dc.contributorContreras Ortiz, Martha Susana
dc.contributorUniversidad Santo Tomás
dc.creatorMendoza Santamaría, Juana Valentina
dc.date.accessioned2023-07-26T20:08:39Z
dc.date.accessioned2023-09-06T12:39:48Z
dc.date.available2023-07-26T20:08:39Z
dc.date.available2023-09-06T12:39:48Z
dc.date.created2023-07-26T20:08:39Z
dc.date.issued2023-07-25
dc.identifierMendoza Santamaría, J. V. (2023). Modelo predictivo de la mortalidad académica del programa de Ingeniería de Sistemas de la USTA Seccional Tunja basado en técnicas de Machine Learning. Universidad Santo Tomás.
dc.identifierhttp://hdl.handle.net/11634/51470
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8679476
dc.description.abstractThe project's aim was to develop a predictive model using machine learning techniques, which allowed identifying cases of academic mortality that may lead to student dropout in the computer science program. The work began with a bibliometric analysis to gather data from research that has implemented machine learning in the study of academic dropout. Additionally, inquiries were made about the machine learning techniques that best fit the subject and international experiences. Subsequently, the dataset was consolidated based on the academic information of computer science students from 2018-1 to 2021-2. Afterwards, feature engineering was applied to determine which ones were the most relevant for a dropout predictor. In this way, the machine learning model for predicting students in the computer science program at the university was determined. This process was conducted by comparing performance indices using different machine learning algorithms with the previously collected information. Thereafter, the model was validated using the cross-validation technique. Finally, a dashboard was deployed, showing the factors that influence student academic dropout and the predictions of dropout risk in students.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherIngeniería Informática
dc.publisherFacultad de Ingeniería de Sistemas
dc.relationBerrar, D. (2019). Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology (pp. 542–545). Elsevier. http://dx.doi.org/10.1016/b978-0-12-809633-8.20349-x
dc.relationBurkov, A. (2019). The hundred-page machine learning book (pp. 14–17).
dc.relationCWTS. (2022). Centre for Science and Technology Studies. Visualizing Science Using VOSviewer. https://www.vosviewer.com/
dc.relationda Fonseca Silveira, R., Holanda, M., de Carvalho Victorino, M., & Ladeira, M. (2019). Educational Data Mining: Analysis of Drop out of Engineering Majors at the UnB - Brazil. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 259–262. https://doi.org/10.1109/ICMLA.2019.00048
dc.relationde O. Santos, K. J., Menezes, A. G., de Carvalho, A. B., & Montesco, C. A. E. (2019). Supervised Learning in the Context of Educational Data Mining to Avoid University Students Dropout. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), 207–208. https://doi.org/10.1109/ICALT.2019.00068
dc.relationDel Bonifro, F., Gabbrielli, M., Lisanti, G., & Zingaro, S. P. (2020). Student Dropout Prediction (pp. 129–140). https://doi.org/10.1007/978-3-030-52237-7_11
dc.relationFernandez-Garcia, A. J., Preciado, J. C., Melchor, F., Rodriguez-Echeverria, R., Conejero, J. M., & Sanchez-Figueroa, F. (2021). A Real-Life Machine Learning Experience for Predicting University Dropout at Different Stages Using Academic Data. IEEE Access, 9, 133076–133090. https://doi.org/10.1109/ACCESS.2021.3115851
dc.relationHernández Romero, Ó. A., Novoa Beltrán, M. F., Hernández Molina, L. E., & Salina Casas, E. C. (2021, November 19). PERMANENCIA EN EL PRIMER AÑO DE VIDA UNIVERSITARIA EN TIEMPOS DE PANDEMIA. Línea Temática: Teorías y Factores Asociados a La Permanencia y El Abandono. https://revistas.utp.ac.pa/index.php/clabes/article/view/3363/4071
dc.relationHutagaol, N., & Suharjito, S. (2019). Predictive Modelling of Student Dropout Using Ensemble Classifier Method in Higher Education. Advances in Science, Technology and Engineering Systems Journal, 4(4), 206–211. https://doi.org/10.25046/aj040425
dc.relationkdnuggets. (2017). Four Problems in Using CRISP-DM and How To Fix Them. https://www.kdnuggets.com/2017/01/four-problems-crisp-dm-fix.html
dc.relationKemper, L., Vorhoff, G., & Wigger, B. U. (2020). Predicting student dropout: A machine learning approach. European Journal of Higher Education, 10(1), 28–47. https://doi.org/10.1080/21568235.2020.1718520
dc.relationLottering, R., Hans, R., & Lall, M. (2020). A Machine Learning Approach to Identifying Students at Risk of Dropout: A Case Study. International Journal of Advanced Computer Science and Applications, 11(10). https://doi.org/10.14569/IJACSA.2020.0111052
dc.relationMaksimova, N., Pentel, A., & Dunajeva, O. (2021). Predicting First-Year Computer Science Students Drop-Out with Machine Learning Methods: A Case Study (pp. 719–726). https://doi.org/10.1007/978-3-030-68201-9_70
dc.relationOpazo, D., Moreno, S., Álvarez-Miranda, E., & Pereira, J. (2021). Analysis of First-Year University Student Dropout through Machine Learning Models: A Comparison between Universities. Mathematics, 9(20), 2599. https://doi.org/10.3390/math9202599
dc.relationOege, O. (2020). explainerdashboard — explainerdashboard 0.2 documentation. Explainerdashboard. https://explainerdashboard.readthedocs.io/en/latest/index.html
dc.relationRuiz-Rosero, J., Ramirez-Gonzalez, G., & Viveros-Delgado, J. (2019). Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics, 121(2), 1165–1188. https://doi.org/10.1007/s11192-019-03213-w
dc.relationSarkar, D., Bali, R., & Sharma, T. (2017). Practical machine learning with python: A problem-solver’s guide to building real-world intelligent systems. Apress.
dc.relationSchröer, C., Kruse, F., & Marx Gómez, J. C. (2020). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science. CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2020, 526–534. https://www.researchgate.net/publication/349527794_A_Systematic_Literature_Review_on_Applying_CRISP-DM_Process_Model
dc.relationSierra, H., & Hernández, O. (2014, November 3). SISTEMA DE ALERTAS TEMPRANAS COMO HERRAMIENTA DE INNOVACIÓN TECNOLÓGICA EN LA UNIVERSIDAD SANTO TOMÁS PARA EL FORTALECIMIENTO DE LA PERMANENCIA ESTUDIANTIL Y GRADUACIÓN OPORTUNA. Línea Temática 4: Prácticas de La Integración Universitaria Para La Reducción Del Abandono Tipo de Comunicación: Experiencia/Reporte de Caso. https://core.ac.uk/download/pdf/234020468.pdf
dc.relationTheobald, O. (2017). Machine Learning For Absolute Beginners (Second Edition).
dc.relationTimaran Pereira, R., & Caicedo Zambrano, J. (2017). Application of Decision Trees for Detection of Student Dropout Profiles. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), 528–531. https://doi.org/10.1109/ICMLA.2017.0-107
dc.relationUniversidad Católica de Brasilia. (2022, November 16). Congresso Latino-americano sobre o Abandono na Educação Superior (XI CLABES). Congresso Latino-Americano Sobre o Abandono Na Educação Superior (XI CLABES). https://doity.com.br/clabes2022/artigos?lang=es
dc.relationUDIES - Unidad de Desarrollo Integral Estudiantil. (2020). Reporte deserción Ingeniería de Sistemas 2020.
dc.relationUniversidad de los Andes. (2014). Informe Determinantes de la deserción: “Informe mensual sobre el soporte técnico y avance del contrato para garantizar la alimentación, consolidación, validación y uso de la información del SPADIES.” https://www.mineducacion.gov.co/sistemasdeinformacion/1735/articles-254702_Informe_determinantes_desercion.pdf
dc.relationvijh, samarth. (2019, June 12). What is ROC curve in machine learning? ROC curve in python with example. Intellipaat. https://intellipaat.com/blog/roc-curve-in-machine-learning/?US
dc.relationWirth, R., & Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining. 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, 29–30. http://www.cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleModelo predictivo de la mortalidad académica del programa de Ingeniería de Sistemas de la USTA Seccional Tunja basado en técnicas de Machine Learning


Este ítem pertenece a la siguiente institución