dc.contributor | Cervantes Díaz, Martha | |
dc.contributor | Universidad Santo Tomas | |
dc.creator | Parra Gómez, Carlos Manuel | |
dc.creator | Guevara Lastre, Cesar Augusto | |
dc.date.accessioned | 2023-07-13T22:35:00Z | |
dc.date.accessioned | 2023-09-06T13:33:08Z | |
dc.date.available | 2023-07-13T22:35:00Z | |
dc.date.available | 2023-09-06T13:33:08Z | |
dc.date.created | 2023-07-13T22:35:00Z | |
dc.date.issued | 2023-07-06 | |
dc.identifier | Parra Gómez, C.M; Guevara Lastre, C.A (2023) . Análisis cienciométrico y de minería de texto sobre la producción de ácido láctico a partir de biomasa residual. [Tesis de posgrado]. Universidad Santo Tomás. Bucaramanga, Colombia | |
dc.identifier | http://hdl.handle.net/11634/51283 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8680017 | |
dc.description.abstract | Lactic acid is a raw material of great importance for the pharmaceutical, food and cosmetic industries, which is obtained through two routes, chemical and biotechnological using agro-industrial residues, the latter being the one of interest for the present study. In Santander in 2021, 920.900 tons (t) of agro-industrial waste were produced from sugar cane, citrus (lemon, tangerine and orange) and cocoa crops, where the contribution per crop was 79%, 18% and 3% respectively, with the potential to produce lactic acid, whose world production for the year 2025 is estimated at 1.96 Mt. In Colombia, in the year 2020, 19 t were produced and 460 t were imported, evidencing the imbalance that exists, making the production of lactic acid an attractive process. The present study consisted of using a scientometric analysis strategy, which yielded 418 articles indexed in the Scopus database for the period 2010-2023, with 2022 being the year of greatest activity with 74 documents. In the same period of time, through the Lens software, 437 patents were found, of which 169 correspond to applications and 268 to granted patents, highlighting the year 2016 with 58 granted; all the scientometric information was analyzed using the Vosviewer and Vantage Point software. From the analysis of results, the acid and alkaline pretreatments accompanied by the enzymatic ones were the most found and for the fermentative process the lactobacillus of the plantarum, delbrueckii, pentosus and coagulans species were the most used. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Maestría Ciencias y Tecnologías Ambientales | |
dc.publisher | Facultad de Química Ambiental | |
dc.relation | Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156(4), 286–301. https://doi.org/10.1016/J.JBIOTEC.2011.06.017 | |
dc.relation | Aghbashlo, M., Mandegari, M., Tabatabaei, M., Farzad, S., Mojarab Soufiyan, M., & Görgens, J. F. (2018). Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production. Energy, 149, 623–638. https://doi.org/10.1016/J.ENERGY.2018.02.063 | |
dc.relation | Agrawal, D., & Kumar, V. (2023). Recent progress on sugarcane-bagasse based lactic acid production: Technical advancements, potential and limitations. Industrial Crops and Products, 193, 116132. https://doi.org/10.1016/J.INDCROP.2022.116132 | |
dc.relation | Ahmad, A., Banat, F., & Taher, H. (2020). A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. In Environmental Technology and Innovation (Vol. 20). Elsevier B.V. https://doi.org/10.1016/j.eti.2020.101138 | |
dc.relation | Ahring, B. K., Traverso, J. J., Murali, N., & Srinivas, K. (2016). Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochemical Engineering Journal, 109, 162–169. https://doi.org/10.1016/J.BEJ.2016.01.012 | |
dc.relation | Alves de Oliveira, R., Komesu, A., Vaz Rossell, C. E., Wolf Maciel, M. R., & Maciel Filho, R. (2019). Concentrating second-generation lactic acid from sugarcane bagasse via hybrid short path evaporation: Operational challenges. Separation and Purification Technology, 209, 26–31. https://doi.org/10.1016/J.SEPPUR.2018.07.012 | |
dc.relation | Andrade Barreto, S. M., Martins da Silva, A. B., Prudêncio Dutra, M. D. C., Costa Bastos, D., de Brito Araújo Carvalho, A. J., Cardoso Viana, A., Narain, N., & dos Santos Lima, M. (2023). Effect of commercial yeasts (Saccharomyces cerevisiae) on fermentation metabolites, phenolic compounds, and bioaccessibility of Brazilian fermented oranges. Food Chemistry, 408. https://doi.org/10.1016/j.foodchem.2022.135121 | |
dc.relation | Asiedu, N. Y., Neba, F. A., & Addo, A. (2019). Modeling the attainable regions for catalytic oxidation of renewable biomass to specialty chemicals: Waste biomass to carboxylic acids. South African Journal of Chemical Engineering, 30, 1–14. https://doi.org/10.1016/J.SAJCE.2019.07.003 | |
dc.relation | Baltaci, S. F., & Hamamci, H. (2020). Enzymatic hydrolysis of orange bagasse and effect of filtration on lactic acid fermentation. SN Applied Sciences, 2(4), 1–8. https://doi.org/10.1007/S42452-020-2421-0/FIGURES/5 | |
dc.relation | Baral, P., Jana, A., Kumar, V., & Agrawal, D. (2022). Comparative assessment of sugarcane bagacillo and bagasse at lab-scale for production of sugars and green chemicals via biochemical platform. Biomass Conversion and Biorefinery, 1–10. https://doi.org/10.1007/S13399-022-02895-2/FIGURES/2 | |
dc.relation | Battegazzore, D., Bocchini, S., Alongi, J., & Frache, A. (2014). Plasticizers, antioxidants and reinforcement fillers from hazelnut skin and cocoa by-products: Extraction and use in PLA and PP. Polymer Degradation and Stability, 108, 297–306. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2014.03.003 | |
dc.relation | Bustamante, D., Tortajada, M., Ramón, D., & Rojas, A. (2020). Production of D-lactic acid by the fermentation of orange peel waste hydrolysate by lactic acid bacteria. Fermentation, 6(1). https://doi.org/10.3390/fermentation6010001 | |
dc.relation | Cambia. (2022). Búsqueda gratuita y abierta de patentes y estudios. Lens (versión 8.7.1) [software]. https://www.lens.org/ | |
dc.relation | Chen, Y., Huang, Y., Bai, Y., Fu, C., Zhou, M., Gao, B., Wang, C., Li, D., Hu, Y., & Xu, N. (2017). Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT, 84, 753–763. https://doi.org/10.1016/J.LWT.2017.06.032 | |
dc.relation | da Costa, R. A. M., Rubio-Ribeaux, D., Carneiro, B. C., Franco, P. M., de Azevedo Mendes, G., da Silva, I. L., de Carvalho dos Anjos, V., dos Santos, J. C., Tiso, T., & da Silva, S. S. (2023). Sugarcane bagasse pretreated by different technologies used as support and carbon source in solid-state fermentation by Aureobasidium pullulans LB83 to produce bioemulsifier. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03896-5 | |
dc.relation | da Cruz Ferraz Dutra, J., Passos, M. F., García, G. J. Y., Gomes, R. F., Magalhães, T. A., dos Santos Freitas, A., Laguna, J. G., da Costa, F. M. R., da Silva, T. F., Rodrigues, L. S., Américo, M. F., Campos, G. M., Pereira, G., Vandenbeghe, L., Soccol, C. R., Góes-Neto, A., & de Carvalho Azevedo, V. A. (2023). Anaerobic digestion using cocoa residues as substrate: Systematic review and meta-analysis. Energy for Sustainable Development, 72, 265–277. https://doi.org/10.1016/J.ESD.2022.12.007 | |
dc.relation | de la Torre, I., Ladero, M., & Santos, V. E. (2018). Production of d-lactic acid by Lactobacillus delbrueckii ssp. delbrueckii from orange peel waste: techno-economical assessment of nitrogen sources. Applied Microbiology and Biotechnology, 102(24), 10511–10521. https://doi.org/10.1007/s00253-018-9432-4 | |
dc.relation | de la Torre, I., Ladero, M., & Santos, V. E. (2019). Production of D-lactic acid by L. delbrueckii growing on orange peel waste hydrolysates and model monosaccharide solutions: effects of pH and temperature on process kinetics. Biomass Conversion and Biorefinery, 9(3), 565–575. https://doi.org/10.1007/s13399-019-00396-3 | |
dc.relation | de la Torre, I., Ladero, M., & Santos, V. E. (2020). d-lactic acid production from orange waste enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Industrial Crops and Products, 146, 112176. https://doi.org/10.1016/J.INDCROP.2020.112176 | |
dc.relation | Demichelis, F., Fiore, S., Pleissner, D., & Venus, J. (2018). Technical and economic assessment of food waste valorization through a biorefinery chain. Renewable and Sustainable Energy Reviews, 94, 38–48. https://doi.org/10.1016/J.RSER.2018.05.064 | |
dc.relation | Díaz-Galindo, E. P., Nesic, A., Cabrera-Barjas, G., Dublan-García, O., Ventura-Aguilar, R. I., Vázquez-Armenta, F. J., de Oca, S. A. M., Mardones, C., & Ayala-Zavala, J. F. (2020). Physico-chemical and antiadhesive properties of poly(Lactic acid)/grapevine cane extract films against food pathogenic microorganisms. Polymers, 12(12), 1–15. https://doi.org/10.3390/polym12122967 | |
dc.relation | Díaz-Oviedo, A. F., Ramón-Valencia, B. A., & Moreno-Contreras, G. G. (2022a). Caracterización físico-química de la cáscara de mazorca de cacao como posible uso en la elaboración de tableros aglomerados. Revista de Investigación, Desarrollo e Innovación, 12(1), 97–106. https://doi.org/10.19053/20278306.v12.n1.2022.14211 | |
dc.relation | Díaz-Oviedo, A. F., Ramón-Valencia, B. A., & Moreno-Contreras, G. G. (2022b). Caracterización físico-química de la cáscara de mazorca de cacao como posible uso en la elaboración de tableros aglomerados. Revista de Investigación, Desarrollo e Innovación, 12(1), 97–106. https://doi.org/10.19053/20278306.v12.n1.2022.14211 | |
dc.relation | Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., & Mojović, L. (2019). Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 108, 238–252. https://doi.org/10.1016/J.RSER.2019.03.050 | |
dc.relation | Fancello, F., Petretto, G. L., Zara, S., Sanna, M. L., Addis, R., Maldini, M., Foddai, M., Rourke, J. P., Chessa, M., & Pintore, G. (2016). Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. LWT - Food Science and Technology, 69, 579–585. https://doi.org/10.1016/J.LWT.2016.02.018 | |
dc.relation | Farzad, S., Mandegari, M. A., Guo, M., Haigh, K. F., Shah, N., & Görgens, J. F. (2017). Multi-product biorefineries from lignocelluloses: A pathway to revitalisation of the sugar industry? Biotechnology for Biofuels, 10(1). https://doi.org/10.1186/s13068-017-0761-9 | |
dc.relation | Gérardy, R., Debecker, D. P., Estager, J., Luis, P., & Monbaliu, J. C. M. (2020). Continuous Flow Upgrading of Selected C2-C6Platform Chemicals Derived from Biomass. In Chemical Reviews (Vol. 120, Issue 15, pp. 7219–7347). American Chemical Society. https://doi.org/10.1021/acs.chemrev.9b00846 | |
dc.relation | Gil-Horán, R. H., María Domínguez-Espinosa, R., & Daniel Pacho-Carrillo, J. (2008a). núms.1-2,1999 79 Tecnol. In Ciencia Ed. (IMIQ) (Vol. 23, Issue 2). | |
dc.relation | Gil-Horán, R. H., María Domínguez-Espinosa, R., & Daniel Pacho-Carrillo, J. (2008b). núms.1-2,1999 79 Tecnol. In Ciencia Ed. (IMIQ) (Vol. 23, Issue 2). | |
dc.relation | Gupta, V. K., Kubicek, C. P., Berrin, J. G., Wilson, D. W., Couturier, M., Berlin, A., Filho, E. X. F., & Ezeji, T. (2016). Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass. Trends in Biochemical Sciences, 41(7), 633–645. https://doi.org/10.1016/J.TIBS.2016.04.006 | |
dc.relation | Katepogu, H., Wee, Y. J., Chinni, S. V., Gopinath, S. C. B., Syed, A., Bahkali, A. H., Elgorban, A. M., & Lebaka, V. R. (2022). Lactic acid production from sugarcane field residue as renewable and economical bioresource by newly isolated Pediococcus pentosaceus HLV1. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03267-6 | |
dc.relation | Kumar, V., Yadav, S. K., Kumar, J., & Ahluwalia, V. (2020). A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresource Technology, 299, 122633. https://doi.org/10.1016/J.BIORTECH.2019.122633 | |
dc.relation | L. Papadopoulou, E., C. Paul, U., Nga Tran, T., Suarato, G., Ceseracciu, L., Marras, S., d’Arcy, R., & Athanassiou, A. (2019). Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells. ACS Applied Materials & Interfaces, 11(34), 31317–31327. https://doi.org/10.1021/acsami.9b09755 | |
dc.relation | Liew, S. Q., Ngoh, G. C., Yusoff, R., & Teoh, W. H. (2018). Acid and Deep Eutectic Solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatalysis and Agricultural Biotechnology, 13, 1–11. https://doi.org/10.1016/J.BCAB.2017.11.001 | |
dc.relation | Liu, H., He, H., Peng, X., Huang, B., & Li, J. (2019). Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polymers for Advanced Technologies, 30(4), 910–922. https://doi.org/10.1002/pat.4524 | |
dc.relation | Liu, Y., Zheng, X., Tao, S., Hu, L., Zhang, X., & Lin, X. (2021). Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renewable Energy, 177, 259–267. https://doi.org/10.1016/J.RENENE.2021.05.131 | |
dc.relation | Mandegari, M., Farzad, S., & Görgens, J. F. (2018). A new insight into sugarcane biorefineries with fossil fuel co-combustion: Techno-economic analysis and life cycle assessment. Energy Conversion and Management, 165, 76–91. https://doi.org/10.1016/j.enconman.2018.03.057 | |
dc.relation | Mendieta, O., Castro, L., Escalante, H., & Garfí, M. (2021). Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresource Technology, 326, 124783. https://doi.org/10.1016/J.BIORTECH.2021.124783 | |
dc.relation | Minagricultura. (2020). Evaluaciones Agropecuarias Municipales. Base agricola 2019-2020. | |
dc.relation | Ministerio de Ambiente y Desarrollo Sostenible., & Ministerio de Agricultura y Desarrollo Rural. (2022). Plan de Acción para la Gestión Sostenible de la Biomasa Residual. | |
dc.relation | Morán-Aguilar, M. G., Calderón-Santoyo, M., de Souza Oliveira, R. P., Aguilar-Uscanga, M. G., & Domínguez, J. M. (2022). Deconstructing sugarcane bagasse lignocellulose by acid-based deep eutectic solvents to enhance enzymatic digestibility. Carbohydrate Polymers, 298. https://doi.org/10.1016/j.carbpol.2022.120097 | |
dc.relation | Multari, S., Carafa, I., Barp, L., Caruso, M., Licciardello, C., Larcher, R., Tuohy, K., & Martens, S. (2020). Effects of Lactobacillus spp. on the phytochemical composition of juices from two varieties of Citrus sinensis L. Osbeck: ‘Tarocco’ and ‘Washington navel.’ LWT, 125, 109205. https://doi.org/10.1016/J.LWT.2020.109205 | |
dc.relation | Nagarajan, D., Chen, C. Y., Ariyadasa, T. U., Lee, D. J., & Chang, J. S. (2022). Macroalgal biomass as a potential resource for lactic acid fermentation. In Chemosphere (Vol. 309). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2022.136694 | |
dc.relation | Nagarajan, D., Nandini, A., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Lactic acid production from renewable feedstocks using poly(vinyl alcohol)-Immobilized lactobacillus plantarum 23. Industrial and Engineering Chemistry Research, 59(39), 17156–17164. https://doi.org/10.1021/acs.iecr.0c01422 | |
dc.relation | Nalawade, K., Baral, P., Patil, S., Pundir, A., Kurmi, A. K., Konde, K., Patil, S., & Agrawal, D. (2020). Evaluation of alternative strategies for generating fermentable sugars from high-solids alkali pretreated sugarcane bagasse and successive valorization to L (+) lactic acid. Renewable Energy, 157, 708–717. https://doi.org/10.1016/J.RENENE.2020.05.089 | |
dc.relation | Nalawade, K., Saikia, P., Behera, S., Konde, K., & Patil, S. (2023a). Assessment of multiple pretreatment strategies for 2G L-lactic acid production from sugarcane bagasse. Biomass Conversion and Biorefinery, 13(2), 647–660. https://doi.org/10.1007/s13399-020-01163-5 | |
dc.relation | Nalawade, K., Saikia, P., Behera, S., Konde, K., & Patil, S. (2023b). Assessment of multiple pretreatment strategies for 2G L-lactic acid production from sugarcane bagasse. Biomass Conversion and Biorefinery, 13(2), 647–660. https://doi.org/10.1007/s13399-020-01163-5 | |
dc.relation | Nanfra_Producción de ácido láctico_2021ll. (n.d.). | |
dc.relation | Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. In RSC Advances (Vol. 11, Issue 28, pp. 17151–17196). Royal Society of Chemistry. https://doi.org/10.1039/d1ra02390j | |
dc.relation | Niju, S., & Swathika, M. (2019). Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production. Biocatalysis and Agricultural Biotechnology, 20, 101263. https://doi.org/10.1016/J.BCAB.2019.101263 | |
dc.relation | Ouyang, J., Ma, R., Zheng, Z., Cai, C., Zhang, M., & Jiang, T. (2013). Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, 135, 475–480. https://doi.org/10.1016/J.BIORTECH.2012.09.096 | |
dc.relation | Pachón, E. R., Vaskan, P., Raman, J. K., & Gnansounou, E. (2018). Transition of a South African sugar mill towards a biorefinery. A feasibility assessment. Applied Energy, 229, 1–17. https://doi.org/10.1016/J.APENERGY.2018.07.104 | |
dc.relation | Puerari, C., Magalhães, K. T., & Schwan, R. F. (2012). New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Research International, 48(2), 634–640. https://doi.org/10.1016/J.FOODRES.2012.06.005 | |
dc.relation | Qiu, Z., Han, X., Fu, A., Jiang, Y., Zhang, W., Jin, C., Li, D., Xia, J., He, J., Deng, Y., Xu, N., Liu, X., He, A., Gu, H., & Xu, J. (2023). Enhanced cellulosic d-lactic acid production from sugarcane bagasse by pre-fermentation of water-soluble carbohydrates before acid pretreatment. Bioresource Technology, 368, 128324. https://doi.org/10.1016/J.BIORTECH.2022.128324 | |
dc.relation | Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153–162. https://doi.org/10.1016/J.ADDR.2016.03.012 | |
dc.relation | Ren, Y., Wang, X., Li, Y., Li, Y. Y., & Wang, Q. (2022). Lactic Acid Production by Fermentation of Biomass: Recent Achievements and Perspectives. In Sustainability (Switzerland) (Vol. 14, Issue 21). MDPI. https://doi.org/10.3390/su142114434 | |
dc.relation | Resano, D., Guillen, O. W., Ubillús, F. D. R., & Barranzuela, J. L. (2022). Caracterización fisicoquímica del bagazo de caña de azúcar industrial y artesanal como material de construcción. Información Tecnológica, 33(2), 247–258. https://doi.org/10.4067/s0718-07642022000200247 | |
dc.relation | Sáchez, Z., Gauthier-Maradei, P., & Escalante, H. (2013). Effect of particle size and humidity on sugarcane bagasse combustion in a fixed bed furnace. Revista ION, 26(0120-100X), 73–85. http://www.redalyc.org/articulo.oa?id=342030288008 | |
dc.relation | Saldarriaga-Hernández, S., Velasco-Ayala, C., Leal-Isla Flores, P., de Jesús Rostro-Alanis, M., Parra-Saldivar, R., Iqbal, H. M. N., & Carrillo-Nieves, D. (2020). Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. International Journal of Biological Macromolecules, 161, 1099–1116. https://doi.org/10.1016/J.IJBIOMAC.2020.06.047 | |
dc.relation | Sandesh, K., Shishir, R. K., & Vaman Rao, C. (2020). Optimization and comparison of induction heating and LPG assisted acid pretreatment of cocoa pod for ABE fermentation. Fuel, 262, 116499. https://doi.org/10.1016/J.FUEL.2019.116499 | |
dc.relation | Sasaki, C., Okumura, R., Asakawa, A., Asada, C., & Nakamura, Y. (2012). Effects of washing with water on enzymatic saccharification and d-lactic acid production from steam-exploded sugarcane bagasse. Journal of Material Cycles and Waste Management, 14(3), 234–240. https://doi.org/10.1007/s10163-012-0064-y | |
dc.relation | Satari, B., & Karimi, K. (2018). Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resources, Conservation and Recycling, 129, 153–167. https://doi.org/10.1016/J.RESCONREC.2017.10.032 | |
dc.relation | Schroedter, L., Schneider, R., Remus, L., & Venus, J. (n.d.). L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans. https://doi.org/10.3390/resources9070089 | |
dc.relation | SCImago Journal & Country Rank. (2022). Vantage Point (No. 15). | |
dc.relation | Scopus - Document search results | Signed in. (n.d.). Retrieved April 27, 2023, from https://www-scopus-com.crai-ustadigital.usantotomas.edu.co/results/results.uri?sort=plf-f&src=s&st1=Sugarcane+baggage+for+production+of+L-lactic&sid=4f8aace333eb5ac71d9d5709711db6b2&sot=b&sdt=b&sl=59&s=TITLE-ABS-KEY%28Sugarcane+baggage+for+production+of+L-lactic%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present | |
dc.relation | Shabbirahmed, A. M., Haldar, D., Dey, P., Patel, A. K., Singhania, R. R., Dong, C. Di, & Purkait, M. K. (2022). Sugarcane bagasse into value-added products: a review. In Environmental Science and Pollution Research. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-022-21889-1 | |
dc.relation | Taha, M., Foda, M., Shahsavari, E., Aburto-Medina, A., Adetutu, E., & Ball, A. (2016). Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Current Opinion in Biotechnology, 38, 190–197. https://doi.org/10.1016/J.COPBIO.2016.02.012 | |
dc.relation | Takkellapati, S., Li, T., & Gonzalez, M. A. (2018). An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technologies and Environmental Policy, 20(7), 1615–1630. https://doi.org/10.1007/s10098-018-1568-5 | |
dc.relation | Tejada-Tovar, C. N., Villabona-Ortíz, A., Colpas-Castillo, F., Sanmartín-Álvarez, Z., & Landázury-Galé, D. (2021). Cocoa husk-derived Biochars synthesized at low temperature impregnated with zinc chloride for removal of ibuprofen in different solutions. INGENIERÍA Y COMPETITIVIDAD, 24(1). https://doi.org/10.25100/iyc.v24i1.10941 | |
dc.relation | Unrean, P. (2018). Optimized feeding schemes of simultaneous saccharification and fermentation process for high lactic acid titer from sugarcane bagasse. Industrial Crops and Products, 111, 660–666. https://doi.org/10.1016/J.INDCROP.2017.11.043 | |
dc.relation | Van Der Pol, E. C., Eggink, G., & Weusthuis, R. A. (2016a). Production of L(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnology for Biofuels, 9(1). https://doi.org/10.1186/s13068-016-0646-3 | |
dc.relation | Van Der Pol, E. C., Eggink, G., & Weusthuis, R. A. (2016b). Production of L(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnology for Biofuels, 9(1). https://doi.org/10.1186/s13068-016-0646-3 | |
dc.relation | Van Eck, & Waltman. (2022). VOSwiewer. | |
dc.relation | Wang, Y., Tashiro, Y., & Sonomoto, K. (2015a). Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 119(1), 10–18. https://doi.org/10.1016/J.JBIOSC.2014.06.003 | |
dc.relation | Wang, Y., Tashiro, Y., & Sonomoto, K. (2015b). Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 119(1), 10–18. https://doi.org/10.1016/J.JBIOSC.2014.06.003 | |
dc.relation | Xu, B., Wang, N., Wang, X., Lang, J., & Zhang, H. (2022). Experimental study on the separation of bagasse lignin and cellulose by using deep eutectic solvent based on alkaline pretreatment. Biomass Conversion and Biorefinery, 1–11. https://doi.org/10.1007/S13399-022-03110-Y/FIGURES/11 | |
dc.relation | Yankov, D. (2022). Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. In Frontiers in Chemistry (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fchem.2022.823005 | |
dc.relation | Younes, A., Karboune, S., Liu, L., Andreani, E. S., & Dahman, S. (2023). Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers, 15(3). https://doi.org/10.3390/polym15030745 | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | Magister en Ciencias y Tecnologías Ambientales | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_14cb | |
dc.title | Análisis cienciométrico y de minería de texto sobre la producción de ácido láctico a partir de biomasa residual | |