dc.relationSalabat, A., & Saydi, H. (2012). A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems. Russian Journal of Physical Chemistry A, 86(13), 2014–2017. https://doi.org/10.1134/S003602441213002X
dc.relationSamari, F., Parkhari, P., Eftekhar, E., Mohseni, F., & Yousefinejad, S. (2019). Antioxidant, cytotoxic and catalytic degradation efficiency of controllable phytosynthesised silver nanoparticles with high stability using Cordia myxa extract. Journal of Experimental Nanoscience , 14(1), 141–159. https://doi.org/10.1080/17458080.2019.1687883
dc.relationSantos, C. S. C., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., Arconada, N., & Neto, V. (2015). Industrial Applications of Nanoparticles - A Prospective Overview. Materials Today: Proceedings, 2(1), 456–465. https://doi.org/10.1016/j.matpr.2015.04.056
dc.relationScholz, N., Behnke, T., & Resch-Genger, U. (2018). Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension—A Method Comparison. Journal of Fluorescence , 28, 465–476. https://doi.org/10.1007/S10895-018-2209-4
dc.relationSethi, A., Ahmad, M., Huma, T., Khalid, I., & Ahmad, I. (2021). Evaluation of Low Molecular Weight Cross Linked Chitosan Nanoparticles, to Enhance the Bioavailability of 5-Flourouracil: SAGE, 19(2). https://doi.org/10.1177/15593258211025353
dc.relationShaker, L., Alimardani, V., & Mohammad, A. (2021). Heliyon Green synthesis of ironbased nanoparticles using Chlorophytum comosum leaf extract : methyl orange dye degradation and antimicrobial properties. Heliyon, 7(September 2020), e06159. https://doi.org/10.1016/j.heliyon.2021.e06159
dc.relationSharma, B., & Deswal, R. (2018). Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. Artificial Cells, Nanomedicine and Biotechnology, 46(sup2), 408–418. https://doi.org/10.1080/21691401.2018.1458034
dc.relationSheel, R., Kumari, P., Kumar, P., & Jawed, D. (2020). Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo 72 biocompatibility of P . niruri contrived antibacterial iron oxide nanoparticles with zebra fi sh *. Environmental Pollution, 267, 115482. https://doi.org/10.1016/j.envpol.2020.115482
dc.relationShi, Y., Zhang, X., Zhu, Y., Tan, H., Chen, X., & Lu, Z.-H. (2016). Core–shell structured nanocomposites Ag@CeO2 as catalysts for hydrogenation of 4-nitrophenol and 2- nitroaniline. RSC Advances, 6(53), 47966–47973. https://doi.org/10.1039/C6RA00631K
dc.relationShiri, M. S. Z., Henderson, W., & Mucalo, M. R. (2019). A review of the lesser-studied microemulsion-based synthesis methodologies used for preparing nanoparticle systems of the noble metals, Os, Re, Ir and Rh. In Materials (Vol. 12, Issue 12). MDPI AG. https://doi.org/10.3390/ma12121896
dc.relationShrestha, L. K., Shrestha, R. G., Vilanova, N., Rodriguez-Abreu, C., & Ariga, K. (2014). Insitu formation of silver nanoparticles using nonionic surfactant reverse micelles as nanoreactors. In Journal of Nanoscience and Nanotechnology (Vol. 14, Issue 3, pp. 2238–2244). https://doi.org/10.1166/jnn.2014.8548
dc.relationSmetana, A. B., Wang, J. S., Boeckl, J., Brown, G. J., & Wai, C. M. (2007). Fine-tuning size of gold nanoparticles by cooling during reverse micelle synthesis. Langmuir, 23(21), 10429–10432. https://doi.org/10.1021/la701229q
dc.relationSon, J. H., & Bae, D. S. (2015). Synthesis and characterization of NiAl2O4 inorganic pigment nanoparticles by a reverse micelle processing. Korean Journal of Materials Research, 25(2), 95–99. https://doi.org/10.3740/MRSK.2015.25.2.95
dc.relationSun, S., Liu, J., Kadouh, H., Sun, X., & Zhou, K. (2014). Three new anti-proliferative Annonaceous acetogenins with mono-tetrahydrofuran ring from graviola fruit (Annona muricata). Bioorganic & Medicinal Chemistry Letters, 24(12), 2773–2776. https://doi.org/10.1016/J.BMCL.2014.03.099
dc.relationSyed Najmuddin, S. U. F., Romli, M. F., Hamid, M., Alitheen, N. B., & Abd Rahman, N. M. A. N. (2016). Anti-cancer effect of Annona Muricata Linn Leaves Crude Extract (AMCE) on breast cancer cell line. BMC Complementary and Alternative Medicine, 16(1). https://doi.org/10.1186/S12906-016-1290-Y
dc.relationTabla y gráfico de espectros infrarrojos de MerK. (2023). Tabla y gráfico de espectros infrarrojos, Sigma Aldrich. S.F. https://www.sigmaaldrich.com/CO/es/technicaldocuments/technical-article/analytical-chemistry/photometry-andreflectometry/ir-spectrum-table
dc.relationTirado, D. F., Acevedo, D., Herrera, A. P., & Herrera, A. (2015). Modeling the interaction energy of silica nanoparticles prepared in microemulsions
dc.relationUllah, A., Yuan, Q., Ahmad, A., Ul, Z., Khan, H., Mahnashi, M. H., Alyami, B. A., Alqahtani, Y. S., & Ullah, S. (2020). Photodiagnosis and Photodynamic Therapy Facile and eco-benign fabrication of Ag / Fe 2 O 3 nanocomposite using Algaia Monozyga leaves extract and its ’ efficient biocidal and photocatalytic applications. Photodiagnosis and Photodynamic Therapy, 32(May), 101970. https://doi.org/10.1016/j.pdpdt.2020.101970
dc.relationUwaya, G. E., Fayemi, O. E., Sherif, E. M., Junaedi, H., & Ebenso, E. E. (2020). Properties of Fe 3 O 4 Nanoparticles from Callistemon viminalis Plant Extracts. 1–19
dc.relationVelíšková, J., Velíšek, L., & Moshé, S. L. (1996). Age-specific effects of baclofen on pentylenetetrazol-induced seizures in developing rats. Epilepsia, 37(8), 718–722. https://doi.org/10.1111/J.1528-1157.1996.TB00641.X
dc.relationVelusamy, P., Kumar, G. V., Jeyanthi, V., Das, J., & Pachaiappan, R. (2016). Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application. Journal of the Korean Society of Toxicology, 32(2), 95–102. https://doi.org/10.5487/TR.2016.32.2.095
dc.relationVenditti, F., Angelico, R., Palazzo, G., Colafemmina, G., Ceglie, A., & Lopez, F. (2007). Preparation of nanosize silica in reverse micelles: Ethanol produced during TEOS hydrolysis affects the microemulsion structure. Langmuir, 23(20), 10063–10068. https://doi.org/10.1021/la701739w
dc.relationVincens, M. E. E., Cano, C. E., Bustos, M. C. C., & Oceguera, A. Y. O. (2018). El mundo de la nanotecnología situación y prospectiva para México. https://ethic.com.mx/docs/estudios/El-mundo-nanotecnologia-Situacionprospectiva-Mexico.pdf
dc.relationWacławek, S., Gončuková, Z., Adach, K., Fijałkowski, M., & Černík, M. (2018). Green synthesis of gold nanoparticles using Artemisia dracunculus extract: control of the shape and size by varying synthesis conditions. Environmental Science and Pollution Research 2018 25:24, 25(24), 24210–24219. https://doi.org/10.1007/S11356-018-2510-4
dc.relationWencewicz, T. A. (2019). Crossroads of Antibiotic Resistance and Biosynthesis. Journal of Molecular Biology, 431(18), 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033
dc.relationWolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., & Zhao, Y. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16(14), 1681. /pmc/articles/PMC4964712
dc.relationWu, M. L., Chen, D. H., & Huang, T. C. (2001). Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir, 17(13), 3877–3883. https://doi.org/10.1021/la010060y
dc.relationWu, M., & Lai, L. (2004). Synthesis of Pt / Ag bimetallic nanoparticles in water-in-oil microemulsions. 244, 149–157. https://doi.org/10.1016/j.colsurfa.2004.06.027
dc.relationXin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Yew, Y. P. (2016). Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/8489094
dc.relationXinxin, F., Jingxuan, C., Xiang, Z., Wen Di, L., Haixiong, G., & Yong, H. (2018). Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 132, 169–187. https://doi.org/10.1016/j.addr.2018.07.006
dc.relationYan, L. P., Gopinath, S. C. B., Anbu, P., Kasim, F. H., Zulhaimi, H. I., Radi, A., & Yaakub, W. (2020). Characterization and anti-bacterial potential of iron oxide nanoparticle processed eco-friendly by plant extract. Preparative Biochemistry & Biotechnology, 0(0), 1–10. https://doi.org/10.1080/10826068.2020.1783678
dc.relationYi, Y., Tu, G., Tsang, P. E., Xiao, S., & Fang, Z. (2019). Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal. Materials Letters, 234, 388–391. https://doi.org/10.1016/j.matlet.2018.09.137
dc.relationYin, L., & Zhong, Z. (2020). Nanoparticles. Biomaterials Science, Cmc, 453–483. https://doi.org/10.1016/b978-0-12-816137-1.00031-3
dc.relationYugandhar, P., & Savithramma, N. (2015). Leaf assisted green synthesis of silver nanoparticles from Syzygium Alternifolium (Wt.) walp. characterization and antimicrobial studies. Nano Biomedicine and Engineering, 7(2), 29–37. https://doi.org/10.5101/NBE.V7I2.P29-37
dc.relationZamhuri, A., Lim, G. P., Ma, N. L., Tee, K. S., & Soon, C. F. (2021). MXene in the lens of biomedical engineering : synthesis , applications and future outlook. BioMedical Engineering OnLine, 1–24. https://doi.org/10.1186/s12938-021-00873-9
dc.relationZhang, H., Li, H., Li, D., & Meng, S. (2006). Synthesis and characterization of ultrafine CeF3 nanoparticles modified by catanionic surfactant via a reverse micelles route. Journal of Colloid and Interface Science, 302(2), 509–515. https://doi.org/10.1016/j.jcis.2006.06.062
dc.relationZhang, Y., Zhao, Q., & Chen, B. (2021). Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1. The Science of the Total Environment, 805(2021), 1–150336. https://doi.org/10.1016/J.SCITOTENV.2021.150336
dc.relationZhao, Y., Zhang, J., Wang, Q., Li, W., Li, J., Han, B., Wu, Z., Zhang, K., & Li, Z. (2010). Cylindrical-to-spherical shape transformation of lecithin reverse micelles induced by CO2. Langmuir, 26(7), 4581–4585. https://doi.org/10.1021/la904917n
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectNanopartículas
dc.subjectSíntesis verde
dc.subjectMicela inversa
dc.subjectTamaño
dc.subjectforma
dc.subjectActividad antimicrobiana
dc.titleEvaluación de la actividad antimicrobiana de nanopartículas de Hierro (FeNPs) sintetizadas con el extracto de Annona Muricata L. controladas mediante micela inversa


Este ítem pertenece a la siguiente institución