dc.contributorContreras Gómez, Alix Yusara
dc.creatorRodríguez Sarmiento, Nicolle Chaely
dc.date.accessioned2023-07-05T18:43:47Z
dc.date.accessioned2023-09-06T13:00:49Z
dc.date.available2023-07-05T18:43:47Z
dc.date.available2023-09-06T13:00:49Z
dc.date.created2023-07-05T18:43:47Z
dc.date.issued2023-07-05
dc.identifierRodríguez Sarmiento, N. C. (2023). Estimación del Flujo de Carbono en el Suelo del Sistema Piloto Agroforestal de Cacao Establecido en el Campus Limonal [Trabajo de Pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia
dc.identifierhttp://hdl.handle.net/11634/51045
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8679715
dc.description.abstractClimate change significantly affects people's quality of life and biodiversity, considering its negative impact on the planet's temperature. Excessive emission of greenhouse gases (GHG) strongly influences climate change. The present study focuses on the ability to capture carbon dioxide CO2 (from soil and atmosphere) and its subsequent storage in agroforestry systems of cocoa (AFS). This strategy mitigates GHG, reduces air pollution, and promotes biodiversity conservation and sustainable practices. The case study was realized in the Agroforestry Pilot Systems of Cocoa at the “Universidad Santo Tomás Campus el Limonal”, punctual sampling was made with the EGM-5 and Ceptometer equipment measuring the variables CO2, Photosynthetically Active Radiation (PAR) above and below the canopy, and Leaf Area Index (LAI), among others. The analysis information included: (a) exploratory data analysis, (b) comparison of carbon fluxes measured in situ with reanalysis data of external climatic variables (ERA5, ERA5-Land) and IDEAM, and (c) soil mapping from spatial prediction and interpolation with geostatistical and deterministic methods. The results revealed (a) right-skewed, positively asymmetric CO2 in the different systems with EGM-5 measurements, (b) positive correlations between precipitation and CO2, similar global trends with significant differences in mean values comparing reanalysis variables and (c) it was generated continuous maps of hourly, daily, and monthly means using average autocorrelation distances of 15 meters.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado de Ingeniería Ambiental
dc.publisherFacultad de Ingeniería Ambiental
dc.relationAllen, A. P., y Gillooly, J. F. (2009). Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letters, 12(5), 369–384.
dc.relationArrhenius, S. (1896). XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(251), 237–276.
dc.relationBivand, R. S., Pebesma, E. J., Gomez-Rubio, V., y Pebesma, E. J. (2008). Applied spatial data analysis with R (Vol. 747248717). Springer.
dc.relationBoettinger, J. L., Howell, D. W., Moore, A. C., Hartemink, A. E., y Kienast-Brown, S. (2010). Digital soil mapping: Bridging research, environmental application, and operation. Springer Science & Business Media.
dc.relationCallendar, G. S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 64(275), 223–240.
dc.relationCarter, M. R., y Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press.
dc.relationCarter, M. R., y Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press.
dc.relationChen, H. W., Zhang, L. N., Zhang, F., Davis, K. J., Luavaux, T., Pal, S., y Digangi, J. P. (2019). Validation of regional CO2 concentrations in the ECMWF real-time analysis and Carbon-Tracker reanalysis with airborne observations from ACT-A field campaign.
dc.relationChiles, J.-P., y Delfiner, P. (2009). Geostatistics: modeling spatial uncertainty (Vol. 497). John Wiley & Sons.
dc.relationCongreso de Colombia. (2018, julio 27). Ley 1931 de 2018. http://www.secretariasenado.gov.co/senado/basedoc/ley_1931_2018.html
dc.relationCongreso de la República. (2015, junio 9). Ley 1753 de 2015. http://www.secretariasenado.gov.co/senado/basedoc/ley_1753_2015.html
dc.relationContreras, A., García, L., Lozano, S., y Burgos, J. (2022). 4-Entregable 4-Informe Final.
dc.relationCOPERNICUS. (2023). Climate reanalysis ERA5 and ERA5-Land. https://climate.copernicus.eu/climate-reanalysis
dc.relationCressie, N. (2015). Statistics for spatial data. John Wiley & Sons.
dc.relationDobesch, H., Dumolard, P., y Dyras, I. (2013). Spatial interpolation for climate data: the use of GIS in climatology and meteorology. John Wiley & Sons.
dc.relationESRI. (2022). Basemaps. https://www.esri.com/en-us/arcgis/products/arcgisplatform/ services/basemaps
dc.relationG Allen, R., S Pereira, L., Raes, D., y Smith, M. (2006). Evapotranspiración del cultivo.
dc.relationGobierno de Colombia. (2020). Actualización de la Contribución Determinada a nivel nacional de Colombia (NDC). Gobierno de Colombia: Bogotá, Colombia.
dc.relationGräler, B., Pebesma, E. J., y Heuvelink, G. B. M. (2016). Spatio-temporal interpolation using gstat. R J., 8(1), 204.
dc.relationHoughton, R. A. (2008). Carbon flux to the atmosphere from land-use changes: 1850–2005. TRENDS: A compendium of data on global change, 1850–2005.
dc.relationIntergovernmental Panel on Climate Change. (2018). Global warming of 1.5° C: An IPCC special report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change.
dc.relationJensen, L. S., Mueller, T., Tate, Kr., Ross, D. J., Magid, J., y Nielsen, N. E. (1996). Soil surface CO2 flux as an index of soil respiration in situ: a comparison of two chamber methods. Soil biology and biochemistry, 28(10–11), 1297–1306.
dc.relationKadane, J. B. (1978). Descriptive Statistics: Exploratory Data Analysis. John W. Tukey. Addison-Wesley, Reading, Mass., 1977. xvi, 688 pp., illus. $17.95. Science, 200(4338), 195.
dc.relationKeeling, C. D. (1960). The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12(2), 200–203.
dc.relationKhan, A., Tan, D. K. Y., Munsif, F., Afridi, M. Z., Shah, F., Wei, F., Fahad, S., y Zhou, R. (2017). Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environmental Science and Pollution Research, 24, 23471–23487.
dc.relationKumar, B. M., y Nair, P. K. R. (2011). Carbon sequestration potential of agroforestry systems: opportunities and challenges.
dc.relationKumar, S., Lal, R., y Liu, D. (2012). A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma, 189, 627–634.
dc.relationLambers, H., Chapin, F. S., y Pons, T. L. (2008). Plant physiological ecology (Vol. 2). Springer.
dc.relationLi, Y., Wang, X., Niu, Y., Lian, J., Luo, Y., Chen, Y., Gong, X., Yang, H., y Yu, P. (2018). Spatial distribution of soil organic carbon in the ecologically fragile Horqin Grassland of northeastern China. Geoderma, 325, 102–109.
dc.relationLongley, P. A., y Batty, M. (1997). Spatial analysis: modelling in a GIS environment. John Wiley & Sons.
dc.relationMarsh, G. P. (1864). Man and Nature, Or Physical Geography as Modified by Human Action by George P. Marsh. Sampson Low, Son and Marston.
dc.relationMassey Jr, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American statistical Association, 46(253), 68–78.
dc.relationMatheron, G. (1963). Principles of geostatistics. Economic geology, 58(8), 1246–1266.
dc.relationMaxwell, K., y Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659–668.
dc.relationMcBratney, A. B., Santos, M. L. M., y Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.
dc.relationMcKenzie, N. J., Grundy, M. J., Webster, R., y Ringrose-Voase, A. J. (2008). Guidelines for surveying soil and land resources. CSIRO publishing.
dc.relationMena, V. E. (2021). Potencial de reducción de emisiones y captura de carbono en bosques y sistemas agroforestales con cacao en el Pacífico colombiano. Revista de Biología Tropical, 69(4), 1252–1263.
dc.relationMETER. (2022). ACCUPAR LP-80 Canopy Interception and Leaf Area Index. http://publications.metergroup.com/Manuals/20442_LP-80_Manual_Web.pdf
dc.relationMinisterio de Ambiente y Desarrollo Sostenible. (2015, febrero 18). Decreto 280 de 2015. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=66611
dc.relationMinisterio de Ambiente y Desarrollo Sostenible. (2016, febrero 24). Decreto 298 de 2016. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=68173
dc.relationMinisterio de Ciencia, T. e I. (2020, febrero). Guía Metodológica para Formular los Ejercicios de Planeación para Orientar la Inversión de la Asignación en Ciencia,Tecnología e Innovación. https://regaliasbogota.sdp.gov.co/sites/default/files/2021- 09/Metodologia_Ejercicios_de_Planeacion.pdf
dc.relationNadporozhskaya, M. A., Bykhovets, S. S., y Abakumov, E. v. (2022). Application of the ROMUL mathematical model for estimation of CO2 emission and dynamics of organic matter in the Subantarctic lithozems. Eurasian Soil Science, 55(4), 413–424.
dc.relationOIZOM. (2022). Polludrone Pro Air Quality Monitoring Equipment. https://oizom.com/product/air-quality-monitoring-equipment-polludrone-pro/
dc.relationOliver, M. A., y Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 56–69.
dc.relationOliver, M. A., y Webster, R. (2015). Basic steps in geostatistics: the variogram and kriging. Springer.
dc.relationParedes Gómez, V. (2013). Medida y parametrización de los flujos de CO2 en un uso de suelo agrícola de la meseta utilizando datos en superficie y teledetección.
dc.relationPierrehumbert, R. T. (2010). Principles of planetary climate. Cambridge University Press.
dc.relationPP Systems. (2021, marzo 10). EGM-5 Operation Manual. https://ppsystems.com/egm-5/
dc.relationQuaye, A. K., Doe, E. K., Attua, E. M., Yiran, G., Arthur, A., Dogbatse, J. A., Konlan, S., Nkroma, Y. D., y Addo, D. (2021). Geospatial distribution of soil organic carbon and soil pH within the cocoa agroecological zones of Ghana. Geoderma, 386, 114921.
dc.relationRazali, N. M., y Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorovsmirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1), 21–33.
dc.relationRossel, R. A. V., y Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1–2), 46–54.
dc.relationSomarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávila, G., Alvarado, E., y Poveda, V. (2013). Carbon stocks and cocoa yields in agroforestry systems of Central America. Agriculture, ecosystems & environment, 173, 46–57.
dc.relationStatistics, U. N. (2019). Global indicator framework for the sustainable development goals and targets of the 2030 agenda for sustainable development. Developmental Science and Sustainable Development Goals for Children and Youth, 439.
dc.relationUniversidad Santo Tomás. (2022). Centro de Desarrollo Agroalimentario El Limonal. https://rsu.ustabuca.edu.co/index.php/noticias-centro-de-desarrollo-agroalimentario-ellimonal/ 22-noticias-el-limonal/190-campus-el-limonal-un-espacio-de-aplicacion-ygeneracion- del-conocimiento
dc.relationVilla, P. (2007). Efecto de la nutrición nitrogenada sobre el balance de carbono en el cultivo de papa (Solanum tuberosum). Trabajo especial de grado para optar al título de M. Sc en Ecología Tropical. Instituto de Ciencias Ambientales y Ecológicas, Universidad de Los Andes, Mérida-Venezuela.
dc.relationWang, Q., Mustafa, F., Bu, L., Yang, J., Fan, C., Liu, J., y Chen, W. (2022). Monitoring of Atmospheric Carbon Dioxide over a Desert Site Using Airborne and Ground Measurements. Remote Sensing, 14(20), 5224.
dc.relationWorld Bank. (2023). Millennium Project Global Challenge 1. https://www.millenniumproject. org/challenge-1/
dc.relationZegers, C. D., Cangas, M. E. G., y Aguilar, A. L. (2014). Ecología forestal: bases para el manejo sustentable y conservación de los bosques nativos de Chile. Ediciones Universidad Austral de Chile.
dc.relationZhang, C. (2007). Fundamentals of environmental sampling and analysis. John Wiley & Sons.
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.titleEstimación del Flujo de Carbono en el Suelo del Sistema Piloto Agroforestal de Cacao Establecido en el Campus Limonal


Este ítem pertenece a la siguiente institución