dc.contributor | Rodríguez Macias, Juan David | |
dc.contributor | Méndez López, Maximiliano Ernesto | |
dc.creator | Muñoz Fontalvo, Luis Alberto | |
dc.date.accessioned | 2023-08-08T20:29:02Z | |
dc.date.accessioned | 2023-09-06T14:43:40Z | |
dc.date.available | 2023-08-08T20:29:02Z | |
dc.date.available | 2023-09-06T14:43:40Z | |
dc.date.created | 2023-08-08T20:29:02Z | |
dc.identifier | https://hdl.handle.net/10901/26088 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8680896 | |
dc.description.abstract | La nanotecnología ha venido consolidándose como una tecnología clave para una amplia gama de aplicaciones siendo una herramienta prometedora tanto en diagnóstico y terapéutica, dadas sus funciones inherentes a nanoescala sobre los componentes biológicos de las células. En la presente investigación se informa sobre la síntesis de nanopartículas de Hierro (FeNPs) usando extracto de Annona Muricata L. controladas mediante micela inversa y su eficacia antimicrobiana frente a bacterias de interés clínico. Las FeNPs biosintetizadas posiblemente esféricas, discretas y estabilizadas por entidades fitoquímicas se caracterizaron mediante espectroscopía ultravioleta visible, dispersión de la luz dinámica, espectroscopia infrarroja por transformada de Fourier. los resultados de DLS para tamaño hidrodinámico de partícula promedio es de 27.98 nm con un RSD de 4.2% usando extracto al 20 % en la síntesis controlada por micela inversa. El resultado de evaluación antimicrobiana mostró que las nanopartículas de hierro sintetizadas, a los diferentes tratamientos no presentaron halos de inhibición indiscutibles, por tanto, no tuvieron actividad antibacteriana frente a p. aeruginosa, s. aureus, enterococcus y e. coli | |
dc.relation | Abadie, R. E., Medina, R., Ruiz, L., & Tresierra-ayala, A. (2014). Actividad antibacteriana de extractos vegetales frente a cepas intrahospitalarias, Iquitos-Perú. 31–38. https://doi.org/https://doi.org/10.33017/RevECIPeru2014.0005 | |
dc.relation | Abdel-Rahman, T., Hussein, A. S., Beshir, S., Hamed, A. R., Ali, E., & El-Tanany, S. S. (2019). Antimicrobial Activity of Terpenoids Extracted from Annona muricata Seeds and its Endophytic Aspergillus niger Strain SH3 Either Singly or in Combination. Open Access Macedonian Journal of Medical Sciences, 7(19), 3127. https://doi.org/10.3889/OAMJMS.2019.793 | |
dc.relation | Acevedo Pizarro, B. (2015). ESTUDIO DE SISTEMAS MICELARES ORIGINADOS EN MEDIO ACUOSO POR COPOLÍMEROS ANFIFÍLICOS EN BLOQUE Y RAMIFICADOS (2015).pdf. In Tesis. http://repositorio.uchile.cl/bitstream/handle/2250/133560/Estudio-desistema-micelares-originados-en-medio-acuoso-porcopolímeros.pdf?sequence=1&isAllowed=y | |
dc.relation | Aguilar-Tapia, A., & Zanella, R. (2018). Las nanopartículas bimetálicas y algunas de sus aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencia y Nanotecnología, 10(19), 72. https://doi.org/10.22201/CEIICH.24485691E.2017.19.61783 | |
dc.relation | Ahn, E. Y., Jin, H., & Park, Y. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering C, 101(August 2018), 204–216. https://doi.org/10.1016/j.msec.2019.03.095 | |
dc.relation | Alabdallah, N. M., & Hasan, M. M. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi Journal of Biological Sciences, 28(10), 5631–5639. https://doi.org/10.1016/J.SJBS.2021.05.081 | |
dc.relation | Armenta-González, A. J., Carrera-Cerritos, R., Moreno-Zuria, A., Álvarez-Contreras, L., Ledesma-García, J., Cuevas-Muñiz, F. M., & Arriaga, L. G. (2016). An improved ethanol microfluidic fuel cell based on a PdAg/MWCNT catalyst synthesized by the reverse micelles method. Fuel, 167, 240–247. https://doi.org/10.1016/J.FUEL.2015.11.057 | |
dc.relation | Armijo, L. M., Wawrzyniec, S. J., Kopciuch, M., Brandt, Y. I., Rivera, A. C., Withers, N. J., Cook, N. C., Huber, D. L., Monson, T. C., Smyth, H. D. C., & Osiński, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/S12951-020-0588-6 | |
dc.relation | Arreche, R. A., Montes de Oca-Vásquez, G., Vega-Baudrit, J. R., & Vázquez, P. G. (2020). Synthesis of Silver Nanoparticles Using Extracts from Yerba Mate (Ilex paraguariensis) Wastes. Waste and Biomass Valorization, 11(1), 245–253. https://doi.org/10.1007/s12649-018-0394-7 | |
dc.relation | Asghar, M. A., Zahir, E., Arif, M., Id, A., Iqbal, J., & Rehman, A. (2020). characterization of iron , copper and silver nanoparticles using Syzygium cumini leaf extract : As an effective antimicrobial and aflatoxin B 1 adsorption agents. 1–17. 63 https://doi.org/10.1371/journal.pone.0234964 | |
dc.relation | Avilés, J., Locarno-lara, E., & González-Delgado, Á. D. (2020). Exergetic analysis of TiO 2 nanoparticle production from lemongrass and titanium isopropoxide. Prospectiva, 18.2 | |
dc.relation | Badmus, J. A., Oyemomi, S. A., Adedosu, O. T., Yekeen, T. A., Azeez, M. A., Adebayo, E. A., Lateef, A., Badeggi, U. M., Botha, S., Hussein, A. A., & Marnewick, J. L. (2020). Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon, 6(11). https://doi.org/10.1016/J.HELIYON.2020.E05413 | |
dc.relation | Baetke, S. C., Lammers, T., & Kiessling, F. (2015). Applications of nanoparticles for diagnosis and therapy of cancer. The British Journal of Radiology, 88(1054). https://doi.org/10.1259/BJR.20150207 | |
dc.relation | Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 19(86), 1–26. https://doi.org/10.1186/S12951-021-00834-3 | |
dc.relation | Baig, M. M., Yousuf, M. A., Zulfiqar, S., Safeer, A., Agboola, P. O., Shakir, I., & Warsi, M. F. (2021). Structural and electrical properties of La3+ ions substituted MnFe2O4 ferrite nanoparticles synthesized via cost-effective reverse micelles strategy. Materials Research Express, 8(3). https://doi.org/10.1088/2053-1591/ABD73B | |
dc.relation | Baig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/d0ma00807a | |
dc.relation | Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J. M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F. J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., & Wieczorek-Ciurowa, K. (2013). Hallmarks of mechanochemistry: from nanoparticles to technology. Chemical Society Reviews, 42(18), 7571–7637. https://doi.org/10.1039/c3cs35468g | |
dc.relation | Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2020). The History of Nanoscience and Nanotechnology : From Chemical – Physical Applications to Nanomedicine. Molecules, 25(1), 1–15 | |
dc.relation | Belanova, A. A., Gavalas, N., Makarenko, Y. M., Belousova, M. M., Soldatov, A. V., & Zolotukhin, P. V. (2018). Physicochemical Properties of Magnetic Nanoparticles: Implications for Biomedical Applications In Vitro and In Vivo. Oncology Research and Treatment, 41(3), 139–143. https://doi.org/10.1159/000485020 | |
dc.relation | Bellah, M., Christensen, S. M., & Iqbal, S. M. (2012). Nanostructures for Medical Diagnostics. https://doi.org/10.1155/2012/486301 | |
dc.relation | Bernal, R., Gandestein, S. R., & Celis, M. (2020). Catálogo de plantas y líquenes de Colombia. Universidad Nacional de Colombia. https://doi.org/https://doi.org/10.15472/7avdhn | |
dc.relation | Bezza, F. A., Tichapondwa, S. M., & Chirwa, E. M. N. (2020). Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. Journal of Hazardous Materials, 393(October 2019), 122319. https://doi.org/10.1016/j.jhazmat.2020.122319 | |
dc.relation | Biswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., & Faupel, F. (2012). Advances in top – down and bottom – up surface nanofabrication : Techniques , 64 applications & future prospects. Advances in Colloid and Interface Science, 170(1– 2), 2–27. https://doi.org/10.1016/j.cis.2011.11.001 | |
dc.relation | Borcherding, J., Baltrusaitis, J., Chen, H., Stebounova, L., Wu, C. M., Rubasinghege, G., Mudunkotuwa, I. A., Caraballo, J. C., Zabner, J., Grassian, V. H., & Comellas, A. P. (2014). Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environmental Science. Nano, 1(2), 123. https://doi.org/10.1039/C3EN00029 | |
dc.relation | Boutonnet, M., Kizling, J., Stenius, P., & Maire, G. (1982). The preparation of monodisperse colloidal metal particles from microemulsions. Colloids and Surfaces, 5(3), 209–225. https://doi.org/10.1016/0166-6622(82)80079-6 | |
dc.relation | Bustos, R. H. (2020, May 26). La nanotecnología, una solución eficaz para el cuidado de la salud. https://www.unisabana.edu.co/programas/carreras/facultad-demedicina/medicina/noticias/detalle-de-noticias/noticia/la-nanotecnologia-unasolucion-eficaz-para-el-cuidado-de-la-salud | |
dc.relation | Cavazzini, G., Cugini, F., Delmonte, D., Trevisi, G., Nasi, L., Ener, S., Koch, D., Righi, L., Solzi, M., Gutfleisch, O., & Albertini, F. (2021). Multifunctional Ni-Mn-Ga and NiMn-Cu-Ga Heusler particles towards the nanoscale by ball-milling technique. Journal of Alloys and Compounds, 872, 159747. https://doi.org/10.1016/j.jallcom.2021.159747 | |
dc.relation | Chan, P., Ah, R., Mh, K., & A, Z. (2010). Anti-arthritic activities of Annona muricata L. leaves extract on complete Freund’s adjuvant (CFA) – induced arthritis in rats. Planta Medica, 76(12), P166. https://doi.org/10.1055/S-0030-1264464 | |
dc.relation | Córdova-Cisneros, K. C. (2021). Revista Mexicana de I ngeniería Q uímica. 8(3 | |
dc.relation | Das Nelaturi, P., Huthur Sriramaia, N., Nagaraj, S., Subbaiah Kotakadi, V., Veetil Veeran, A., & Pamidimukkala, Kiranmayee Pamidimukkala, K. (2017). An in-vitro Cytotoxic and Genotoxic Properties of Allamanda Cathartica L. Latex Green NPs on Human Peripheral Blood Mononuclear Cells. Nano Biomed Eng, 9(4), 314–323. https://doi.org/10.5101/nbe.v9i4.p314-323.1 | |
dc.relation | Deshmukh, A. R., Gupta, A., & Kim, B. S. (2019). Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities. 2019. https://doi.org/10.1155/2019/1714358 | |
dc.relation | Dinali, R., Ebrahiminezhad, A., Manley-harris, M., Ghasemi, Y., & Berenjian, A. (2017). Critical Reviews in Microbiology Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology, 0(0), 000. https://doi.org/10.1080/1040841X.2016.1267708 | |
dc.relation | Doolittle, J. W., & Dutta, P. K. (2006). Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system. Langmuir, 22(10), 4825–4831. https://doi.org/10.1021/la060047 | |
dc.relation | Drummer, S., Madzimbamuto, T., & Chowdhury, M. (2021). Green Synthesis of Transition-Metal Nanoparticles and Their Oxides : A Review. Materials, 14(11). /pmc/articles/PMC8196554/%0A/pmc/articles/PMC8196554/?report=abstract %0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196554 | |
dc.relation | Ebrahiminezhad, A., Davaran, S., Rasoul-amini, S., Barar, J., & Moghadam, M. (2012). Synthesis , Characterization and Anti- Listeria monocytogenes Effect of Amino Acid Coated Magnetite Nanoparticles. 868–874 | |
dc.relation | Ebrahiminezhad, A., Zare, A., Ajit, H., Saeed, K. S., & Younes, T. (2018). Plant - Mediated Synthesis and Applications of Iron Nanoparticles. Molecular Biotechnology, 60(2), 154–168. https://doi.org/10.1007/s12033-017-0053-4 | |
dc.relation | El-Seedi, H. R., El-Shabasy, R. M., Khalifa, S. A. M., Saeed, A., Shah, A., Shah, R., Iftikhar, F. J., Abdel-Daim, M. M., Omri, A., Hajrahand, N. H., Sabir, J. S. M., Zou, X., Halabi, M. F., Sarhan, W., & Guo, W. (2019). Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances, 9(42), 24539–24559. https://doi.org/10.1039/c9ra02225b | |
dc.relation | Errayes, A., Mohammed, W., Errayes, A. O., Abdussalam-Mohammed, W., & Darwish, M. O. (2020). Review of Phytochemical and Medical Applications of Annona Muricata Fruits. Journal of Chemical Reviews, 2(1), 70–79. https://doi.org/10.33945/SAMI/JCR.2020.1.5 | |
dc.relation | Escudero, A., Carrillo-carri, C., Romero-ben, E., Franco, A., Rosales-barrios, C., Castillejos, M. C., & Khiar, N. (2021). Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics, 9(7), 58 | |
dc.relation | Ezealisiji, K. M., Noundou, X. S., & Ukwueze, S. E. (2017). Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of annona muricata linn and their antimicrobial activity. Applied Nanoscience (Switzerland), 7(8), 905–911. https://doi.org/10.1007/S13204-017- 0632-5/FIGURES/7 | |
dc.relation | Farouk, F., Abdelmageed, M., Azam, M., & Azzazy, H. M. E. (2019). Synthesis of magnetic iron oxide nanoparticles using pulp and seed aqueous extract of Citrullus colocynth and evaluation of their antimicrobial activity. Biotechnology Letters, 7. https://doi.org/10.1007/s10529-019-02762-7 | |
dc.relation | García Negrete, C., & Paucar Álvarez, C. (2009). SÍNTESIS DE NANOPARTÍCULAS DE Ca 10 (PO 4 ) 6 (OH) 2 Y Al 2 O 3 PARA EL UNIVERSIDAD NACIONAL DE COLOMBIASEDE MEDELLÍN. https://repositorio.unal.edu.co/handle/unal/70305 | |
dc.relation | Gavamukulya, Y., Maina, E. N., Meroka, A. M., Madivoli, E. S., El-Shemy, H. A., Wamunyokoli, F., & Magoma, G. (2020). Green Synthesis and Characterization of Highly Stable Silver Nanoparticles from Ethanolic Extracts of Fruits of Annona muricata. Journal of Inorganic and Organometallic Polymers and Materials, 30(4), 1231–1242. https://doi.org/10.1007/s10904-019-01262-5 | |
dc.relation | Gómez-Garzón, M. (2018). Nanomateriales, nanopartículas y síntesis verde. Revista Repertorio de Medicina y Cirugía, 27(2), 75–80. https://doi.org/10.31260/repertmedcir.v27.n2.2018.191 | |
dc.relation | Gómez Garzón, M. (2019). Usos terapéuticos de nanomateriales y nanopartículas. Revista Repertorio de Medicina y Cirugía, 28(1), 5–11. https://doi.org/10.31260/repertmedcir.v28.n1.2019.871 | |
dc.relation | González-Pedroza, M. G., Argueta-Figueroa, L., García-Contreras, R., Jiménez-Martínez, Y., Martínez-Martínez, E., Navarro-Marchal, S. A., Marchal, J. A., Morales-Luckie, R. A., & Boulaiz, H. (2021). Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool. Nanomaterials, 11(5). https://doi.org/10.3390/NANO11051273 | |
dc.relation | Gutiérrez-Santana, J. C., Toscano-Garibay, J. D., López-López, M., & Coria-Jiménez, V. R. (2020). Aptamers coupled to nanoparticles in the diagnosis and treatment of microbial infections. Enfermedades Infecciosas y Microbiologia Clinica (English 66 Ed.), 38(7), 331–337. https://doi.org/10.1016/j.eimce.2020.05.001 | |
dc.relation | Hasrat, J. A., Peters, L., De Backer, J. P., Vauquelin, G., & Vlietinck, A. J. (1997). Screening of medicinal plants from Suriname for 5-HT1A ligands: Bioactive isoquinoline alkaloids from the fruit of Annona muricata. Phytomedicine, 4(2), 133–140. https://doi.org/10.1016/S0944-7113(97)80059-1 | |
dc.relation | Heikkila, R. E., & Cabbat, F. S. (1983). Ascorbate-Induced Lipid Peroxidation and Inhibition of [3H]Spiroperidol Binding in Neostriatal Membrane Preparations. Journal of Neurochemistry, 41(5), 1384–1392. https://doi.org/10.1111/J.1471- 4159.1983.TB00836.X | |
dc.relation | Hekmati, M., Hasanirad, S., Khaledi, A., & Esmaeili, D. (2020). Green synthesis of silver nanoparticles using extracts of Allium rotundum l, Falcaria vulgaris Bernh, and Ferulago angulate Boiss, and their antimicrobial effects in vitro. Gene Reports, 19(January), 100589. https://doi.org/10.1016/j.genrep.2020.100589 | |
dc.relation | Hulla, J. E., Sahu, S. C., & Hayes, A. W. (2015). Nanotechnology : History and future. 34(12), 1318–1321. https://doi.org/10.1177/0960327115603588 | |
dc.relation | Huynh, K., Pham, X., Kim, J., Lee, S. H., Chang, H., Rho, W., & Jun, B. (2020). Synthesis , Properties , and Biological Applications of Metallic Alloy Nanoparticles. International Journal of Molecular Sciences, 21(14), 1–29. /pmc/articles/PMC7404399/%0A/pmc/articles/PMC7404399/?report=abstract %0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404399 | |
dc.relation | Ibrahim, R. M., Markom, M., & Abdullah, H. (2014). Optical Properties of Ni2+-, Co2+-, and Mn2+-doped ZnS Nanoparticles Synthesized Using Reverse Micelle Method. ECS Journal of Solid State Science and Technology, 4(2). https://doi.org/10.1149/2.0181502JSS | |
dc.relation | Indiarto, R., Indriana, L. P. A., Andoyo, R., Subroto, E., & Nurhadi, B. (2021). Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. European Food Research and Technology 2021, 1–24. https://doi.org/10.1007/S00217-021-03867-Y | |
dc.relation | IQBAL, Y., BAE, H., AHMAD, A., RHEE*, I., & HONG, S. (2015). Silica-coated Cobalt Ferrite Nanoparticles for Magnetic Hyperthermia. New Physics: Sae Mulli, 65, 147–151. https://doi.org/10.3938/NPSM.65.147 | |
dc.relation | Jain, N., Jain, P., Rajput, D., & Patil, U. K. (2021). Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters, 9(1), 1–24. https://doi.org/10.1186/S40486-021- 00131-6 | |
dc.relation | Jaramillo Gómez, N. I. (2014). Encapsulación de un fármaco en nanopartículas de sílice sintetizadas vía sol – gel asistido por microemulsión de micelas inversas [Universidad Nacional]. https://repositorio.unal.edu.co/handle/unal/47615 | |
dc.relation | Jaramillo, N. I. (2013). Encapsulación de un fármaco en nanopartículas de sílice sintetizadas vía sol-gel asistido por microemulsión de micelas inversas (p. 108). http://www.bdigital.unal.edu.co/40923/1/43987191.2014.pdf | |
dc.relation | Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043 | |
dc.relation | Kitchens, C. L., McLeod, M. C., & Roberts, C. B. (2005). Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane 67 microemulsions. Langmuir, 21(11), 5166–5173. https://doi.org/10.1021/la047785x | |
dc.relation | Kumar, U., Kaviraj, M., Rout, S., Chakraborty, K., Swain, P., Nayak, P. K., & Nayak, A. K. (2021). Combined application of ascorbic acid and endophytic N-fixing Azotobacter chroococcum Avi2 modulates photosynthetic efficacy, antioxidants and growth-promotion in rice under moisture deficit stress. Microbiological Research, 250 | |
dc.relation | Laane, C. (1985). Reverse micelles: Biological and technological relevance of amphiphilic structures in apolar media. In Trends in Biotechnology (Vol. 3, Issue 1). https://doi.org/10.1016/0167-7799(85)90075-7 | |
dc.relation | Lewis, K. (2020). The Science of Antibiotic Discovery. Cell, 181(1), 29–45. https://doi.org/10.1016/J.CELL.2020.02.056 | |
dc.relation | Li, B., & Lane, L. A. (2019). Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 11(3). https://doi.org/10.1002/WNAN.1542 | |
dc.relation | Lifang, M., Xinran, S., Yongchun, Y., & Chen, Y. (2021). Two-Dimensional Silicene / Silicon Nanosheets : An Emerging Silicon-Composed Nanostructure in Biomedicine. Advanced Materials, 33(31), 1–16. https://doi.org/10.1002/adma.202008226 | |
dc.relation | Liu, Y., Friesen, J. B., McAlpine, J. B., & Pauli, G. F. (2015). Solvent System Selection Strategies in Countercurrent Separation. Planta Medica, 81(17), 1582. https://doi.org/10.1055/S-0035-1546246 | |
dc.relation | Lohrasbi, S., Amin, M., Kouhbanani, J., Beheshtkhoo, N., & Ghasemi, Y. (2019). Green Synthesis of Iron Nanoparticles Using Plantago major Leaf Extract and Their Application as a Catalyst for the Decolorization of Azo Dye | |
dc.relation | Lone, I. H., Radwan, N. R. E., Aslam, J., & Akhter, A. (2018). Concept of Reverse Micelle Method For the Synthesis of Nano-Structured Materials. Current Nanoscience, 15(2), 129–136. https://doi.org/10.2174/1573413714666180611075115 | |
dc.relation | Machowska, A., & Lundborg, C. S. (2019). Drivers of irrational use of antibiotics in Europe. International Journal of Environmental Research and Public Health, 16(1). https://doi.org/10.3390/ijerph16010027 | |
dc.relation | Madubuonu, N., Aisida, S. O., Ali, A., Ahmad, I., & Zhao, T. (2019). Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja- Moringa oleifera and their antibacterial and photocatalytic study. Journal of Photochemistry & Photobiology, B: Biology, 199(July), 111601. https://doi.org/10.1016/j.jphotobiol.2019.111601 | |
dc.relation | Majerič, P., & Rudolf, R. (2020). Advances in Ultrasonic Spray Pyrolysis Processing of. Materials, 13(16), 3485 | |
dc.relation | Makarov, V. V, Makarova, S. S., Love, A. J., Sinitsyna, O. V, Dudnik, A. O., Yaminsky, I. V, Taliansky, M. E., & Kalinina, N. O. (2014). Biosynthesis of Stable Iron Oxide Nanoparticles in Aqueous Extracts of Hordeum vulgare and Rumex acetosa Plants | |
dc.relation | Maldonado Vega, G., Olivero Sierra, M., & Rodríguez Macías, J. (2021). COMPOSICIÓN QUÍMICA Y ACTIVIDADES BIOLÓGICAS DE Annona muricata L [Unilibre]. https://hdl.handle.net/10901/23784 | |
dc.relation | Mandal, S., & De, S. (2016). Copper nanoparticles in AOT “revisited”-direct micelles versus reverse micelles. In Materials Chemistry and Physics (Vol. 183, pp. 410– 68 421). Elsevier Ltd. https://doi.org/10.1016/j.matchemphys.2016.08.046 | |
dc.relation | Mansoori, G. A., & Soelaiman, T. A. F. (2005). Nanotechnology – An Introduction for the Standards Community. Journal of ASTM International, 2(6), 1–21 | |
dc.relation | María, N. A., & Patricia, H. A. (2017). Evaluación de la propiedad antimicrobial de las nanopartículas de oro sintetizadas con extractos de tamarindus indica L y mangifera indica L Evaluation of the antimicrobial property of gold nanoparticles synthesized with. número 4, 389–398 | |
dc.relation | Masteri-Farahani, M., & Ghorbani, M. (2016). Heteropolytungstate nanoparticles: Microemulsion-mediated preparation and investigation of their catalytic activity in the epoxidation of olefins. Materials Research Bulletin, 76, 332–337. https://doi.org/10.1016/J.MATERRESBULL.2015.12.036 | |
dc.relation | Mayadeen, A. (2022, June 22). La OMS alerta de que el desarrollo de nuevos antibióticos está “estancado” | Noticias ONU. https://news.un.org/es/story/2022/06/1510742 | |
dc.relation | Mbuyi, P. L., Assumani, Z., Za, J., Ntezolo, N., Kabasele, D. M., Wale, S., Massamba, P., Lesse, M., Kiala, R. I., Sansi Nzinga, P., Mananga Bongo, R., Mbembo, B., Mbembo, W., Divengi, J.-P. N., Biduaya Mukeba, F., Longo, B. M., Manzo Lusakibanza, M., Kapepula Mutwale, P., & Kahunu Mesia, G. (2022). Annona muricata (Graviola) (Annonaceae): Phytochemistry, Pharmacology and Future Directions, a Review. Asian Plant Research Journal, 10(1), 9–45. https://doi.org/10.9734/APRJ/2022/V10I1181 | |
dc.relation | Melot, A., Fall, D., Gleye, C., & Champy, P. (2009). Apolar Annonaceous Acetogenins from the Fruit Pulp of Annona muricata. Molecules, 14(11), 4387. https://doi.org/10.3390/MOLECULES14114387 | |
dc.relation | Menger, F. M. (1979). On the Structure of Micelles. Accounts of Chemical Research, 12(4), 111–117. https://doi.org/10.1021/ar50136a001 | |
dc.relation | Merkoçi, A., Marín, S., Castãeda, M. T., Pumera, M., Ros, J., & Alegret, S. (2006). Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via reverse micelles and arrested precipitation. Nanotechnology, 17(10), 2553–2559. https://doi.org/10.1088/0957-4484/17/10/019 | |
dc.relation | Miethke, M., & Marahiel, M. A. (2007). Siderophore-Based Iron Acquisition and Pathogen Control. 71(3), 413–451. https://doi.org/10.1128/MMBR.00012-07 | |
dc.relation | Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews. Drug Discovery, 20(2), 101–124. https://doi.org/10.1038/S41573-020-0090-8 | |
dc.relation | Moghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H. M., & Kadir, H. A. (2015). Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. International Journal of Molecular Sciences, 16(7), 15625. https://doi.org/10.3390/IJMS160715625 | |
dc.relation | Mohammad Soleimani Zohr Shiri, W. H. and M. R. M. (2019). Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble. Materials, 12, 1–8 | |
dc.relation | Monclou-Salcedo, S. A., Correa-Torres, S. N., Kopytko, M. I., Santoyo-Muñóz, C., VesgaGuzmán, D. M., Castellares-Lozano, R., López-Amaris, M., Saavedra-Mancera, A. D., Herrera-Barros, A. P., Monclou-Salcedo, S. A., Correa-Torres, S. N., Kopytko, M. I., Santoyo-Muñóz, C., Vesga-Guzmán, D. M., Castellares-Lozano, R., López-Amaris, 69 M., Saavedra-Mancera, A. D., & Herrera-Barros, A. P. (2020). Evaluación antifúngica de nanopartículas de TiO2 para inhibición de Fusarium solani en Palma Africana. International Journal of Agriculture and Natural Resources, 47(2), 126–133. https://doi.org/10.7764/IJANR.V47I2.2170 | |
dc.relation | Monti, G. A., Fernández, G. A., Correa, N. M., Falcone, R. D., Moyano, F., & Silbestri, G. F. (2017). Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles. Royal Society Open Science, 4(7). https://doi.org/10.1098/RSOS.170481 | |
dc.relation | Mosquera, E., Montero, P., Gomez, C., & Gimenez, B. (2014). NANOENCAPSULACIÓN DE HIDROLIZADOS PEPTÍDICOS CON ACTIVIDADES BIOLÓGICAS PROCEDENTES DE SUBPRODUCTOS DE LA PESCA. https://www.researchgate.net/publication/263180788_NANOENCAPSULACION_ DE_HIDROLIZADOS_PEPTIDICOS_CON_ACTIVIDADES_BIOLOGICAS_PROCEDENT ES_DE_SUBPRODUCTOS_DE_LA_PESCA | |
dc.relation | Mosselhy, D. A., Assad, M., Sironen, T., & Elbahri, M. (2021). Nanotheranostics: A possible solution for drug-resistant staphylococcus aureus and their biofilms? Nanomaterials, 11(1), 1–36. https://doi.org/10.3390/nano11010082 | |
dc.relation | Najahi-Missaoui, W., Arnold, R. D., & Cummings, B. S. (2021). Safe Nanoparticles: Are We There Yet? International Journal of Molecular Sciences, 22(1), 1–22. https://doi.org/10.3390/IJMS22010385 | |
dc.relation | Nath, S., Jana, S., Pradhan, M., & Pal, T. (2010). Ligand-stabilized metal nanoparticles in organic solvent. Journal of Colloid And Interface Science, 341(2), 333–352. https://doi.org/10.1016/j.jcis.2009.09.049 | |
dc.relation | National nanotechnology initiative. (2021). Qué es la nanotecnología | |
dc.relation | Navarrete Barragán, N. A., Pita-Ospina, E. F., Sánchez Mora., R. M., Giraldo Quintero, S. E., & Bernal Lizarazú, M. C. (2020). Actividad in vitro de los extractos etanólicos de Lantana camara L., Petiveria alliacea L. y Lippia dulcis T. frente a bacterias patógenas. Nova, 18(33), 53–71. https://doi.org/10.22490/24629448.3700 | |
dc.relation | Ngom, I., Ngom, B. D., Sackey, J., & Khamlich, S. (2020). Biosynthesis of zinc oxide nanoparticles using extracts of Moringa Oleifera: Structural & optical properties. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.05.323 | |
dc.relation | Objetivos y metas de desarrollo sostenible - Desarrollo Sostenible. (2021). https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollosostenible | |
dc.relation | Odintsov, A. A., Revina, A. A., Zhavoronkova, K. N., & Boeva, O. A. (2016). Catalytic Properties of Gold Nanoparticles Prepared in Reverse Micelles. Protection of Metals and Physical Chemistry of Surfaces 2016 52:2, 52(2), 223–226. https://doi.org/10.1134/S2070205116020210 | |
dc.relation | Okkeh, M., Bloise, N., Restivo, E., De Vita, L., Pallavicini, P., & Visai, L. (2021). Gold nanoparticles: Can they be the next magic bullet for multidrug-resistant bacteria? Nanomaterials, 11(2), 1–30. https://doi.org/10.3390/nano11020312 | |
dc.relation | Onitsuka, S., Hamada, T., & Okamura, H. (2019). Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids and Surfaces B: Biointerfaces, 173(September 2018), 242–248. https://doi.org/10.1016/j.colsurfb.2018.09.055 | |
dc.relation | Orellano, M. S., Longo, G. S., Porporatto, C., Correa, N. M., & Falcone, R. D. (2020). Role of micellar interface in the synthesis of chitosan nanoparticles formulated by 70 reverse micellar method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 599. https://doi.org/10.1016/j.colsurfa.2020.124876 | |
dc.relation | Pabón-guerrero, S. E., Benítez-benítez, R., Sarria-villa, R. A., & Antonio, J. (2021). Synthesis of iron oxide nanoparticles using aqueous extract of Eucalyptus grandis • Síntesis de nanopartículas de óxido de hierro usando extracto acuoso de Eucalyptus grandis. 88(216), 220–226 | |
dc.relation | Pan, S., Li, X., & Yadav, J. (2021). Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Physical Chemistry Chemical Physics, 23(35), 19120–19129. https://doi.org/10.1039/D1CP02801D | |
dc.relation | Pan, Z., Lin, Y., Sarkar, B., Owens, G., & Chen, Z. (2020). Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. Journal of Colloid and Interface Science, 558, 106–114. https://doi.org/10.1016/J.JCIS.2019.09.106 | |
dc.relation | Paola, D., Ardila, R., & Pataquiva-mateus, A. (2019). Síntesis de nanopartículas de magnetita a partir del extracto de cáscara de papaya para la degradación de colorantes azoicos en soluciones acuosas Synthesis of magnetite nanoparticles using papaya peel extract. 27, 431–442 | |
dc.relation | Park, B., Kim, J., Lee, J. Y., Bhang, S. H., Mun, J., & Yu, T. (2018). Studies on the Change of Lithium Ion Battery Performance According to Length and Type of Surfactant on the Surface of Manganese Oxide Nanoparticles Prepared by Reverse Micelle Method. Macromolecular Research , 26(12), 1167–1172. https://doi.org/10.1007/S13233-018-6147-4 | |
dc.relation | Pileni, M. P. (1993). Reverse micelles as microreactors. Journal of Physical Chemistry, 97(27), 6961–6973. https://doi.org/10.1021/j100129a008 | |
dc.relation | Pileni, M. P. (2003). The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2(3), 145–150. https://doi.org/10.1038/nmat817 | |
dc.relation | Plan Nacional de Desarrollo 2018-2022. (n.d.). Retrieved December 6, 2021, from https://colaboracion.dnp.gov.co/CDT/Prensa/Resumen-PND2018-2022-final.pdf | |
dc.relation | Popovetskiy, P. S., & Kolodin, A. N. (2020). Hydrodynamic Diameter of Silver Nanoparticles in Solutions of Nonionic Surfactants. Russian Journal of Physical Chemistry A 2020 94:10, 94(10), 2126–2134. https://doi.org/10.1134/S0036024420100246 | |
dc.relation | Poulose, S., Panda, T., Nair, P. P., & Théodore, T. (2014). Biosynthesis of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 14(2), 2038–2049. https://doi.org/10.1166/jnn.2014.9019 | |
dc.relation | Qasim, S., Zafar, A., Saif, M. S., Ali, Z., Nazar, M., Waqas, M., Haq, A. U., Tariq, T., Hassan, S. G., Iqbal, F., Shu, X. G., & Hasan, M. (2020). Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. Journal of Photochemistry and Photobiology B: Biology, 204(September 2019), 111784. https://doi.org/10.1016/j.jphotobiol.2020.111784 | |
dc.relation | Rady, I., Bloch, M. B., Chamcheu, R. C. N., Banang Mbeumi, S., Anwar, M. R., Mohamed, H., Babatunde, A. S., Kuiate, J. R., Noubissi, F. K., El Sayed, K. A., Whitfield, G. K., & Chamcheu, J. C. (2018). Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review. Oxidative Medicine and Cellular Longevity, 71 2018. https://doi.org/10.1155/2018/1826170 | |
dc.relation | Ranoszek-Soliwoda, K., Tomaszewska, E., Małek, K., Celichowski, G., Orlowski, P., Krzyzowska, M., & Grobelny, J. (2019). The synthesis of monodisperse silver nanoparticles with plant extracts. Colloids and Surfaces B: Biointerfaces, 177(October 2018), 19–24. https://doi.org/10.1016/j.colsurfb.2019.01.037 | |
dc.relation | Ridley, R. E., Fathi-Kelly, H., Kelly, J. P., Vasquez, V. R., & Graeve, O. A. (2020). Predicting the size of salt-containing aqueous Na-AOT reverse micellar water-inoil microemulsions with consideration for specific ion effects. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2020.11.007 | |
dc.relation | Saad, A. M., El-Saadony, M. T., El-Tahan, A. M., Sayed, S., Moustafa, M. A. M., Taha, A. E., Taha, T. F., & Ramadan, M. M. (2021). Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi Journal of Biological Sciences, 28(10), 5674–5683. https://doi.org/10.1016/j.sjbs.2021.06.011 | |
dc.relation | Salabat, A., & Saydi, H. (2012). A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems. Russian Journal of Physical Chemistry A, 86(13), 2014–2017. https://doi.org/10.1134/S003602441213002X | |
dc.relation | Samari, F., Parkhari, P., Eftekhar, E., Mohseni, F., & Yousefinejad, S. (2019). Antioxidant, cytotoxic and catalytic degradation efficiency of controllable phytosynthesised silver nanoparticles with high stability using Cordia myxa extract. Journal of Experimental Nanoscience , 14(1), 141–159. https://doi.org/10.1080/17458080.2019.1687883 | |
dc.relation | Santos, C. S. C., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., Arconada, N., & Neto, V. (2015). Industrial Applications of Nanoparticles - A Prospective Overview. Materials Today: Proceedings, 2(1), 456–465. https://doi.org/10.1016/j.matpr.2015.04.056 | |
dc.relation | Scholz, N., Behnke, T., & Resch-Genger, U. (2018). Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension—A Method Comparison. Journal of Fluorescence , 28, 465–476. https://doi.org/10.1007/S10895-018-2209-4 | |
dc.relation | Sethi, A., Ahmad, M., Huma, T., Khalid, I., & Ahmad, I. (2021). Evaluation of Low Molecular Weight Cross Linked Chitosan Nanoparticles, to Enhance the Bioavailability of 5-Flourouracil: SAGE, 19(2). https://doi.org/10.1177/15593258211025353 | |
dc.relation | Shaker, L., Alimardani, V., & Mohammad, A. (2021). Heliyon Green synthesis of ironbased nanoparticles using Chlorophytum comosum leaf extract : methyl orange dye degradation and antimicrobial properties. Heliyon, 7(September 2020), e06159. https://doi.org/10.1016/j.heliyon.2021.e06159 | |
dc.relation | Sharma, B., & Deswal, R. (2018). Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. Artificial Cells, Nanomedicine and Biotechnology, 46(sup2), 408–418. https://doi.org/10.1080/21691401.2018.1458034 | |
dc.relation | Sheel, R., Kumari, P., Kumar, P., & Jawed, D. (2020). Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo 72 biocompatibility of P . niruri contrived antibacterial iron oxide nanoparticles with zebra fi sh *. Environmental Pollution, 267, 115482. https://doi.org/10.1016/j.envpol.2020.115482 | |
dc.relation | Shi, Y., Zhang, X., Zhu, Y., Tan, H., Chen, X., & Lu, Z.-H. (2016). Core–shell structured nanocomposites Ag@CeO2 as catalysts for hydrogenation of 4-nitrophenol and 2- nitroaniline. RSC Advances, 6(53), 47966–47973. https://doi.org/10.1039/C6RA00631K | |
dc.relation | Shiri, M. S. Z., Henderson, W., & Mucalo, M. R. (2019). A review of the lesser-studied microemulsion-based synthesis methodologies used for preparing nanoparticle systems of the noble metals, Os, Re, Ir and Rh. In Materials (Vol. 12, Issue 12). MDPI AG. https://doi.org/10.3390/ma12121896 | |
dc.relation | Shrestha, L. K., Shrestha, R. G., Vilanova, N., Rodriguez-Abreu, C., & Ariga, K. (2014). Insitu formation of silver nanoparticles using nonionic surfactant reverse micelles as nanoreactors. In Journal of Nanoscience and Nanotechnology (Vol. 14, Issue 3, pp. 2238–2244). https://doi.org/10.1166/jnn.2014.8548 | |
dc.relation | Smetana, A. B., Wang, J. S., Boeckl, J., Brown, G. J., & Wai, C. M. (2007). Fine-tuning size of gold nanoparticles by cooling during reverse micelle synthesis. Langmuir, 23(21), 10429–10432. https://doi.org/10.1021/la701229q | |
dc.relation | Son, J. H., & Bae, D. S. (2015). Synthesis and characterization of NiAl2O4 inorganic pigment nanoparticles by a reverse micelle processing. Korean Journal of Materials Research, 25(2), 95–99. https://doi.org/10.3740/MRSK.2015.25.2.95 | |
dc.relation | Sun, S., Liu, J., Kadouh, H., Sun, X., & Zhou, K. (2014). Three new anti-proliferative Annonaceous acetogenins with mono-tetrahydrofuran ring from graviola fruit (Annona muricata). Bioorganic & Medicinal Chemistry Letters, 24(12), 2773–2776. https://doi.org/10.1016/J.BMCL.2014.03.099 | |
dc.relation | Syed Najmuddin, S. U. F., Romli, M. F., Hamid, M., Alitheen, N. B., & Abd Rahman, N. M. A. N. (2016). Anti-cancer effect of Annona Muricata Linn Leaves Crude Extract (AMCE) on breast cancer cell line. BMC Complementary and Alternative Medicine, 16(1). https://doi.org/10.1186/S12906-016-1290-Y | |
dc.relation | Tabla y gráfico de espectros infrarrojos de MerK. (2023). Tabla y gráfico de espectros infrarrojos, Sigma Aldrich. S.F. https://www.sigmaaldrich.com/CO/es/technicaldocuments/technical-article/analytical-chemistry/photometry-andreflectometry/ir-spectrum-table | |
dc.relation | Tirado, D. F., Acevedo, D., Herrera, A. P., & Herrera, A. (2015). Modeling the interaction energy of silica nanoparticles prepared in microemulsions | |
dc.relation | Ullah, A., Yuan, Q., Ahmad, A., Ul, Z., Khan, H., Mahnashi, M. H., Alyami, B. A., Alqahtani, Y. S., & Ullah, S. (2020). Photodiagnosis and Photodynamic Therapy Facile and eco-benign fabrication of Ag / Fe 2 O 3 nanocomposite using Algaia Monozyga leaves extract and its ’ efficient biocidal and photocatalytic applications. Photodiagnosis and Photodynamic Therapy, 32(May), 101970. https://doi.org/10.1016/j.pdpdt.2020.101970 | |
dc.relation | Uwaya, G. E., Fayemi, O. E., Sherif, E. M., Junaedi, H., & Ebenso, E. E. (2020). Properties of Fe 3 O 4 Nanoparticles from Callistemon viminalis Plant Extracts. 1–19 | |
dc.relation | Velíšková, J., Velíšek, L., & Moshé, S. L. (1996). Age-specific effects of baclofen on pentylenetetrazol-induced seizures in developing rats. Epilepsia, 37(8), 718–722. https://doi.org/10.1111/J.1528-1157.1996.TB00641.X | |
dc.relation | Velusamy, P., Kumar, G. V., Jeyanthi, V., Das, J., & Pachaiappan, R. (2016). Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application. Journal of the Korean Society of Toxicology, 32(2), 95–102. https://doi.org/10.5487/TR.2016.32.2.095 | |
dc.relation | Venditti, F., Angelico, R., Palazzo, G., Colafemmina, G., Ceglie, A., & Lopez, F. (2007). Preparation of nanosize silica in reverse micelles: Ethanol produced during TEOS hydrolysis affects the microemulsion structure. Langmuir, 23(20), 10063–10068. https://doi.org/10.1021/la701739w | |
dc.relation | Vincens, M. E. E., Cano, C. E., Bustos, M. C. C., & Oceguera, A. Y. O. (2018). El mundo de la nanotecnología situación y prospectiva para México. https://ethic.com.mx/docs/estudios/El-mundo-nanotecnologia-Situacionprospectiva-Mexico.pdf | |
dc.relation | Wacławek, S., Gončuková, Z., Adach, K., Fijałkowski, M., & Černík, M. (2018). Green synthesis of gold nanoparticles using Artemisia dracunculus extract: control of the shape and size by varying synthesis conditions. Environmental Science and Pollution Research 2018 25:24, 25(24), 24210–24219. https://doi.org/10.1007/S11356-018-2510-4 | |
dc.relation | Wencewicz, T. A. (2019). Crossroads of Antibiotic Resistance and Biosynthesis. Journal of Molecular Biology, 431(18), 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033 | |
dc.relation | Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., & Zhao, Y. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16(14), 1681. /pmc/articles/PMC4964712 | |
dc.relation | Wu, M. L., Chen, D. H., & Huang, T. C. (2001). Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir, 17(13), 3877–3883. https://doi.org/10.1021/la010060y | |
dc.relation | Wu, M., & Lai, L. (2004). Synthesis of Pt / Ag bimetallic nanoparticles in water-in-oil microemulsions. 244, 149–157. https://doi.org/10.1016/j.colsurfa.2004.06.027 | |
dc.relation | Xin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Yew, Y. P. (2016). Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/8489094 | |
dc.relation | Xinxin, F., Jingxuan, C., Xiang, Z., Wen Di, L., Haixiong, G., & Yong, H. (2018). Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 132, 169–187. https://doi.org/10.1016/j.addr.2018.07.006 | |
dc.relation | Yan, L. P., Gopinath, S. C. B., Anbu, P., Kasim, F. H., Zulhaimi, H. I., Radi, A., & Yaakub, W. (2020). Characterization and anti-bacterial potential of iron oxide nanoparticle processed eco-friendly by plant extract. Preparative Biochemistry & Biotechnology, 0(0), 1–10. https://doi.org/10.1080/10826068.2020.1783678 | |
dc.relation | Yi, Y., Tu, G., Tsang, P. E., Xiao, S., & Fang, Z. (2019). Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal. Materials Letters, 234, 388–391. https://doi.org/10.1016/j.matlet.2018.09.137 | |
dc.relation | Yin, L., & Zhong, Z. (2020). Nanoparticles. Biomaterials Science, Cmc, 453–483. https://doi.org/10.1016/b978-0-12-816137-1.00031-3 | |
dc.relation | Yugandhar, P., & Savithramma, N. (2015). Leaf assisted green synthesis of silver nanoparticles from Syzygium Alternifolium (Wt.) walp. characterization and antimicrobial studies. Nano Biomedicine and Engineering, 7(2), 29–37. https://doi.org/10.5101/NBE.V7I2.P29-37 | |
dc.relation | Zamhuri, A., Lim, G. P., Ma, N. L., Tee, K. S., & Soon, C. F. (2021). MXene in the lens of biomedical engineering : synthesis , applications and future outlook. BioMedical Engineering OnLine, 1–24. https://doi.org/10.1186/s12938-021-00873-9 | |
dc.relation | Zhang, H., Li, H., Li, D., & Meng, S. (2006). Synthesis and characterization of ultrafine CeF3 nanoparticles modified by catanionic surfactant via a reverse micelles route. Journal of Colloid and Interface Science, 302(2), 509–515. https://doi.org/10.1016/j.jcis.2006.06.062 | |
dc.relation | Zhang, Y., Zhao, Q., & Chen, B. (2021). Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1. The Science of the Total Environment, 805(2021), 1–150336. https://doi.org/10.1016/J.SCITOTENV.2021.150336 | |
dc.relation | Zhao, Y., Zhang, J., Wang, Q., Li, W., Li, J., Han, B., Wu, Z., Zhang, K., & Li, Z. (2010). Cylindrical-to-spherical shape transformation of lecithin reverse micelles induced by CO2. Langmuir, 26(7), 4581–4585. https://doi.org/10.1021/la904917n | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Nanopartículas | |
dc.subject | Síntesis verde | |
dc.subject | Micela inversa | |
dc.subject | Tamaño | |
dc.subject | forma | |
dc.subject | Actividad antimicrobiana | |
dc.title | Evaluación de la actividad antimicrobiana de nanopartículas de Hierro (FeNPs) sintetizadas con el extracto de Annona Muricata L. controladas mediante micela inversa | |