dc.contributorSalgado Diaz, Juan Manuel
dc.contributorhttps://orcid.org/0000-0001-9680-2638
dc.contributorhttps://scholar.google.es/citations?user=i-X-lsEAAAAJ&hl=es
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001676058
dc.contributorUniversidad Santo Tomás
dc.creatorMateus Romero, Mariangelica
dc.date.accessioned2023-06-28T19:14:38Z
dc.date.accessioned2023-09-06T13:11:31Z
dc.date.available2023-06-28T19:14:38Z
dc.date.available2023-09-06T13:11:31Z
dc.date.created2023-06-28T19:14:38Z
dc.date.issued2023-06-15
dc.identifierMateus Romero, M. (2023). Materiales Utilizados en la Construcción de Terraplenes Aligerados Destinados a Obras Viales. [Monografía de Pregrado, Universidad Santo Tomás]. Repositorio
dc.identifierhttp://hdl.handle.net/11634/50915
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8679827
dc.description.abstractThis monograph exposes a bibliographic review of the Materials used in the construction of lightened embankments destined for road works. The realization of a road project requires different stages that allow good planning and design in the presence of clayey, organic, volcanic and expansive soils, taking alternatives that do not generate greater cost overruns and delays, giving as a solution the construction of lightened embankments, with materials that Avoid overloading the foundation soil and changes in the chemical and biological properties of the soil that generate problems for the environment. Based on this, an analysis of the existing and ecological materials that allow the conformation of a lightened embankment with excellent benefits and low costs will be made, knowing all its operation and its construction process, finally the purpose is that the document is a starting point with the help of the state of the art for future projects, from materials that have been implemented in real life.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Civil
dc.publisherFacultad de Ingeniería Civil
dc.relationAgrela, F., Barbudo, A., & Ramírez, A. (2012). Construction of road sections using mixed recycled aggregates treated with cement in Malaga, Spain. Resources Conservation and Recycling. 58(01). 98-106. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0921344911002369
dc.relationAmram, M., Onaizi, A., & Fediuk, R. (2022). An ultra-lightweight cellular concrete for geotechnical applications – A review. Case Studies in Construction Materials, 16.1096. Obtenido de https://www.sciencedirect.com/science/article/pii/S2214509522002285
dc.relationAnaokar, M., & Mhaiskar, S. (2020). Experimental and numerical assessment of efficacy of lime stabilized capping material in controlling swelling displacements within flexible pavement embankments. Heliyon, 6(9). 4961. Obtenido de https://pubmed.ncbi.nlm.nih.gov/33005788/
dc.relationAndía, Y. (2022). Ecoaprovechamiento del poliestireno expandido y poliestireno extruido recuperados para la fabricación de concreto en Huancayo. [Tesis doctoral, Universidad Nacional Mayor de San Marcos]. Repositorio https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/18307/Andia_aj.pdf?sequence=1&isAllowed=y
dc.relationArias, J., Matías, A., Cantero, B., & López, S. (2023). Mechanical stabilization of aeolian sand with ceramic brick waste aggregates. Construction and Building Materials, 363(11).129-846. https://www.sciencedirect.com/science/article/abs/pii/S0950061822035024
dc.relationArradi, A., & Pinori, U. (2012). The use of lightweight materials in road embankment construction. Procedia, 53(3).1000-10009. https://www.sciencedirect.com/science/article/pii/S1877042812044114
dc.relationBaya, M., & Zahrai, M. (2017). Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity. Steel and Composite Structures, 25(1).1-17. Obtenido de https://www.researchgate.net/publication/319955754_Seismic_performance_of_mid-rise_steel_frames_with_semi-rigid_connections_having_different_moment_capacity
dc.relationBieliatynskyi, A., Krayushkina, K., Breskich, V., & Lunyakov, M. (2021). Basalt Fiber Geomats – Modern Material for Reinforcing the Motor Road Embankment Slopes. Transportation Research Procedia, 54. 744-757. Obtenido de https://www.sciencedirect.com/science/article/pii/S2352146521003021
dc.relationBusato, L., Boaga, J., Peruzzo, L., Himi, M., Cola, S., Bersan, S., & Cassiani, G. (2016). Combined geophysical surveys for the characterization of a reconstructed river embankment. Engineering Geology, 211(23), 74-84. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0013795216301995
dc.relationCal, R., & Cárdenas, J. (2016). Ingeniería de Tránsito. Fundamentos y Aplicaciones.(9a ed.) Alfaomega. Obtenido de https://books.google.co.ve/books?hl=es&lr=&id=9H14EAAAQBAJ&oi=fnd&pg=PR5&dq=usos+de+la+cal+en+terraplenes+mexico&ots=tJTHAM98yl&sig=1XlJYsNaSTp-O3rlLx9lUpLOlOU&redir_esc=y#v=onepage&q=usos%20de%20la%20cal%20en%20terraplenes%20mexico&f=false
dc.relationCentro de Estudio y Experimetacion de Obras Publicas.(CEDEX). (2023).Quienes somos. Obtenido de cedex.es: https://www.cedex.es/presentacion
dc.relationCurpen, S., Teutsch, N., Kovler, K., & Spatari, S. (2023). Evaluating life cycle environmental impacts of coal fly ash utilization in embankment versus sand and landfilling. Journal of Cleaner Production, 385(20).135-402. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0959652622049769
dc.relationDaly, P. (2015). Hemp and Lime as a Bio-composite Material in Irish Construction. Premier Irish. Obtenido de https://www.teagasc.ie/media/website/publications/2019/TeagascHempConference-PD-20June2019.pdf
dc.relationDeepak, M., Rohini, S., Harini, S., & Beulah, G. (2021). Influence of fly-ash on the engineering characteristics of stabilised clay soil. Journal of Materials in Civil Engineering. 37(2). 2014-2018. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S2214785320356078
dc.relationDeMerchant, R., & Valsangkar, A. (2022). Plate load tests on geogrid-reinforced expanded shale lightweight aggregate. Geotextiles and Geomembranes. 20(3). 173-190. Obtenido de https://www.researchgate.net/publication/238374850_Plate_load_tests_on_geogrid-reinforced_expanded_shale_lightweight_aggregate?_sg%5B0%5D=gl_YyxwtLJN6JcntdwxwactphgADlR11mZm7aFYYFYfdmwWEo7Kf7D5LzWFnEvcRE6cZOqNJvzOkpYQ.laQG8d-kW4NrTb6uxtSyT2KwZlN7MY0w29jGl
dc.relationEchezona, S., & Adamu, M. (2022). A comprehensive review on coal fly ash and its application in the construction industry. Construction and Building Materials. 141. 105-121. Obtenido de https://www.researchgate.net/publication/363509585_A_comprehensive_review_on_coal_fly_ash_and_its_application_in_the_construction_industry
dc.relationEkberli, İ., & Gülser, C. (2016). Toprağın ısısal yayınımının fonksiyonel değişimi ve toprak sıcaklığına etkisi. Anadolu Tarım Bilimleri Dergisi. 31(2). 294-300. Obtenido de https://dergipark.org.tr/tr/pub/omuanajas/issue/24676/260987
dc.relationEl-kady, M., Abdelhalim, A., & Ahmed, Y. (2023). Modelling of railway embankment stabilized with geotextile, geo-foam, and waste aggregates. National Academies. 18. 0-1800. Obtenido de https://trid.trb.org/view/2090880
dc.relationFernández, R. (1997). Respuesta del kiri (Paulownia spp.) a la fertilización y al encalado resultados a los 19 meses de edad. [Trabajo de Grado, Universidad Nacional de Misiones]. Obtenido de https://rid.unam.edu.ar/handle/20.500.12219/3443
dc.relationGaitán, V. (2014). Estudio del comportamiento del hormigón de alta resistencia reforzado con fibras de acero frente al impacto de proyectiles. [Tesis Doctoral, Universidad Politécnica de Madrid]. Repositorio de https://oa.upm.es/22120/
dc.relationHussain, R., & Ravi, K. (2020). Garg, Influence of biochar on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures. Soil Tillage Resistance. 204. 104-713. Obtenido de doi:https://doi.org/10.1016/j.still.2020.104713
dc.relationKanneboina, Y., Saravanan, J., Kabeer, S., & Bisht, K. (2023). Valorization of lead and zinc slags for the production of construction materials - A review for future research direction. Construction and Building Materials. 367(27). 130-314. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0950061823000259
dc.relationKicińska, A. (2021). Physical and chemical characteristics of slag produced during Pb refining and the environmental risk associated with the storage of slag. Environmental Geochemistry and Health. 43(7). 2723-2741. Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275510/
dc.relationLi, Z., Yuan, H., & Gao, F. (2022). A Feasibility Study of Low Cement Content Foamed Concrete Using High Volume of Waste Lime Mud and Fly Ash for Road Embankment. Materials. 15(1). Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746185/
dc.relationMarradi, A., Pinori, U., & Betti, G. (2012). The Use of Lightweight Materials in Road Embankment Construction. Procedia - Social and Behavioral Sciences. 53(3). 1000-1009. Obtenido de https://www.sciencedirect.com/science/article/pii/S1877042812044114
dc.relationMavroulidou, M., Zhang, X., Gunn, M. J., & Cabarkapa, Z. (2013). Water Retention and Compressibility of a Lime-Treated, High Plasticity Clay. Geotechnical and Geological Engineering, 31(4). 1171-1185. Obtenido de https://core.ac.uk/download/pdf/51395864.pdf
dc.relationMishra, D., Hackley, P., Jubb, A., & Sanders, M. (2022). Maturation study of vitrinite in carbonaceous shales and coals: Insights from hydrous pyrolysis. International Journal of Coal Geology. 259(01). 104044. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0166516222001203
dc.relationMohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. Journal of Environmental Management. 197(15). 522-538. Obtenido de https://www.scirp.org/(S(351jmbntv-nsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2769899
dc.relationMontenegro, J., Matachala, C., & Cañizal, J. (2019). Study of the expansive behavior of ladle furnace slag and its mixture with low quality natural soils. Construction and Building Materials. 203(10). 201-209. Obtenido de http://repositoriodigital.ucsc.cl/handle/25022009/1768
dc.relationMora, P., Alarcón, A., Sánchez, L., & Llamas, B. (2021). Biomass Content in Scrap Tires and Its Use as Sustainable Energy Resource: A CO2 Mitigation Assessment. Sustainability. Obtenido de https://www.mdpi.com/2071-1050/13/6/3500
dc.relationMrema, G., Gumbe, L. O., Chepete, H. J., & Agullo, J. O. (2011). Rural structures in the tropics: design and development. Roma: Fao. 13(6). 3500. Obtenido de https://core.ac.uk/download/pdf/132690118.pdf
dc.relationMukherjee, S., & Babu, S. (2023). Three-dimensional numerical modeling of geogrid reinforced foundations. Computers and Geotechnics. 158. 105-397. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0266352X23001544
dc.relationNajarro-Quintero, R., Cruz-Crespo, A., Perdomo-Gonzalez, L., Ramirez-Tórrez, J., & Orbea-Jiménez, M. (2018). Empleo de escorias de horno cuchara y de cenizas de paja de arroz como componentes de un fundente para recargue por soldadura. Minería y Geología,, 34(3). 1-11. Obtenido de https://www.redalyc.org/articulo.oa?id=223555432007
dc.relationNiedostatkiewicz, M., Majewski, T., & Barilka, A. (2023). Renovation works in buildings in the area of former defensive fortifications. Inzynieria Bezpieczenstwa. 1. 1-21. Obtenido de https://www.inzynieriabezpieczenstwa.com.pl/index.php/iboa/article/view/164
dc.relationPardodeSantayana, M., Tardío, J., & Aceituno, L. (2018). Inventario español de los conocimientos tradicionales relativos a la biodiversidad.Ministerio para la transicion ecologica y el reto deografico. Fase II. 1-430. Madrid: Mapama. Obtenido de https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/ict_2018_tomo2web_tcm30-448313.pdf
dc.relationPatel, A. (2019). Case examples of some geotechnical applications. New York: Woodhead Publishing. 167-191. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/B9780128170489000111
dc.relationRizo, E., & Vergel, M. (2020). Uso del elemento de poliestireno expandido como material alternativo en la construccion de terraplenes dentro de la geotecnia vial. [Tesis, Universidad Francisco de Paula Santander]. Obtenido de http://repositorio.ufpso.edu.co/handle/123456789/362
dc.relationSaride, S., & Sirigiripet, S. (2008). Performance of Expanded Clay Shale (ECS) as an Embankment Backfill. Geotechnical. 7. Obtenido de https://www.researchgate.net/publication/269130253_Performance_of_Expanded_Clay_Shale_ECS_as_an_Embankment_Backfill
dc.relationSoltani, A., Deng, A., Taheri, A., & O'Kelly, B. (2022). Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide. Journal of Rock Mechanics and Geotechnical Engineering. 14(1). 252-261. Obtenido de https://www.sciencedirect.com/science/article/pii/S1674775521000895
dc.relationSwamy, Y., & Vamshi Krishna, Y. K. (2019). Potential Use of Biochar as Construction Material. International Journal of Recent Technology and Engineering (IJRTE). 8(1). 1-2. Obtenido de https://www.researchgate.net/publication/353622193_Potential_Use_of_Biochar_as_Construction_Material
dc.relationTing, T. (2015). A Review of Utilization of Coconut Shell and Coconut Fiber in Road Construction. Jurnal Teknologi. 76(14). 1-5. Obtenido de https://www.researchgate.net/publication/283353926_A_Review_of_Utilization_of_Coconut_Shell_and_Coconut_Fiber_in_Road_Construction#:~:text=Some%20studies%20showed%20that%20coconut,of%20the%20modified%20asphalt%20pavement.
dc.relationVargas, J., Moncayo, M., & Córdova, J. (2017). La geomalla como elemento de refuerzo en pavimentos flexibles. Ingeniería. 21(1). Obtenido de https://www.redalyc.org/journal/467/46752305006/html/
dc.relationVukićević, M., Marjanović, M., Pujević, V., & Jocković, S. (2019). The Alternatives to Traditional Materials for Subsoil Stabilization and Embankments. Materials. 12(18). 3018. Obtenido de https://pubmed.ncbi.nlm.nih.gov/31540353/
dc.relationWatanabe, K., Nakajima, S., & Fujii, K. (2020). Development of geosynthetic-reinforced soil embankment resistant to severe earthquakes and prolonged overflows due to tsunamis. Soils and Foundations, 60(6). 13771-1386. Obtenido de https://www.sciencedirect.com/science/article/pii/S0038080620337203
dc.relationBarrera, M., & Garnica, P. (2002). Introducción a la Mecánica de Suelos no Saturados en vías Terrestres. Instituto Mexicano del Transporte. 1-115. Obtenido de https://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt198.pdf
dc.relationCabezas, E., & Serrato, Y. (2019). Evaluación de la resistencia de un suelo grueso reforzado con fibras de coco (cocotero, cocos nucifera). [Monografía de Grado, Universidad Piloto de Colombia]. Repositorio http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/6481/EVALUACION%20DE%20LA%20RESISTENCIA%20DE%20UN%20SUELO%20GRUESO%20REFORZADO%20CON%20FIBRAS%20DE%20COCO.pdf?sequence=7&isAllowed=y
dc.relationCastro, L., & Guzmán, E. (2010). Terraplenes Construidos con Arenas Eólicas. 1-17. [Articulo, Universidad Nacional de Colombia]. Repositorio https://www.researchgate.net/publication/280446308
dc.relationFondo Europeo de Desarrollo Regional. (FEDER). (2013). Transferencia Tecnológica relativa a materiales de construcción, incluyendo materiales marginales y residuos aprovechables. 1-165. Obtenido de https://www.secegsa.gob.es/NR/rdonlyres/46F536DF-D8FD-4971-82F3-63B67643FD15/124975/Accion22TTIGEM_s.pdf
dc.relationFlórez, A. (2019). Propuesta metodológica de instrumentación y monitoreo para evaluar la estabilidad física de un depósito de relaves abandonado en chile. [Memoria de Grado, Universidad de Chile]. Repositorio https://repositorio.uchile.cl/bitstream/handle/2250/174908/Propuesta-metodol%c3%b3gica-de-instrumentaci%c3%b3n-y-monitoreo-para-evaluar-la-estabilidad-f%c3%adsica-de-un-dep%c3%b3sito.pdf?sequence=1&isAllowed=y
dc.relationFookes, P. (1997). Suelos Residuales Tropicales. 207. Obtenido de https://www.academia.edu/1313528/SUELOS_RESIDUALES_TROPICALES
dc.relationGeo–Technologies. (n.d.). Refuerzo del terraplén del estanque de retención de residuos, Odisha, India. Retrieved June 10, 2023, from https://www.prs-med.com/co/casestudies/terraplen-reforzado-del-estanque-de-retencion-de-residuos-india/
dc.relationGonzáles de Vallejo, L. I. (2002). Ingeniería Geológica. Geol 55. Pearson Educación.
dc.relationHernández, M. (2020). Propuesta de distribución de una planta para un sistema de modelo de poliestireno expandido (EPS) aplicado en la industria de construcción. [Tesis de Grado, Universidad Tecnológica de la Mixteca]. Repositorio http://jupiter.utm.mx/~tesis_dig/14119.pdf
dc.relationLaterlite. (2015). Geotecnia e infraestructuras soluciones ligeras y sólidas con arcilla expandida laterlite y hormigones ligeros estructurales. Obtenido de www.laterlite.es
dc.relationMantilla, G., De la Torre, L., Gomez, C., Ordoñez, N., Ceballos, J., Euscategui, C., Pérez, P., Pérez, S., Martínez, N., Sanchez, R., Maldonado, N., Gaitan, jorge, Chavez, L., Chamorro, C., & Flórez, A. (1998). Los suelos, estabili dad, productividad y degradación. El Medio Ambiente en Colombia. 6, 1–50. Repositorio https://repository.agrosavia.co/handle/20.500.12324/18777
dc.relationMinisterio de minas y energía. (2020). Propuesta lineamientos técnicos de política de buenas prácticas para estandarizar los procesos de presas de relaves. Contrato. 1-143. Obtenido de https://www.minenergia.gov.co/static/cursos-mineria/src/document/PROPUESTA%20LINEAMIENTOS%20T%C3%89CNICOS%20DE%20POL%C3%8DTICA%20DE%20BUENAS%20PR%C3%81CTICAS%20-%20PRESAS%20DE%20RELAVES.pdf
dc.relationMunirwan, R. P., Munirwansyah, Marwan, Ramadhansyah, P. J., & Kamchoom, V. (2020). Performance of Coir Fiber Addition for Clay as a Sub-Grade for Pavement Design. 712(1). 1-9. Obtenido de https://doi.org/10.1088/1757-899X/712/1/012009
dc.relationSebastián, J., Martínez, R., María, J., & Cuello, R. (n.d.). (2023). Poliestireno expandido (EPS) en obras de ingeniería civil: experiencias frente a una problemática ambiental expanded polystyrene (eps) in civil engineering works: experiences addressing an environmental problem. Universidad Santo Tomas. 1. 1-13. Obtenido de https://repository.usta.edu.co/bitstream/handle/11634/50145/2023juanrodriguez1.pdf?sequence=2
dc.relationYepes, V. (2019). Materiales que se pueden emplear en un terraplén. PoliBlogs. Obtenido de https://victoryepes.blogs.upv.es/tag/terraplenes/#:~:text=El%20Pliego%20distingue%20en%20los,%2C%20n%C3%BAcleo%2C%20espald%C3%B3n%20y%20coronaci%C3%B3n.
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleMateriales Utilizados en la Construcción de Terraplenes Aligerados Destinados a Obras Viales.


Este ítem pertenece a la siguiente institución