dc.contributorAyala Sotelo, Laura Natalia
dc.contributorUniversidad Santo Tomas
dc.creatorAyala Sotelo, Laura Natalia
dc.date.accessioned2023-07-17T15:44:53Z
dc.date.accessioned2023-09-06T13:06:29Z
dc.date.available2023-07-17T15:44:53Z
dc.date.available2023-09-06T13:06:29Z
dc.date.created2023-07-17T15:44:53Z
dc.date.issued2023-06-26
dc.identifierAyala Sotelo, L. (2023). Síntesis y caracterización del sistema superconductor TR3X-1TR1XBaCuO dopado con óxido de grafeno por medio de reacción de estado sólido. Universidad Santo Tomas
dc.identifierhttp://hdl.handle.net/11634/51341
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8679768
dc.description.abstractElectronic engineering is constantly evolving, and the search for efficient and versatile materials is fundamental to the development of new technologies. Superconducting materials are the subject of great interest due to their ability to carry electric current without resistance, making them a key tool for a wide variety of applications in fields such as medicine, power generation, quantum computing and communications. In this context, the present thesis work focuses on the synthesis and characterization of the high-temperature superconducting system Y3Ba5Cu8O18- - Y358 and its modification by substituting the Yttrium (Y) element with the two rare earths: Praseodymium (Pr) and Europium (Eu). In addition, the effect of doping with Graphene Oxide (GO) on the samples of Eu3Ba5Cu8O18- with different concentrations of GO (0.05% and 0.1%) is studied, since this material is an excellent electrical conductor. The samples are synthesized using the Solid State Reaction (SSR) method and structurally characterized by the X-ray Diffraction (XRD) technique and Rietveld refinement through the General Structure Analysis System (GSAS) software. In this way, the crystallographic information of the materials is obtained: lattice parameters, crystal structure, angles, cell volume, space group, average size of crystallites, percentage (%) of the crystallographic phases, and the confidence parameters of the refinement. Likewise, the microstructure of the samples is examined through images obtained by the Scanning Electron Microscopy (SEM) technique, where optimum grain compaction is evident when the samples are doped with OG. In addition, the Energy-Dispersive X-ray Spectrometry (EDS) technique coupled to the SEM is used to perform the semi-quantitative analysis of the composition of the samples, according to the stoichiometric formula corresponding to each chemical element present in the materials. The resistivity is measured as a function of temperature, in the range of 0 to 300 K, where a decrease in resistivity is observed when reaching the Critical Temperature (Tc) at 49 K. Finally, the application of the Four-Point Probe technique is suggested for the precise measurement of the resistivity of the materials.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationAbdulrahman, M. W., & Ibrahim, F. H. (2019). Synthesis of Y3Ba5Cu8O18 superconductor by auto- combustion reaction. AIP Conference Proceedings, 2123(1), 020085.
dc.relationAbràmoff, M.D., Magalhães, P.J., & Ram, S.J. (2004). Image processing with ImageJ. Biophotonics international, 11(7), 36-42.
dc.relationArais, A. A., Shams, M. S., & Elbehiry, E. (2020). The effect of Ni–Zn ferrite doping on the superconductivity of Y3Ba5Cu8O18 nanocomposite materials. AIP Advances, 10(11), 115012.
dc.relationAkyol, M., Ayas, A. O., Akca, G., Cetin, S. K., & Ekicibil, A. (2015). Effect of Ca doping on thermally activated flux flow in the Y3Ba5Cu8O18 superconductor. Bulletin of Materials Science, 38(5), 1231–1237.
dc.relationAliabadi, A., Farshchi, Y. A., & Akhavan, M. (2009). A new Y-based HTSC with Tc above 100 K. Physica C: Superconductivity and Its Applications, 469(22), 2012–2014.
dc.relationBahk, J. H., Favaloro, T., & Shakouri, A. (2013). Thin film thermoelectric characterization techniques. Annual Review of Heat Transfer, 16.
dc.relationBaquero, R. (1997). El descubrimiento de la superconductividad. Avance y Perspectiva (Cinvestav), Vol. 16, pp. 163–179.
dc.relationBardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review, 108(5), 1175.
dc.relationBaşoğlu, M., & Düzgün, I. (2016). Improvement of Current Density of Different Atmosphere-Sintered Y358 Superconductors. Journal of Superconductivity and Novel Magnetism, 29(7), 1737–1740.
dc.relationBednorz, J. G., & Müller, K. A. (1986). Possible High Tc Superconductivity in the Ba-La-Cu-O System. Condensend Matter, 64, 189–193.
dc.relationBuzea, C., & Robbie, K. (2004). Assembling the puzzle of superconducting elements: A review. Superconductor Science and Technology, 18(1), R1–R8.
dc.relationCallister, W. D., & Rethwisch, D. G. (2011). Materials science and engineering and introduction. New York: John wiley & sons.
dc.relationCoombs, T. (2020). Engineering Properties of Superconducting Materials. Materials, 13(20), 4652.
dc.relationCorredor Bohórquez, L. T. (2012). Estudio de las propiedades magnéticas y superconductoras en rutenocupratos del tipo RuSr2GdCu2O8.
dc.relationCuervo Farfán, J. A. (2021). Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe).
dc.relationCullity B.D. (1956). Elements of X-ray diffraction. Addison-Wesley Publishing. Dadras, S., Falahati, S., & Dehghani, S. (2018). Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7−δ. Physica C: Superconductivity and its Applications, 548, 65-67.
dc.relationDias, F. T., Oliveira, C. P. D., Vieira, V. D. N., Silva, D. L., Mesquita, F., Almeida, M. L. D., ... & Pureur, P. (2014). Magnetic irreversibility and zero resistance in granular Y358 superconductor. In Journal of Physics: Conference Series (Vol. 568, No. 2, p. 022009). IOP Publishing.
dc.relationFalahati, S., Dadras, S., & Mosqueira, J. (2019). Investigation of the Magnetic and Transport Properties of YBa2Cu3O7-δ High Temperature Superconductor Doped with Graphene Oxide. Journal of Superconductivity and Novel Magnetism, 32(12), 3755-3760.
dc.relationFaraldos, M., & Goberna, C. (2011). Técnicas de análisis y caracterización de materiales.
dc.relationGadzhimagomedov, S. K., Palchaev, D. K., Gadzhiev, M. K., Murlieva, Z. K., Rabadanov, M. K., Saypulaev, P. M., ... & Rabadanova, A. E. (2021). Superconducting YBCO ceramics after exposure to a plasma flow to a mixture of argon and oxygen. In Journal of Physics: Conference Series (Vol. 1923, No. 1, p. 012007). IOP Publishing.
dc.relationGaona, I. S., Supelano, G. I., & Vargas, C. P. (2020). Determination of critical superconducting parameters based on the study of the magnetization fluctuations for RE3Ba5Cu8O18-δ (RE= Sm, Eu, Gd, Dy and Ho) ceramic superconductor system. Ceramics International, 46(8), 11530-11538.
dc.relationGholipour, S., Daadmehr, V., Rezakhani, A. T., Khosroabadi, H., Tehrani, F. S., & Akbarnejad, R. H. (2012). Structural phase of y358 superconductor comparison with Y123. Journal of Superconductivity and Novel Magnetism, 25(7), 2253–2258.
dc.relationGirao, A. V, Caputo, G., & Ferro, M. C. (2017). Application of scanning electron microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS). In En Comprehensive Analytical Chemistry (Vol. 75, pp. 153–168). Elsevier.
dc.relationGuerrero, U. F., Rivera, A. M., Cuaspud, J. A., Munevar, J., & Vargas, C. A. (2021). Synthesis of the La3Ba5Cu8O18-δ and Sm3Ba5Cu8O18-δ superconductors by the combustion and solid-state reaction methods. Materials Research, 24.
dc.relationGuo, J., Wu, Q., & Sun, L. (2018). Advanced high-pressure transport measurement system integrated with low temperature and magnetic field. Chinese Physics B, 27(7), 077402.
dc.relationHor, P. H., Gao, L., Meng, R. L., Huang, Z. J., Wang, Y. Q., Forster, K., … Torng, C. J. (1987). High-pressure study of the new Yb-Ba-Cu-O superconducting compound system. Physical Review Letters, 58(9), 911–912.
dc.relationINDUSTRIAL SCIENCE & TECHNOLOGY EIRL. Soluciones analíticas para la Ciencia y la Industria. https://industrialscitech.com/
dc.relationJosephson, B. D. (1962). Possible new effects in superconductive tunnelling. Physics Letters, 1(7), 251–253.
dc.relationKang, S. J. L. (2004). Sintering: densification, grain growth and microstructure. In Elsevier.
dc.relationKittle, C. Introduction to Solid State Physics (2005).
dc.relationKhosroabadi, H., Rasti, M., & Akhavan, M. (2014). Structural analysis of Y3Ba5Cu8O19-δ high-Tc superconductor by ab initio density functional theory. Physica C: Superconductivity and Its Applications, 497, 84–88.
dc.relationKumar Naik, S. P., Santosh, M., & Swarup Raju, P. M. (2017). Structural and Thermal Validations of Y3Ba5Cu8O18 Composites Synthesized via Citrate Sol-Gel Spontaneous Combustion Method. Journal of Superconductivity and Novel Magnetism, 31(5), 1279–1286.
dc.relationKutuk, S., Bolat, S., Terzioglu, C., & Altintas, S. P. (2015). An investigation of magnetoresistivity properties of an Y3Ba5Cu8O bulk superconductor. Journal of Alloys and Compounds, 650, 159–164.
dc.relationLandínez Téllez, D. A., Cabrera Baez, M., & Roa-Rojas, J. (2012). Structure and conductivity fluctuations of the Y3Ba5Cu8O18 superconductor. Modern Physics Letters B, 26(11), 1250067.
dc.relationL. Suescun. (2003). Caracterización estructural y magnética de compuestos REBaCuCoO5 de tipo perovskita 112 (RE=tierra rara o ytrio). Universidad de la República.
dc.relationLa superconductividad: conceptos básicos y aplicaciones - NUSGREM - Asociacion Nacional de Estudiantes de Física. (n.d.). Retrieved from https://nusgrem.es/superconductividad-conceptos-basicos-y-aplicaciones/
dc.relationLangford, J. I., & Wilson, J. C. (1978). Scherrer after sixty years: A survey and some new results in the determination of crystallite size. Journal Appy Crystalographic, 11, 102–113.
dc.relationLarson, A. C., & Von Dreele, R. B. (1994). GSAS-General Structure Analysis System. Gsas. Repor IAUR.
dc.relationLuiz, A. M. (2011). Superconductivity-Theory and Applications. BoD-Books on Demand.
dc.relationMALVERN PANALYTICAL. Analytical Instrumentation. https://www.malvernpanalytical.com/ Methods of shape forming ceramic powders. (n.d.). Retrieved from http://www.substech.com/dokuwiki/doku.php?id=methods_of_shape_forming_ceramic_powders
dc.relationMomma, K., & Izumi, F. (2008). VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41(3), 653-658.
dc.relationPark, C., & Snyder, R. L. (1995). Structures of High‐Temperature Cuprate Superconductors. Journal of the American Ceramic Society, Vol. 78, pp. 3171–3194.
dc.relationParra-Borda, J. A., Rojas-Cruz, F. G., Cruz-Pacheco, A. F., Segura-Peña, S., & Parra Vargas, C. A. (2017). Structural and magnetic analysis of the Pr1.5Eu1.5Ba5Cu8O18 system. Journal of Physics: Conference Series, 935(1), 012005.
dc.relationPEREZ HENRIQUEZ, R. (2011). El efecto Meissner y la levitación magnética. Epistemus: Ciencia, Tecnología y Salud, (10), 49–56.
dc.relationRekaby, M., Roumié, M., Abou-Aly, A. I., Awad, R., & Yousry, M. (2014). Magnetoresistance Study of Y3Ba5Cu8O18 Superconducting Phase Substituted by Nd3+ and Ca2+ Ions. Journal of Superconductivity and Novel Magnetism, 27(10), 2385–2395.
dc.relationRietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65–71.
dc.relationSahoo, B., Singh, A. K., & Behera, D. (2020). Graphene oxide modified superconducting and elastic parameters of YBCO superconductor. Materials Chemistry and Physics, 240, 122252.
dc.relationShoushtari, M. Z., Heidarzadeh, G., & Ghahfarokhi, S. E. M. (2018). An Investigation of Y3Ba5Cu8O18 Doping with Ag Nanoparticles and Its Application as Superconductor. Journal of Superconductivity and Novel Magnetism, 31(11), 3475–3483.
dc.relationSlimani, Y., Hannachi, E., Salem, M. K., Hamrita, A., Salem, M. Ben, & Azzouz, F. Ben. (2015). Excess Conductivity Study in Nano-CoFe2O4-Added YBa2Cu3O7−d and Y3Ba5Cu8O18±x Superconductors. Journal of Superconductivity and Novel Magnetism, 28(10), 3001–3010.
dc.relationSpeakman, S. A. (2012). Introduction to PANalytical Xpert HighScore Plus v3.0. In MIT Center for Materials Science and Engineering.
dc.relationSuan, M. S. M., Johan, M. R., & Chua Siang, T. (2012). Synthesis of Y3Ba5Cu8O18 superconductor powder by auto-combustion reaction: Effects of citrate-nitrate ratio. Physica C: Superconductivity and Its Applications, 480, 75–78.
dc.relationSupelano, G. I., Sarmiento Santos, A., & Parra Vargas, C. A. (2014). Magnetic fluctuations on TR3Ba5Cu8Oδ (TR=Ho, y and Yb) superconducting system. Physica B: Condensed Matter, 455, 79–81.
dc.relationTavana, A., & Akhavan, M. (2010). How Tc can go above 100 K in the YBCO family. European Physical Journal B, 73(1), 79–83.
dc.relationTavana, A., & Akhavan, M. (2010). How Tc can go above 100 K in the YBCO family. European Physical Journal B, 73(1), 79–83.
dc.relationTopal, U., Akdogan, M., & Ozkan, H. (2011). Electrical and structural properties of RE3Ba5Cu8O18 (RE=Y, Sm and Nd) superconductors. Journal of Superconductivity and Novel Magnetism, 24(7), 2099–2102.
dc.relationUdomsamuthirun, P., Kruaehong, T., Nilkamjon, T., & Ratreng, S. (2010). The new superconductors of YBaCuO materials. Journal of Superconductivity and Novel Magnetism, 23(7), 1377–1380.
dc.relationVan Delft, D., & Kes, P. (2010). The discovery of superconductivity. Phys. Today, 63(9), 38–42.
dc.relationVélez Fraga, M. (1995). Corriente crítica y mecanismos de disipación en películas y superredes de superconductores de alta Tc (relación con la microestructura y propiedades de anisotropía).
dc.relationWaeselmann, N. (2012). Structural transformations in complex perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures (Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky).
dc.relationWalter, H., Delamare, M. P., Bringmann, B., Leenders, A., & Freyhardt, H. C. (2000). Melt-textured YBaCuO with high trapped fields up to 1.3 T at 77 K. Materials Research Society, 15(6), 1231–1234.
dc.relationWaseda, Y., Matsubara, E., & Shinoda, K. (2011). X-Ray diffraction crystallography: introduction, examples and solved problems. In Springer Science & Business Media.
dc.relationWei, K., Hamdan, M. S., Radiman, S., & Abd-Shukor, R. (2018). AC susceptibility and superconducting properties of graphene added YBa2Cu3O7−d. Journal of Superconductivity and Novel Magnetism, 31(9), 2699-2703.
dc.relationYao, C., & Ma, Y. (2021). Superconducting materials: Challenges and opportunities for large-scale applications. Iscience, 24(6), 102541.
dc.relationZarabinia, N., Daadmehr, V., Tehrani, F. S., & Abbasi, M. (2015). Influence of Ag/Cu Substitution on structural effect of new high temperature superconductor Y3Ba5Cu8O18. Procedia Materials Science, 11, 242–247.
dc.relationZhu, J. X. (2016). Bogliubov-de Gennes Equations for Superconductors in the Continuum Model (In Bogoliubov-de Gennes Method and Its Applications, Ed.). Springer, Cham.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleSíntesis y caracterización del sistema superconductor TR3X-1TR1XBaCuO dopado con óxido de grafeno por medio de reacción de estado sólido


Este ítem pertenece a la siguiente institución