dc.contributor | Barrera Gomez, Marien Rocio | |
dc.contributor | Alfonso Diaz, Andres Leonardo | |
dc.contributor | Universidad Santo Tomas | |
dc.creator | Quiroga Niño, Jose Andres | |
dc.date.accessioned | 2023-07-13T14:53:40Z | |
dc.date.accessioned | 2023-09-06T13:16:28Z | |
dc.date.available | 2023-07-13T14:53:40Z | |
dc.date.available | 2023-09-06T13:16:28Z | |
dc.date.created | 2023-07-13T14:53:40Z | |
dc.date.issued | 2023-06-27 | |
dc.identifier | Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2023). Aplicacion de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. Universidad Santo Tomas. | |
dc.identifier | http://hdl.handle.net/11634/51260 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8679874 | |
dc.description.abstract | Development of a platform that captures and analyzes information according to machine learning algorithms, from operational parameters and maintenance routines of industrial air conditioning systems. Predicting the occurrence of refrigerant gas leaks, by analyzing operational deviations. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Maestría Ingeniería | |
dc.publisher | Facultad de Ingeniería Electrónica | |
dc.relation | Aamir, M., & Khan, M. N. A. (2017). Incorporating quality control activities in scrum in relation to the concept of test backlog. Sadhana - Academy Proceedings in Engineering Sciences, 42(7), 1051–1061. https://doi.org/10.1007/s12046-017-0688-7 | |
dc.relation | Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2022). PREDICONFORT 1.0 (No. 1). Universidad Santo Tomas. | |
dc.relation | Allison, P. (2013). What’s the best R-squared for logistic regression. Statistical Horizons, 13. https://statisticalhorizons.com/r2logistic/ | |
dc.relation | Al-Tal, M., Al-Aomar, R., & Abel, J. (2021). A predictive model for an effective maintenance of hospital critical systems. Proceedings of the 33rd European Modeling & Simulation Symposium, 1–8. https://doi.org/10.46354/i3m.2021.emss.001 | |
dc.relation | American Society of Heating, R. and A.-C. E. (2021). ASHRAE Handbook: Vol. Fundamentals. | |
dc.relation | ANSI/ASHRAE 55 - 2020. Thermal Environmental Conditions for Human Occupancy, ASHRAE (2020). | |
dc.relation | Bartodziej, C. J. (2017). The Concept Industry 4.0. An Empirical Analysis of Technologies and Applications in Production Logistics. Springer Gabler. | |
dc.relation | Boero, C. (2020). Mantenimiento industrial. Jorge Sarmiento Editor - Universitas. https://elibro.net/es/lc/usta/titulos/172523 | |
dc.relation | Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors, 21(4), 1044. https://doi.org/10.3390/s21041044 | |
dc.relation | Braun, J., Claridge, D. E., Katipaluma, S., Liu, M., & Pratt, R. G. (2001). Operation and Maintenance. In J. F. Kreider (Ed.), Handbook of heating, Ventilation, and Air Conditioning. CRC Press LLC. | |
dc.relation | Candanedo, I. S., Nieves, E. H., González, S. R., Martín, M. T. S., & Briones, A. G. (2018). Machine Learning Predictive Model for Industry 4.0. In L. Uden, B. Hadzima, & I.-H. Ting (Eds.), Knowledge Management in Organizations (pp. 501–510). Springer International Publishing. | |
dc.relation | Cerquitelli, T., Nikolakis, N., O’Mahony, N., Macii, E., Ippolito, M., & Makris, S. (Eds.). (2021). Predictive Maintenance in Smart Factories. Springer Singapore. https://doi.org/10.1007/978-981-16-2940-2 | |
dc.relation | Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525–1534. | |
dc.relation | Danfoss A/S. (2017). Datasheet. Pressure Switch and Thermostat. In AI000086439001en-001001 (pp. 1–20). | |
dc.relation | Das, K., Jiang, J., & Rao, J. N. K. (2004). Mean squared error of empirical predictor. The Annals of Statistics, 32(2), 818–840. | |
dc.relation | del Val Román, J. L. (2016). Industria 4.0: la transformación digital de la industria. Valencia: Conferencia de Directores y Decanos de Ingeniería Informática, Informes CODDII. | |
dc.relation | Diercks, P., Gläser, D., Lünsdorf, O., Selzer, M., Flemisch, B., & Unger, J. F. (2022). Evaluation of tools for describing, reproducing and reusing scientific workflows. | |
dc.relation | Ebert, C., Abrahamsson, P., & Oza, N. (2012). Lean software development. IEEE Software, 29(05), 22–25. | |
dc.relation | Echavarria Ortiz, H. N. (2022). Aplicación de machine learning para la enseñanza – aprendizaje de competencias ciudadanas en educación media del Colegio de Boyacá. https://repository.usta.edu.co/handle/11634/47603#.Y4pGaRabz-o.mendeley | |
dc.relation | ECOPETROL S.A. (2018). Especificaciones tecnicas para el servicio de mantenimiento de sistemas de aire acondicionado de la Gerencia Refineria de Barrancabermeja de ECOPETROL S.A. | |
dc.relation | Elallaoui, M., Nafil, K., & Touahni, R. (2018). Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Techniques. Procedia Computer Science, 130, 42–49. https://doi.org/10.1016/j.procs.2018.04.010 | |
dc.relation | Es-sakali, N., Cherkaoui, M., Mghazli, M. O., & Naimi, Z. (2022). Review of predictive maintenance algorithms applied to HVAC systems. Energy Reports, 8, 1003–1012. https://doi.org/10.1016/j.egyr.2022.07.130 | |
dc.relation | Esteki, M., Javdani Gandomani, T., & Khosravi Farsani, H. (2020). A risk management framework for distributed scrum using PRINCE2 methodology. Bulletin of Electrical Engineering and Informatics, 9(3), 1299–1310. https://doi.org/10.11591/eei.v9i3.1905 | |
dc.relation | Fernando, J. (2021, September 12). R-Squared Formula, Regression, and Interpretations. Investopedia.Com/ Corporate Finance / Financial Analysis. https://www.investopedia.com/terms/r/r-squared.asp#:~:text=R%2Dsquared%20values%20range%20from,)%20you%20are%20interested%20in). | |
dc.relation | Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression Models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100 | |
dc.relation | Gonzalez Ajuech, V. L. (2017). Mantenimiento: tecnicas y aplicaciones industriales. Grupo Editorial Patria. https://elibro.net/es/lc/usta/titulos/40508 | |
dc.relation | Heras del Dedo, R. de las, & Alvarez Garcia, A. (2017). Metodos agiles: Scrum, Kanban, Lean. Difusora Larousse - Anaya Multimedia. https://elibro.net/es/lc/usta/titulos/122933 | |
dc.relation | Hosamo, H. H., Svennevig, P. R., Svidt, K., Han, D., & Nielsen, H. K. (2022). A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy and Buildings, 261, 111988. https://doi.org/10.1016/j.enbuild.2022.111988 | |
dc.relation | Instituto de Hidrología, M. y E. A.-I. (2023). Altas Climatologico. Http://Atlas.Ideam.Gov.Co/VisorAtlasClimatologico.Html. | |
dc.relation | Jimenez Raya, F. (2015). Mantenimiento preventivo de sistemas de automatizacion industrial. ELEM0311. IC Editorial. https://elibro.net/es/lc/usta/titulos/59239 | |
dc.relation | Joshi, A. V. (2020). Machine Learning and Artificial Intelligence. Springer International Publishing. https://doi.org/10.1007/978-3-030-26622-6 | |
dc.relation | Ke, Y., Mulumba, T., Shen, W., & Afshari, A. (2014, May 18). Model-based predictive maintenance of chillers. ACRA 2014 - Proceedings of the 7th Asian Conference on Refrigeration and Air Conditioning. | |
dc.relation | Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0 | |
dc.relation | L’Esteve, R. C. (2021). The Definitive Guide to Azure Data Engineering. Apress. https://doi.org/10.1007/978-1-4842-7182-7 | |
dc.relation | Martínez, R., Parkinson, C., Caruso, M., López, D., Vargas, R., & Rojas, N. (2022). Propuesta de técnicas de validación para la calidad de datos abiertos e identificación de patrones para predicciones con Machine Learning. XXIV Workshop de Investigadores En Ciencias de La Computación (WICC 2022, Mendoza). | |
dc.relation | Microsoft. (2022). Documentación de ML.NET. https://learn.microsoft.com/es-es/dotnet/machine-learning/ | |
dc.relation | Microsoft. (2022). Documentación de Visual Studio. https://learn.microsoft.com/es-es/visualstudio/ | |
dc.relation | Microsoft. (2022). Documentacion SQL Server Management Studio (SSMS). https://learn.microsoft.com/es-es/sql/ssms/sql-server-management-studio-ssms | |
dc.relation | Monroy Mejia, M. de los A., & Nava Sanchezllanes, N. (2018). Metodologia de la investigacion. Grupo Editorial Exodo. https://elibro.net/es/lc/usta/titulos/172512 | |
dc.relation | Oficina Asesora de Planeacion y Estudios Sectoriales. (2019). Aspectos Basicos de la Industria 4.0. Ministerio de Tecnologias de la Informacion y las Comunicaciones. Republica de Colombia. | |
dc.relation | O’hEocha, C., & Conboy, K. (2010). The Role of the User Story Agile Practice in Innovation (pp. 20–30). https://doi.org/10.1007/978-3-642-16416-3_3 | |
dc.relation | Ohta, R. (2018). SELECTION OF INDUSTRIAL MAINTENANCE STRATEGY: CLASSICAL AHP AND FUZZY AHP APPLICATIONS. International Journal of the Analytic Hierarchy Process, 10(2). https://doi.org/10.13033/ijahp.v10i2.551 | |
dc.relation | Panesar, A. (2021). Evaluating Machine Learning Models. In Machine Learning and AI for Healthcare (pp. 189–205). Apress. https://doi.org/10.1007/978-1-4842-6537-6_7 | |
dc.relation | Panfilov, P., & Katona, A. (2018). Building Predictive Maintenance Framework for Smart Environment Application Systems (pp. 0460–0470). https://doi.org/10.2507/29th.daaam.proceedings.068 | |
dc.relation | Periyasamy, K., & Chianelli, J. (2021). A project tracking tool for scrum projects with machine learning support for cost estimation. EPiC Series in Computing, 76, 86–94. https://doi.org/10.29007/6vwh | |
dc.relation | Rodal Montero, E. (2020). Industria 4.0: conceptos, tecnologias habilitadoras y retos. Difusora Larousse - Ediciones Piramide. https://elibro.net/es/lc/usta/titulos/216140 | |
dc.relation | Salvaris, M., Dean, D., & Tok, W. H. (2018). Deep Learning with Azure. Apress. https://doi.org/10.1007/978-1-4842-3679-6 | |
dc.relation | Sandoval, R. (2022). IoT: La conexión con la industria del mañana. Mundo HVAC&R. | |
dc.relation | Santiago, A. R., Antunes, M., Barraca, J. P., Gomes, D., & Aguiar, R. L. (2019). Predictive Maintenance System for Efficiency Improvement of Heating Equipment. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 93–98. https://doi.org/10.1109/BigDataService.2019.00019 | |
dc.relation | Santos Sanchez, G. A., & Castro Barrera, M. A. (2022). Metodologia de valoracion de riesgo de equipo electrico: evaluacion basada en el conocimiento experto. https://cimga.com/ | |
dc.relation | Sanzana, M. R., Maul, T., Wong, J. Y., Abdulrazic, M. O. M., & Yip, C.-C. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, 141, 104445. https://doi.org/10.1016/J.AUTCON.2022.104445 | |
dc.relation | Saturno, M., Pertel, V., & Deschamps, F. (2017). Proposal of an automation solutions architecture for Industry 4.0. | |
dc.relation | Sedeño, J., Schön, E.-M., Torrecilla-Salinas, C., Thomaschewski, J., Escalona, M. J., & Mejias, M. (2017). Modelling agile requirements using context-based persona stories. WEBIST 2017 - Proceedings of the 13th International Conference on Web Information Systems and Technologies, 196–203. https://doi.org/10.5220/0006220301960203 | |
dc.relation | SIEMENS. (2023). SIEMENS MindSphere. https://new.siemens.com/co/es/productos/software/mindsphere.html | |
dc.relation | Srinivasan, R., Tamzeed Islam, M., Islam, B., Wang, Z., Sookoor, T., Gnawali, O., & Nirjon, S. (2017, August 7). Preventive Maintenance of Centralized HVAC Systems: Use of Acoustic Sensors, Feature Extraction, and Unsupervised Learning. https://doi.org/10.26868/25222708.2017.715 | |
dc.relation | Stanfield, C., & Skaves, D. (2013). Fundamentals of HVACR (A. Vernon R, Ed.; 2nd ed.). PEARSON. | |
dc.relation | Subih, M. A., Malik, B. H., Mazhar, I., Sabir, U., Wakeel, T., Wajid, A., Yousaf, A., Nawaz, H., & Suleman, M. (2019). Comparison of agile method and scrum method with software quality affecting factors. International Journal of Advanced Computer Science and Applications, 10(5). | |
dc.relation | Sukhodolov, Y. A. (2019). The Notion, Essence, and Peculiarities of Industry 4.0 as a Sphere of Industry. In E. G. Popkova, Y. V Ragulina, & A. V Bogoviz (Eds.), Industry 4.0: Industrial Revolution of the 21st Century (pp. 3–10). Springer International Publishing. https://doi.org/10.1007/978-3-319-94310-7_1 | |
dc.relation | Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., & Ahmad, M. O. (2017). Comparing Requirements Decomposition Within the Scrum, Scrum with Kanban, XP, and Banana Development Processes (pp. 68–83). https://doi.org/10.1007/978-3-319-57633-6_5 | |
dc.relation | Trivedi, S., Bhola, S., Talegaonkar, A., Gaur, P., & Sharma, S. (2019). Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), 1–6. https://doi.org/10.1109/ISAP48318.2019.9065995 | |
dc.relation | Urbieta, M., Antonelli, L., Rossi, G., & do Prado Leite, J. C. S. (2020). The impact of using a domain language for an agile requirement management. Information and Software Technology, 127. https://doi.org/10.1016/j.infsof.2020.106375 | |
dc.relation | Vijayaraghavan, V., & Rian Leevinson, J. (2019). Internet of Things Applications and Use Cases in the Era of Industry 4.0 (pp. 279–298). https://doi.org/10.1007/978-3-030-24892-5_12 | |
dc.relation | Wautelet, Y., Gielis, D., Poelmans, S., & Heng, S. (2019). Evaluating the impact of user stories quality on the ability to understand and structure requirements. In Lecture Notes in Business Information Processing (Vol. 369). https://doi.org/10.1007/978-3-030-35151-9_1 | |
dc.relation | WEG. (2023). WEG IOT Platform. https://iot.weg.net/#/portal/home | |
dc.relation | Yang, C., Chen, Q., Shen, W., & Gunay, B. (2017). Toward failure mode and effect analysis for heating, ventilation and air-conditioning. 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), 408–413. https://doi.org/10.1109/CSCWD.2017.8066729 | |
dc.relation | Yang, C., Gunay, B., Shi, Z., & Shen, W. (2021). Machine Learning-Based Prognostics for Central Heating and Cooling Plant Equipment Health Monitoring. IEEE Transactions on Automation Science and Engineering, 18(1), 346–355. https://doi.org/10.1109/TASE.2020.2998586 | |
dc.relation | Yang, C., Shen, W., Chen, Q., & Gunay, B. (2018). A practical solution for HVAC prognostics: Failure mode and effects analysis in building maintenance. Journal of Building Engineering, 15, 26–32. https://doi.org/10.1016/j.jobe.2017.10.013 | |
dc.relation | Yang, C., Shen, W., Gunay, B., & Shi, Z. (2019). Toward machine learning-based prognostics for heating ventilation and air-conditioning systems. ASHRAE Transactions Volume 125, 106–115. | |
dc.relation | YORK International. Jhonson Controls. (2004). Installation manual. Predator. Single package air conditioners and single package electric units DM090, 120 and 150. 7-1/2 TO 12 1/2 TO (380V, 3Phase, 60 HZ). In 035-17311-003-A-0704. Jhonson Controls. | |
dc.relation | Yuliansyah, H., Qudsiah, S. N., Zahrotun, L., & Arfiani, I. (2018). Implementation of use case point as software effort estimation in Scrum Framework. IOP Conference Series: Materials Science and Engineering, 403(1). https://doi.org/10.1088/1757-899X/403/1/012085 | |
dc.relation | Zhang, J., Liu, C., & Gao, R. X. (2022). Physics-guided Gaussian process for HVAC system performance prognosis. Mechanical Systems and Signal Processing, 179, 109336. https://doi.org/10.1016/j.ymssp.2022.109336 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. | |