dc.contributorCervantes Diaz, Martha
dc.creatorAvendaño Chinchilla, Johan Manuel
dc.creatorPeña Hernández, Belky Yaneth
dc.date.accessioned2023-08-10T23:50:17Z
dc.date.accessioned2023-09-06T12:52:05Z
dc.date.available2023-08-10T23:50:17Z
dc.date.available2023-09-06T12:52:05Z
dc.date.created2023-08-10T23:50:17Z
dc.identifierAvendaño Chinchilla, J. M . (2023). Biosorción de metales pesados presentes en aguas residuales empleando cáscaras de cítricos: estudio cienciométrico. [Tesis de posgrado]. Universidad Santo Tomás. Bucaramanga, Colombia
dc.identifierhttp://hdl.handle.net/11634/51698
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8679604
dc.description.abstractRecently, studies have been carried out on the removal of heavy metals present in tributaries, wastewater and effluents from the industrial and mining sectors. These studies focus on the monitoring of metals such as Cr, Ni, Cd, Pb and Hg due to their high toxicity and difficulty in their elimination. In order to find an effective and low-cost solution, the use of materials such as citrus fruit peels for the development of biosorption systems has been explored. These peels are common waste in regions of Colombia due to the high production and consumption of oranges, lemons and tangerines. In particular, a scientometric study has been carried out to identify the best raw material with high performance in the removal of heavy metals in the water sources of the departments of Norte de Santander and Santander. For this study, the PICO strategy was used to define a search equation, which was applied in the Scopus database. 325 articles with a total of 4636 citations were obtained. Tools such as the VantagePoint program for text mining and the VOSviewer program for visualizing bibliometric networks were used to analyze global research trends on biosorbents. China was identified as a leader in this field, while Colombia has 2 articles related to the subject. The scientometric study determined that there is great interest in the scientific community in the use of orange and lemon peels as biosorbent materials for the removal of heavy metals dissolved in water tributaries. Therefore, it can be concluded that orange and lemon peels are suitable raw materials for the biosorption of heavy metals such as Pb, Cr, Cd and Hg present in water.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ciencias y Tecnologías Ambientales
dc.publisherFacultad de Química Ambiental
dc.relationAbdelhafez, A. A. y Li, J. (2016). Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. Journal of the Taiwan Institute of Chemical Engineers, 61, 367-375. https://doi.org/10.1016/j.jtice.2016.01.005
dc.relationAcosta Rodríguez, I., Martínez-Juárez, V. M., Cárdenas-González, J. M. y Moctezuma-Zárate, M. G. (2013). Biosorption of Arsenic(III) from Aqueous Solutions by Modified Fungal Biomass of Paecilomyces sp. Bioinorganic Chemistry and Applications, 2013, 376780. https://doi.org/10.1155/2013/376780
dc.relationArshad, F., Selvaraj, M. Zain, J., Banat, F. y Abu Haija, M. (2019). Hydrogel composite of graphene oxide modified with polyethyleneimine as an efficient adsorbent for heavy metal ions. Separation and Purification Technology, 209, 870-880. https://doi.org/10.1016/j.seppur.2018.06.035
dc.relationBenitez, H. M. y Moncayo Martínez, L. (2016). Biosíntesis de ácido láctico L (+) a partir de naranja “criolla” citrus sinensis en un proceso fermentativo con Lactobacillus delbrueckii. Vector, 11, 39-50. http://vector.ucaldas.edu.co/downloads/Vector11_6.pdf
dc.relationCardona-Gutiérrez, A. F., Cabañas Vargas, D. D. y Zepeda Pedreguera, A. (2013). Evaluación del poder biosorbente de cáscara de naranja para la eliminación de metales pesados, Pb (II) y Zn (II). Ingeniería, 17(1), 1-9. http://www.redalyc.org/articulo.oa?id=46729718001
dc.relationChao, H. P., Chang, C. C. y Nieva, A. (2014). Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry, 20(5), 3408–3414. https://doi.org/10.1016/j.jiec.2013.12.027
dc.relationChatterji, A. K. (2011). Introduction to Environmental Biotechnology. Prentice Hall of India Private Limited.
dc.relationCho Y. L., Lee, Y. C., Hsu, L. C., Wang, C. C., Chen, P. C., Liu, S. L., Teah, H. Y., Liu, Y. T. y Tzou, Y. M. (2020). Molecular mechanisms for Pb removal by Cyanidiales: a potential biomaterial applied in thermo-acidic conditions. Chemical Engineering Journal, 401, 125828. https://doi.org/10.1016/j.cej.2020.125828
dc.relationFaisal, M. L., Al-Najjar, S. Z. y Al-Sharify, Z. T. (2020). Modified orange peel as sorbernt in removing of heavy metals from aqueous solution. Journal of Green Engineering, 10(11), 10600-10615. http://www.jgenng.com/wp-content/uploads/2020/13/volume10-issue11- 35.pdf
dc.relationFutalan, C. M., Kan, C. C., Dalida, M. L., Hsien, K. J., Pascua, C. y Wan, M. W. (2011). Comparative and competitive adsorption of copper, lead and nickel using chitosan immobilized on bentonite. Carbohydrate Polymers, 83(2), 528-536. https://doi.org/10.1016/j.carbpol.2010.08.013
dc.relationGarces Jaraba, L. E. y Coavas Romero, S. C. (2012). Evaluación de la capacidad de adsorción en la cáscara de naranja (Citrus sinensis) modificada con quitosano para la remoción de Cr (VI) en aguas residuales [Trabajo de grado, Ingeniería Química]. Universidad de Cartagena. http://dx.doi.org/10.57799/11227/8540
dc.relationGiraldo Zuluaga, D. M. y Granados Pérez, W. (2018). Cadena de cítricos: indicadores e instrumentos. Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Citricos/Documentos/2018-09- 30%20Cifras%20Sectoriales.pdf
dc.relationKawai, K., Hayashi, A., Kikuchi, H. y Yokoyama, H. (2014). Desorption properties of heavy metals from cement hydrates in various chloride solutions. Construction and Building Materials, 67, Part A, 55-60. https://doi.org/10.1016/j.conbuildmat.2013.11.029
dc.relationLaus, R. y Fávere, V. T. (2011). Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate. Bioresource Technology, 102(19), 8769- 8776. https://doi.org/10.1016/j.biortech.2011.07.057
dc.relationLiang, S., Guo, X., Feng, N. y Tian, Q. (2010). Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. Journal of Hazardous Materials, 174(1-3), 756-762. https://doi.org/10.1016/j.jhazmat.2009.09.116
dc.relationMartínez, R., Aguado, D. y Pachés, M. (2022). Eliminación de metales pesados con métodos biológicos: una solución para el medio ambiente. Agua y Medio Ambiente, 96, 26-27. https://revistas.eleconomista.es/agua/2022/junio/eliminacion-de-metales-pesados-conmetodos-biologicos-una-solucion-para-el-medio-ambiente-LH11344395
dc.relationMergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., Taghavi, S., Dunn, J., van der Lelie, D. y Wattiez, R. (2003). Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiology Reviews, 27(2-3), 385-410. https://doi.org/10.1016/S0168-6445(03)00045-7
dc.relationMichael-Igolima, U., Abbey, S. J., Ifelebuegu, A. O. y Eyo, E. U. (2023). Modified orange peel waste as a sustainable material for adsorption of contaminants. Materials, 16(3), 1092. https://doi.org/10.3390/ma16031092
dc.relationPehlivan, E., Altun, T. y Parlayici, Ş. (2012). Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chemistry, 135(4), 2229-2234. https://doi.org/10.1016/j.foodchem.2012.07.017
dc.relationPratt, D. Y., Wilson, L. D. y Kozinski, J. A. (2013). Preparation and sorption studies of glutaraldehyde cross-linked chitosan copolymers. Journal of Colloid and Interface Science, 395, 205-211. https://doi.org/10.1016/j.jcis.2012.12.044
dc.relationQuintero Salamanca, G. P., Quijano Parra, A. y Melendez Gelvez, I. (2018). Efecto genotóxico del agua residual de la curtiembre san Faustino-Norte de Santander-Colombia. Revista Colombiana de Tecnología Avanzada (RCTA), 2(32), 8-16. https://ojs.unipamplona.edu.co/index.php/rcta/article/view/102
dc.relationRomero Cano, L. A. (2018). Preparación y caracterización de materiales adsorbentes a partir de cáscaras de frutas para su uso en la remoción de metales y aplicación a procesos ambientales [Tesis doctoral, Doctorado en Química]. Universidad de Granada. http://hdl.handle.net/10481/49626
dc.relationSantos, C. M. C., Pimenta, C. A. M. y Nobre, M. R. C. (2007). Estrategia PICO para la construcción de la pregunta de investigación y la búsqueda de evidencias. Revista LatinoAmericana de Enfermagem, 15(3), 508-511. https://doi.org/10.1590/S0104- 11692007000300023
dc.relationSetyopratomo, P., Fatmawati, A. y Allaf, K. (2009). Texturing by Instant Controlled Pressure Drop DIC in the Production of Cassava Flour: Impact on Dehydration Kinetics, Product Physical Properties and Microbial Decontamination. Proceedings of the World Congress on Engineering and Computer Science (WCECS 2009) (pp. 145-152). International Association of Engineers (IAENG), San Francisco, Estados Unidos. https://www.iaeng.org/publication/WCECS2009/WCECS2009_pp112-117.pdf
dc.relationSrivastava, N. K. y Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of Hazardous Materials, 151(1), 1-8. https://doi.org/10.1016/j.jhazmat.2007.09.101
dc.relationTejada-Tovar, C., Villabona-Ortiz, Á. y Garcés-Jaraba, L. (2015). Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. TecnoLógicas, 18(34), 109-123. https://doi.org/10.22430/22565337.209
dc.relationVerdugo Vergara, J. F. (2017). Bioadsorción de iones de plomo y cromo procedentes de aguas residuales utilizando la cáscara de la mandarina (Citrus reticuata var. Clementina) [Trabajo de grado, Ingeniería Ambiental]. Universidad Politécnica Salesiana. https://dspace.ups.edu.ec/handle/123456789/14249
dc.relationVillanueva Huerta, C. C. (2007). Biosorción de Cobre (II) por biomasa pretratada de cáscara de citrus sinensis (naranja), citrus limonium (limón) y opuntia ficus (palmeta de nopal) [Trabajo de grado, Química]. Universidad Nacional Mayor de San Marcos. https://hdl.handle.net/20.500.12672/2112
dc.relationWu, P. y Zhou, Y. S. (2009). Simultaneous removal of coexistent heavy metals from simulated urban stormwater using four sorbents: a porous iron sorbent and its mixtures with zeolite and crystal gravel. Journal of Hazardous Materials, 168(2-3), 674-680. https://doi.org/10.1016/j.jhazmat.2009.02.093
dc.relationXiao, G., Zhang, X. Su H. y Tan, T. (2013). Plate column biosorption of Cu(II) on membrane-type biosorbent (MBS) of Penicillium biomass: Optimization using statistical design methods. Bioresource Technology, 143, 490-498. https://doi.org/10.1016/j.biortech.2013.06.035
dc.rightsAbierto (Texto Completo)
dc.rightsAbierto (Texto Completo)
dc.rightsMagister en Ciencias y Tecnologías Ambientales
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.titleBiosorción de metales pesados presentes en aguas residuales empleando cáscaras de cítricos: estudio cienciométrico


Este ítem pertenece a la siguiente institución