dc.contributorCervantes Díaz, Martha
dc.contributorUniversidad Santo Tomas
dc.creatorParra Gómez, Carlos Manuel
dc.creatorGuevara Lastre, Cesar Augusto
dc.date.accessioned2023-07-13T22:35:00Z
dc.date.accessioned2023-09-06T13:33:08Z
dc.date.available2023-07-13T22:35:00Z
dc.date.available2023-09-06T13:33:08Z
dc.date.created2023-07-13T22:35:00Z
dc.date.issued2023-07-06
dc.identifierParra Gómez, C.M; Guevara Lastre, C.A (2023) . Análisis cienciométrico y de minería de texto sobre la producción de ácido láctico a partir de biomasa residual. [Tesis de posgrado]. Universidad Santo Tomás. Bucaramanga, Colombia
dc.identifierhttp://hdl.handle.net/11634/51283
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8680017
dc.description.abstractLactic acid is a raw material of great importance for the pharmaceutical, food and cosmetic industries, which is obtained through two routes, chemical and biotechnological using agro-industrial residues, the latter being the one of interest for the present study. In Santander in 2021, 920.900 tons (t) of agro-industrial waste were produced from sugar cane, citrus (lemon, tangerine and orange) and cocoa crops, where the contribution per crop was 79%, 18% and 3% respectively, with the potential to produce lactic acid, whose world production for the year 2025 is estimated at 1.96 Mt. In Colombia, in the year 2020, 19 t were produced and 460 t were imported, evidencing the imbalance that exists, making the production of lactic acid an attractive process. The present study consisted of using a scientometric analysis strategy, which yielded 418 articles indexed in the Scopus database for the period 2010-2023, with 2022 being the year of greatest activity with 74 documents. In the same period of time, through the Lens software, 437 patents were found, of which 169 correspond to applications and 268 to granted patents, highlighting the year 2016 with 58 granted; all the scientometric information was analyzed using the Vosviewer and Vantage Point software. From the analysis of results, the acid and alkaline pretreatments accompanied by the enzymatic ones were the most found and for the fermentative process the lactobacillus of the plantarum, delbrueckii, pentosus and coagulans species were the most used.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ciencias y Tecnologías Ambientales
dc.publisherFacultad de Química Ambiental
dc.relationAbdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156(4), 286–301. https://doi.org/10.1016/J.JBIOTEC.2011.06.017
dc.relationAghbashlo, M., Mandegari, M., Tabatabaei, M., Farzad, S., Mojarab Soufiyan, M., & Görgens, J. F. (2018). Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production. Energy, 149, 623–638. https://doi.org/10.1016/J.ENERGY.2018.02.063
dc.relationAgrawal, D., & Kumar, V. (2023). Recent progress on sugarcane-bagasse based lactic acid production: Technical advancements, potential and limitations. Industrial Crops and Products, 193, 116132. https://doi.org/10.1016/J.INDCROP.2022.116132
dc.relationAhmad, A., Banat, F., & Taher, H. (2020). A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. In Environmental Technology and Innovation (Vol. 20). Elsevier B.V. https://doi.org/10.1016/j.eti.2020.101138
dc.relationAhring, B. K., Traverso, J. J., Murali, N., & Srinivas, K. (2016). Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochemical Engineering Journal, 109, 162–169. https://doi.org/10.1016/J.BEJ.2016.01.012
dc.relationAlves de Oliveira, R., Komesu, A., Vaz Rossell, C. E., Wolf Maciel, M. R., & Maciel Filho, R. (2019). Concentrating second-generation lactic acid from sugarcane bagasse via hybrid short path evaporation: Operational challenges. Separation and Purification Technology, 209, 26–31. https://doi.org/10.1016/J.SEPPUR.2018.07.012
dc.relationAndrade Barreto, S. M., Martins da Silva, A. B., Prudêncio Dutra, M. D. C., Costa Bastos, D., de Brito Araújo Carvalho, A. J., Cardoso Viana, A., Narain, N., & dos Santos Lima, M. (2023). Effect of commercial yeasts (Saccharomyces cerevisiae) on fermentation metabolites, phenolic compounds, and bioaccessibility of Brazilian fermented oranges. Food Chemistry, 408. https://doi.org/10.1016/j.foodchem.2022.135121
dc.relationAsiedu, N. Y., Neba, F. A., & Addo, A. (2019). Modeling the attainable regions for catalytic oxidation of renewable biomass to specialty chemicals: Waste biomass to carboxylic acids. South African Journal of Chemical Engineering, 30, 1–14. https://doi.org/10.1016/J.SAJCE.2019.07.003
dc.relationBaltaci, S. F., & Hamamci, H. (2020). Enzymatic hydrolysis of orange bagasse and effect of filtration on lactic acid fermentation. SN Applied Sciences, 2(4), 1–8. https://doi.org/10.1007/S42452-020-2421-0/FIGURES/5
dc.relationBaral, P., Jana, A., Kumar, V., & Agrawal, D. (2022). Comparative assessment of sugarcane bagacillo and bagasse at lab-scale for production of sugars and green chemicals via biochemical platform. Biomass Conversion and Biorefinery, 1–10. https://doi.org/10.1007/S13399-022-02895-2/FIGURES/2
dc.relationBattegazzore, D., Bocchini, S., Alongi, J., & Frache, A. (2014). Plasticizers, antioxidants and reinforcement fillers from hazelnut skin and cocoa by-products: Extraction and use in PLA and PP. Polymer Degradation and Stability, 108, 297–306. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2014.03.003
dc.relationBustamante, D., Tortajada, M., Ramón, D., & Rojas, A. (2020). Production of D-lactic acid by the fermentation of orange peel waste hydrolysate by lactic acid bacteria. Fermentation, 6(1). https://doi.org/10.3390/fermentation6010001
dc.relationCambia. (2022). Búsqueda gratuita y abierta de patentes y estudios. Lens (versión 8.7.1) [software]. https://www.lens.org/
dc.relationChen, Y., Huang, Y., Bai, Y., Fu, C., Zhou, M., Gao, B., Wang, C., Li, D., Hu, Y., & Xu, N. (2017). Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT, 84, 753–763. https://doi.org/10.1016/J.LWT.2017.06.032
dc.relationda Costa, R. A. M., Rubio-Ribeaux, D., Carneiro, B. C., Franco, P. M., de Azevedo Mendes, G., da Silva, I. L., de Carvalho dos Anjos, V., dos Santos, J. C., Tiso, T., & da Silva, S. S. (2023). Sugarcane bagasse pretreated by different technologies used as support and carbon source in solid-state fermentation by Aureobasidium pullulans LB83 to produce bioemulsifier. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03896-5
dc.relationda Cruz Ferraz Dutra, J., Passos, M. F., García, G. J. Y., Gomes, R. F., Magalhães, T. A., dos Santos Freitas, A., Laguna, J. G., da Costa, F. M. R., da Silva, T. F., Rodrigues, L. S., Américo, M. F., Campos, G. M., Pereira, G., Vandenbeghe, L., Soccol, C. R., Góes-Neto, A., & de Carvalho Azevedo, V. A. (2023). Anaerobic digestion using cocoa residues as substrate: Systematic review and meta-analysis. Energy for Sustainable Development, 72, 265–277. https://doi.org/10.1016/J.ESD.2022.12.007
dc.relationde la Torre, I., Ladero, M., & Santos, V. E. (2018). Production of d-lactic acid by Lactobacillus delbrueckii ssp. delbrueckii from orange peel waste: techno-economical assessment of nitrogen sources. Applied Microbiology and Biotechnology, 102(24), 10511–10521. https://doi.org/10.1007/s00253-018-9432-4
dc.relationde la Torre, I., Ladero, M., & Santos, V. E. (2019). Production of D-lactic acid by L. delbrueckii growing on orange peel waste hydrolysates and model monosaccharide solutions: effects of pH and temperature on process kinetics. Biomass Conversion and Biorefinery, 9(3), 565–575. https://doi.org/10.1007/s13399-019-00396-3
dc.relationde la Torre, I., Ladero, M., & Santos, V. E. (2020). d-lactic acid production from orange waste enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Industrial Crops and Products, 146, 112176. https://doi.org/10.1016/J.INDCROP.2020.112176
dc.relationDemichelis, F., Fiore, S., Pleissner, D., & Venus, J. (2018). Technical and economic assessment of food waste valorization through a biorefinery chain. Renewable and Sustainable Energy Reviews, 94, 38–48. https://doi.org/10.1016/J.RSER.2018.05.064
dc.relationDíaz-Galindo, E. P., Nesic, A., Cabrera-Barjas, G., Dublan-García, O., Ventura-Aguilar, R. I., Vázquez-Armenta, F. J., de Oca, S. A. M., Mardones, C., & Ayala-Zavala, J. F. (2020). Physico-chemical and antiadhesive properties of poly(Lactic acid)/grapevine cane extract films against food pathogenic microorganisms. Polymers, 12(12), 1–15. https://doi.org/10.3390/polym12122967
dc.relationDíaz-Oviedo, A. F., Ramón-Valencia, B. A., & Moreno-Contreras, G. G. (2022a). Caracterización físico-química de la cáscara de mazorca de cacao como posible uso en la elaboración de tableros aglomerados. Revista de Investigación, Desarrollo e Innovación, 12(1), 97–106. https://doi.org/10.19053/20278306.v12.n1.2022.14211
dc.relationDíaz-Oviedo, A. F., Ramón-Valencia, B. A., & Moreno-Contreras, G. G. (2022b). Caracterización físico-química de la cáscara de mazorca de cacao como posible uso en la elaboración de tableros aglomerados. Revista de Investigación, Desarrollo e Innovación, 12(1), 97–106. https://doi.org/10.19053/20278306.v12.n1.2022.14211
dc.relationDjukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., & Mojović, L. (2019). Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 108, 238–252. https://doi.org/10.1016/J.RSER.2019.03.050
dc.relationFancello, F., Petretto, G. L., Zara, S., Sanna, M. L., Addis, R., Maldini, M., Foddai, M., Rourke, J. P., Chessa, M., & Pintore, G. (2016). Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. LWT - Food Science and Technology, 69, 579–585. https://doi.org/10.1016/J.LWT.2016.02.018
dc.relationFarzad, S., Mandegari, M. A., Guo, M., Haigh, K. F., Shah, N., & Görgens, J. F. (2017). Multi-product biorefineries from lignocelluloses: A pathway to revitalisation of the sugar industry? Biotechnology for Biofuels, 10(1). https://doi.org/10.1186/s13068-017-0761-9
dc.relationGérardy, R., Debecker, D. P., Estager, J., Luis, P., & Monbaliu, J. C. M. (2020). Continuous Flow Upgrading of Selected C2-C6Platform Chemicals Derived from Biomass. In Chemical Reviews (Vol. 120, Issue 15, pp. 7219–7347). American Chemical Society. https://doi.org/10.1021/acs.chemrev.9b00846
dc.relationGil-Horán, R. H., María Domínguez-Espinosa, R., & Daniel Pacho-Carrillo, J. (2008a). núms.1-2,1999 79 Tecnol. In Ciencia Ed. (IMIQ) (Vol. 23, Issue 2).
dc.relationGil-Horán, R. H., María Domínguez-Espinosa, R., & Daniel Pacho-Carrillo, J. (2008b). núms.1-2,1999 79 Tecnol. In Ciencia Ed. (IMIQ) (Vol. 23, Issue 2).
dc.relationGupta, V. K., Kubicek, C. P., Berrin, J. G., Wilson, D. W., Couturier, M., Berlin, A., Filho, E. X. F., & Ezeji, T. (2016). Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass. Trends in Biochemical Sciences, 41(7), 633–645. https://doi.org/10.1016/J.TIBS.2016.04.006
dc.relationKatepogu, H., Wee, Y. J., Chinni, S. V., Gopinath, S. C. B., Syed, A., Bahkali, A. H., Elgorban, A. M., & Lebaka, V. R. (2022). Lactic acid production from sugarcane field residue as renewable and economical bioresource by newly isolated Pediococcus pentosaceus HLV1. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03267-6
dc.relationKumar, V., Yadav, S. K., Kumar, J., & Ahluwalia, V. (2020). A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresource Technology, 299, 122633. https://doi.org/10.1016/J.BIORTECH.2019.122633
dc.relationL. Papadopoulou, E., C. Paul, U., Nga Tran, T., Suarato, G., Ceseracciu, L., Marras, S., d’Arcy, R., & Athanassiou, A. (2019). Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells. ACS Applied Materials & Interfaces, 11(34), 31317–31327. https://doi.org/10.1021/acsami.9b09755
dc.relationLiew, S. Q., Ngoh, G. C., Yusoff, R., & Teoh, W. H. (2018). Acid and Deep Eutectic Solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatalysis and Agricultural Biotechnology, 13, 1–11. https://doi.org/10.1016/J.BCAB.2017.11.001
dc.relationLiu, H., He, H., Peng, X., Huang, B., & Li, J. (2019). Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polymers for Advanced Technologies, 30(4), 910–922. https://doi.org/10.1002/pat.4524
dc.relationLiu, Y., Zheng, X., Tao, S., Hu, L., Zhang, X., & Lin, X. (2021). Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renewable Energy, 177, 259–267. https://doi.org/10.1016/J.RENENE.2021.05.131
dc.relationMandegari, M., Farzad, S., & Görgens, J. F. (2018). A new insight into sugarcane biorefineries with fossil fuel co-combustion: Techno-economic analysis and life cycle assessment. Energy Conversion and Management, 165, 76–91. https://doi.org/10.1016/j.enconman.2018.03.057
dc.relationMendieta, O., Castro, L., Escalante, H., & Garfí, M. (2021). Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresource Technology, 326, 124783. https://doi.org/10.1016/J.BIORTECH.2021.124783
dc.relationMinagricultura. (2020). Evaluaciones Agropecuarias Municipales. Base agricola 2019-2020.
dc.relationMinisterio de Ambiente y Desarrollo Sostenible., & Ministerio de Agricultura y Desarrollo Rural. (2022). Plan de Acción para la Gestión Sostenible de la Biomasa Residual.
dc.relationMorán-Aguilar, M. G., Calderón-Santoyo, M., de Souza Oliveira, R. P., Aguilar-Uscanga, M. G., & Domínguez, J. M. (2022). Deconstructing sugarcane bagasse lignocellulose by acid-based deep eutectic solvents to enhance enzymatic digestibility. Carbohydrate Polymers, 298. https://doi.org/10.1016/j.carbpol.2022.120097
dc.relationMultari, S., Carafa, I., Barp, L., Caruso, M., Licciardello, C., Larcher, R., Tuohy, K., & Martens, S. (2020). Effects of Lactobacillus spp. on the phytochemical composition of juices from two varieties of Citrus sinensis L. Osbeck: ‘Tarocco’ and ‘Washington navel.’ LWT, 125, 109205. https://doi.org/10.1016/J.LWT.2020.109205
dc.relationNagarajan, D., Chen, C. Y., Ariyadasa, T. U., Lee, D. J., & Chang, J. S. (2022). Macroalgal biomass as a potential resource for lactic acid fermentation. In Chemosphere (Vol. 309). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2022.136694
dc.relationNagarajan, D., Nandini, A., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Lactic acid production from renewable feedstocks using poly(vinyl alcohol)-Immobilized lactobacillus plantarum 23. Industrial and Engineering Chemistry Research, 59(39), 17156–17164. https://doi.org/10.1021/acs.iecr.0c01422
dc.relationNalawade, K., Baral, P., Patil, S., Pundir, A., Kurmi, A. K., Konde, K., Patil, S., & Agrawal, D. (2020). Evaluation of alternative strategies for generating fermentable sugars from high-solids alkali pretreated sugarcane bagasse and successive valorization to L (+) lactic acid. Renewable Energy, 157, 708–717. https://doi.org/10.1016/J.RENENE.2020.05.089
dc.relationNalawade, K., Saikia, P., Behera, S., Konde, K., & Patil, S. (2023a). Assessment of multiple pretreatment strategies for 2G L-lactic acid production from sugarcane bagasse. Biomass Conversion and Biorefinery, 13(2), 647–660. https://doi.org/10.1007/s13399-020-01163-5
dc.relationNalawade, K., Saikia, P., Behera, S., Konde, K., & Patil, S. (2023b). Assessment of multiple pretreatment strategies for 2G L-lactic acid production from sugarcane bagasse. Biomass Conversion and Biorefinery, 13(2), 647–660. https://doi.org/10.1007/s13399-020-01163-5
dc.relationNanfra_Producción de ácido láctico_2021ll. (n.d.).
dc.relationNaser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. In RSC Advances (Vol. 11, Issue 28, pp. 17151–17196). Royal Society of Chemistry. https://doi.org/10.1039/d1ra02390j
dc.relationNiju, S., & Swathika, M. (2019). Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production. Biocatalysis and Agricultural Biotechnology, 20, 101263. https://doi.org/10.1016/J.BCAB.2019.101263
dc.relationOuyang, J., Ma, R., Zheng, Z., Cai, C., Zhang, M., & Jiang, T. (2013). Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, 135, 475–480. https://doi.org/10.1016/J.BIORTECH.2012.09.096
dc.relationPachón, E. R., Vaskan, P., Raman, J. K., & Gnansounou, E. (2018). Transition of a South African sugar mill towards a biorefinery. A feasibility assessment. Applied Energy, 229, 1–17. https://doi.org/10.1016/J.APENERGY.2018.07.104
dc.relationPuerari, C., Magalhães, K. T., & Schwan, R. F. (2012). New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Research International, 48(2), 634–640. https://doi.org/10.1016/J.FOODRES.2012.06.005
dc.relationQiu, Z., Han, X., Fu, A., Jiang, Y., Zhang, W., Jin, C., Li, D., Xia, J., He, J., Deng, Y., Xu, N., Liu, X., He, A., Gu, H., & Xu, J. (2023). Enhanced cellulosic d-lactic acid production from sugarcane bagasse by pre-fermentation of water-soluble carbohydrates before acid pretreatment. Bioresource Technology, 368, 128324. https://doi.org/10.1016/J.BIORTECH.2022.128324
dc.relationRamot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153–162. https://doi.org/10.1016/J.ADDR.2016.03.012
dc.relationRen, Y., Wang, X., Li, Y., Li, Y. Y., & Wang, Q. (2022). Lactic Acid Production by Fermentation of Biomass: Recent Achievements and Perspectives. In Sustainability (Switzerland) (Vol. 14, Issue 21). MDPI. https://doi.org/10.3390/su142114434
dc.relationResano, D., Guillen, O. W., Ubillús, F. D. R., & Barranzuela, J. L. (2022). Caracterización fisicoquímica del bagazo de caña de azúcar industrial y artesanal como material de construcción. Información Tecnológica, 33(2), 247–258. https://doi.org/10.4067/s0718-07642022000200247
dc.relationSáchez, Z., Gauthier-Maradei, P., & Escalante, H. (2013). Effect of particle size and humidity on sugarcane bagasse combustion in a fixed bed furnace. Revista ION, 26(0120-100X), 73–85. http://www.redalyc.org/articulo.oa?id=342030288008
dc.relationSaldarriaga-Hernández, S., Velasco-Ayala, C., Leal-Isla Flores, P., de Jesús Rostro-Alanis, M., Parra-Saldivar, R., Iqbal, H. M. N., & Carrillo-Nieves, D. (2020). Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. International Journal of Biological Macromolecules, 161, 1099–1116. https://doi.org/10.1016/J.IJBIOMAC.2020.06.047
dc.relationSandesh, K., Shishir, R. K., & Vaman Rao, C. (2020). Optimization and comparison of induction heating and LPG assisted acid pretreatment of cocoa pod for ABE fermentation. Fuel, 262, 116499. https://doi.org/10.1016/J.FUEL.2019.116499
dc.relationSasaki, C., Okumura, R., Asakawa, A., Asada, C., & Nakamura, Y. (2012). Effects of washing with water on enzymatic saccharification and d-lactic acid production from steam-exploded sugarcane bagasse. Journal of Material Cycles and Waste Management, 14(3), 234–240. https://doi.org/10.1007/s10163-012-0064-y
dc.relationSatari, B., & Karimi, K. (2018). Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resources, Conservation and Recycling, 129, 153–167. https://doi.org/10.1016/J.RESCONREC.2017.10.032
dc.relationSchroedter, L., Schneider, R., Remus, L., & Venus, J. (n.d.). L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans. https://doi.org/10.3390/resources9070089
dc.relationSCImago Journal & Country Rank. (2022). Vantage Point (No. 15).
dc.relationScopus - Document search results | Signed in. (n.d.). Retrieved April 27, 2023, from https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/results/results.uri?sort=plf-f&src=s&st1=Sugarcane+baggage+for+production+of+L-lactic&sid=4f8aace333eb5ac71d9d5709711db6b2&sot=b&sdt=b&sl=59&s=TITLE-ABS-KEY%28Sugarcane+baggage+for+production+of+L-lactic%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present
dc.relationShabbirahmed, A. M., Haldar, D., Dey, P., Patel, A. K., Singhania, R. R., Dong, C. Di, & Purkait, M. K. (2022). Sugarcane bagasse into value-added products: a review. In Environmental Science and Pollution Research. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-022-21889-1
dc.relationTaha, M., Foda, M., Shahsavari, E., Aburto-Medina, A., Adetutu, E., & Ball, A. (2016). Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Current Opinion in Biotechnology, 38, 190–197. https://doi.org/10.1016/J.COPBIO.2016.02.012
dc.relationTakkellapati, S., Li, T., & Gonzalez, M. A. (2018). An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technologies and Environmental Policy, 20(7), 1615–1630. https://doi.org/10.1007/s10098-018-1568-5
dc.relationTejada-Tovar, C. N., Villabona-Ortíz, A., Colpas-Castillo, F., Sanmartín-Álvarez, Z., & Landázury-Galé, D. (2021). Cocoa husk-derived Biochars synthesized at low temperature impregnated with zinc chloride for removal of ibuprofen in different solutions. INGENIERÍA Y COMPETITIVIDAD, 24(1). https://doi.org/10.25100/iyc.v24i1.10941
dc.relationUnrean, P. (2018). Optimized feeding schemes of simultaneous saccharification and fermentation process for high lactic acid titer from sugarcane bagasse. Industrial Crops and Products, 111, 660–666. https://doi.org/10.1016/J.INDCROP.2017.11.043
dc.relationVan Der Pol, E. C., Eggink, G., & Weusthuis, R. A. (2016a). Production of L(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnology for Biofuels, 9(1). https://doi.org/10.1186/s13068-016-0646-3
dc.relationVan Der Pol, E. C., Eggink, G., & Weusthuis, R. A. (2016b). Production of L(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnology for Biofuels, 9(1). https://doi.org/10.1186/s13068-016-0646-3
dc.relationVan Eck, & Waltman. (2022). VOSwiewer.
dc.relationWang, Y., Tashiro, Y., & Sonomoto, K. (2015a). Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 119(1), 10–18. https://doi.org/10.1016/J.JBIOSC.2014.06.003
dc.relationWang, Y., Tashiro, Y., & Sonomoto, K. (2015b). Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 119(1), 10–18. https://doi.org/10.1016/J.JBIOSC.2014.06.003
dc.relationXu, B., Wang, N., Wang, X., Lang, J., & Zhang, H. (2022). Experimental study on the separation of bagasse lignin and cellulose by using deep eutectic solvent based on alkaline pretreatment. Biomass Conversion and Biorefinery, 1–11. https://doi.org/10.1007/S13399-022-03110-Y/FIGURES/11
dc.relationYankov, D. (2022). Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. In Frontiers in Chemistry (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fchem.2022.823005
dc.relationYounes, A., Karboune, S., Liu, L., Andreani, E. S., & Dahman, S. (2023). Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers, 15(3). https://doi.org/10.3390/polym15030745
dc.rightsAbierto (Texto Completo)
dc.rightsAbierto (Texto Completo)
dc.rightsMagister en Ciencias y Tecnologías Ambientales
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.titleAnálisis cienciométrico y de minería de texto sobre la producción de ácido láctico a partir de biomasa residual


Este ítem pertenece a la siguiente institución