dc.contributor | Burgos Contento, Jair Esteban | |
dc.contributor | Meléndez Reyes, Ángel Manuel | |
dc.contributor | https://orcid.org/0000-0003-1052-971X | |
dc.contributor | https://scholar.google.com/citations?user=3wJac4AAAAAJ&hl=es | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001601714 | |
dc.contributor | Universidad Santo Tomas | |
dc.creator | Varela Buitrago, Daniel Alejandro | |
dc.creator | Hernández Herrera, Yenny Paola | |
dc.date.accessioned | 2023-06-28T22:09:43Z | |
dc.date.accessioned | 2023-09-06T12:33:01Z | |
dc.date.available | 2023-06-28T22:09:43Z | |
dc.date.available | 2023-09-06T12:33:01Z | |
dc.date.created | 2023-06-28T22:09:43Z | |
dc.date.issued | 2023-06-21 | |
dc.identifier | Varela Buitrago, D. & Hernández Herrera, Y. (2023). Establecimiento de los parámetros de una técnica electroanalítica que permita cuantificar la concentración de arsénico(III) en aguas asociadas con la actividad minera. [Trabajo de grado, Universidad Santo Tomás]. Repositorio | |
dc.identifier | http://hdl.handle.net/11634/50924 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8679403 | |
dc.description.abstract | Small-scale gold mining is an activity that in Colombia is frequently carried out illegally and without control, which triggers a large problem of environmental contamination and public health. Usually, to extract gold from rocks, cyanidation processes are carried out, which generally contain sulphide minerals such as pyrite (FeS_2) and arsenopyrite (FeAsS), which release leachates with amounts of As(III) and Fe(III) into the environment, causing high levels of water pollution. To contribute to meeting the goals of the 2030 United Nations Agenda to guarantee clean water and sanitation, the establishment of an electrochemical technique is proposed as a viable alternative to the detection and monitoring of arsenic. The strategy proposed here consists of: (a) performing a series of modifications to a gold electrode with nano and micro copper and silver particles, (b) qualitatively determining which modified electrode material allows a better determination of As( III) in a model synthetic water that simulates wastewater from small-scale gold mining, this through the evaluation of the electrochemical behavior of As(III), and finally (c) establish an electroanalytical technique to quantify As(III) on the selected electrode material. The best results for the determination of As(III) were obtained for a gold electrode modified with copper nanoparticles, which were deposited at a potential of 0.1 V vs Ag/AgCl (3 M KCl) at a time of 500 ms. The arsenic pre-concentration time that leads to the best results was 120 s, resulting in a calibration curve with a determination coefficient of 0.997, a detection limit of 0.356 ppm and a quantification limit of 1.188 ppm. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Pregrado de Ingeniería Ambiental | |
dc.publisher | Facultad de Ingeniería Ambiental | |
dc.relation | Agencia Nacional de Minería (ANM). (22 de Febrero de 2023). Así es nuestra Colombia minera. Agencia Nacional de Minería: https://www.anm.gov.co/?q=Asi-es-nuestra-Colombia-minera | |
dc.relation | Agency for Toxic Substances and Disease Redistry (ATSDR). (12 de Marzo de 2015). Public Health Stratement for Arsenic. Toxic Substances Portal ATSDR. https://www.atsdr.cdc.gov/es/phs/es_phs2.html | |
dc.relation | Alonso, D, L., Latorre, S., Castillo, E., & Brandao, P. (2014). Environmental ocurrence of arsenic in Colombia: A review. Environmental Pollution. 186. 272-281. https://doi.org/10.1016/j.envpol.2013.12.009 | |
dc.relation | Arrieta, A., y Tarazona, R. (2014). Multipotenciostat system based on virtual instrumentation. Ingeniería, Investigación y Tecnología. 15(3). 321-337. https://www.elsevier.es/es-revista-ingenieria-investigacion-tecnologia-104-articulo-sistema-multipotenciostato-basado-instrumentacion-virtual-S1405774314703440 | |
dc.relation | Babar, N., Saleem, K., Arsalan, M., Naeem, M., y Sohail, M. (2019). Highly Sensitive and Selective Detection of Arsenic Using Electrogenerated Nanotextured Gold Assemblage. ACS Omega. 4. 13645-13657 https://pubs.acs.org/doi/10.1021/acsomega.9b00807 | |
dc.relation | Baron, J., Joya, M., y Barba, J. (2013). Anodic stripping voltametry. ASV for determination of heavy metals. Journal of physics: conference series. doi:10.1088/1742-6596/466/1/012023 | |
dc.relation | Benavides, Y. Y., Nisperuza Ruiz, P., y Ramos Montiel, Y. (2019). Determinación de arsénico por voltamperometría de redisolución anódica usando electrodo de disco rotatorio de oro. Universidad de Córdoba. https://es.scribd.com/document/401653695/Determinacion-de-Arsenico-Por-Voltamperometria-de-Resolucion-Anodica-Usando-Electrodo-de-Disco-Rotatorio-de-Oro | |
dc.relation | Benck JD, Pinaud BA, Gorlin Y, Jaramillo TF (2014) Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS ONE 9(10): e107942. doi:10.1371/journal.pone.0107942) | |
dc.relation | Bundschuh, J., Litter, M., Pavez, F., Román-Ross, G., Nicolli, H., et al. (2012). One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries Science of The Total Environment. 429. 2-35. https://doi.org/10.1016/j.scitotenv.2011.06.024 | |
dc.relation | Burgos, J. E. (2015). Implementación de la metodología de voltamperometría diferencial de pulsos con redisolución anódica (DPASV) para la determinación de mercurio total en atún enlatado [Trabajo de grado, Universidad Santo Tomás]. Repositorio https://repository.usta.edu.co/handle/11634/2562 | |
dc.relation | Bustos, H., Oyola, D., Rojas, Y., Pérez, G., Balogh, A., & Cabri, L. (2011). Quantification of refractoy gold in grains of pyrite and arsenopyrite from the "El Diamente" gold mine in Nariño-Colombia. Tumbaga. 1(6), 153‒164. https://dialnet.unirioja.es/descarga/articulo/3944257.pdf | |
dc.relation | Camacho, A, G., y Peña, S, F. (2020). Validación del método voltamperométrico de redisolución anódica para determinar arsénico en aguas de procesos hidrometalúrgicos en el cantón portovelo. [Trabajo de grado, Universidad Técnica de Machala]. Repositorio http://repositorio.utmachala.edu.ec/handle/48000/16303 | |
dc.relation | Fleet, M.E., Chryssoulis, S.L., MacLean, P.J., Davidson, R., y Weisener, G. (1993). Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EP, and color staining and surface oxidation by XPS and LIMS. Canadian Mineralogist, 31, 1–17. https://i2mconsulting.com/clients/tailings-ponds-research/Arsenian%20pyrite%20from%20gold%20deposits1.pdf | |
dc.relation | Flórez-Suárez, M. A. (2016). Desarrollo de un electrodo de pasta de carbono modificado con un mineral colombiano para su aplicación en la detección de Cu(II) en aguas contaminadas [Tesis de pregrado no publicado]. Universidad Industrial de Santander | |
dc.relation | Forero, J. (2020). Minería y Salud. Revista Encuentros. 01. 7-9. | |
dc.relation | Gasparrini, C. (1993). Gold and other precious metals: From ore to market. Berlin: Springer- Verlag. https://doi.org/10.1007/978-3-642-77184-2 | |
dc.relation | Globa, P. G., E.A.Zasavitsky, V. G.Kantser, S. P.Sidelinikova, y A. I.Dikusar (2007). Kinetics of electrodeposition of silver and copper at template synthesis of nanowires. arXiv: Mesoscale and Nanoscale Physics. https://arxiv.org/ftp/arxiv/papers/0707/0707.0749.pdf | |
dc.relation | Gómez-Biedma, S., Soria, E., & Vivó, M. (2002, marzo). Análisis electroquímico. Revista de Diagnóstico Biológico, 51(1), 18-27. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0034-79732002000100005 | |
dc.relation | Grujicic, D., y Pesic, B. (2001). Electrodeposition of copper: the nucleation mechanisms. Electrochimica Acta. 47. 2901-2912. http://dx.doi.org/10.1016/S0013-4686(02)00161-5 | |
dc.relation | Guo, Z., Yang, M., & Huang, X.-J. (2017). Recent developments in electrochemical determination of arsenic. Current Opinion in Electrochemistry, 3(1), 130-136. | |
dc.relation | Hernández, C., Álvarez, P., y Zapa, J. (2016). Técnicas analíticas para el control de contaminación ambiental. Ciencia UNEMI. 9(20), 118-131. https://www.redalyc.org/pdf/5826/582663826016.pdf | |
dc.relation | Instituto Nacional de Salud (INS); Ministerio de Salud y Protección Social (Minsalud). (2013). Perfil de riesgo de Arsénico en Colombia. https://www.ins.gov.co/Direcciones/Vigilancia/Publicaciones%20ERIA%20y%20Plaguici das/PERFIL%20ARSENICO%20EN%20ARROZ.pdf | |
dc.relation | Karapa, A., Kokkinos, C., Fieldenb, P., Baldockb, S., Goddardc, N., y Economou, A. (2023). Supervisión voltamperométrica rápida de trazas Αs(III) utilizando sensores desechables moldeados por inyección en una configuración portátil. Revista de química electroanalítica. 929.117-126. https://doi.org/10.1016/j.jelechem.2022.117126 | |
dc.relation | Lázaro-Hernández, K.V. (2019). A deep eutectic solvent as an alternative to cyanide leaching for refractory gold in grains of arsenopyrite. [Tesis de maestría, no publicada]. Universidad Industrial de Santander | |
dc.relation | Litter, M. I., Armienta, M. A., & Farías, S. S. (2009). IBEROARSEN Metodologías analíticas para la determinación y especiación de arsénico en aguas y suelos. CYTED. https://paginas.fe.up.pt/~cigar/html/documents/Monografia2_000.pdf | |
dc.relation | Londoño, L, F., Londoño, P, T., Muñoz, F, G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnología en el sector agropecuario e industrial. 14(2). 145-153. DOI:10.18684/BSAA(14)145-153 | |
dc.relation | Ma, W., Ying, YL., Qin, LX. (2013). Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system. Nat. Protoc. 8. 439–450. https://doi.org/10.1038/nprot.20Ma, W., Ying, YL., Qin, LX. (2013). Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system. Nat. Protoc. 8. 439–450. https://doi.org/10.1038/nprot.2013.00713.007 | |
dc.relation | Manino, S., y Wang, J. (1992). Electrochemical methods for food and drinks analysis. Electroanalysis, 4(9), 835-840. Retrieved 2022, from https://www-scopus-com.craiustadigital.usantotomas.edu.co/record/display.uri?eid=2s2.084987592430&origin=resultslist&sort=plff&src=s&sid=4bf71f61c6dbaaf3974c926f4516a80f&sot=b&sdt=cl&cluster=scopubyr%2c%221992%22%2ct&sl=38&s=TITLEABS-KEY%28electroanal | |
dc.relation | Marsden, J. O., y House, C. L. (2006). The chemistry of gold extraction. Littleton: Society for Mining, Metallurgy, and Exploration, Inc. 39(3). 138. 10.1007/BF03215543 | |
dc.relation | Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J.,Maree, J., Tekere, M., & Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering. 183. https://doi.org/10.1016/j.ecoleng.2022.106740 | |
dc.relation | Mathur, R., Ruiz, J., Herb, P., Hahn, L., y Burgath, K. P. (2003). Re-Os isotopes applied to the epithermal gold deposits near Bucaramanga, northeastern Colombia. Journal of South American Earth Sciences, 15(7), 815‒821. http://dx.doi.org/10.1016/S0895-9811(02)00126-8 | |
dc.relation | Meléndez, A. M. (2011). Estudio fisicoquímico de los sulfosales isoestructurales Ag3AsS3 (proustita) y Ag3SbS3 (pirargirita) en soluciones de cianuro: extracción de plata [Tesis de doctorado, Universidad Autónoma Metropolitana]. https://bindani.izt.uam.mx/concern/tesiuams/5h73pw269?locale=es | |
dc.relation | Merkulova, M., Mathon, M., Glatzel, O., Rovezzi, M., Batanova, V., Marion, P., Boiron, M.-C., y Manceau, A. (2019). Revealing the chemical form of “invisible” gold in natural arsenian pyrite and arsenopyrite with high energy-resolution X-ray absorption spectroscopy. CS Earth and Space Chemistry. https://pubs.acs.org/doi/abs/10.1021/acsearthspacechem.9b00099 | |
dc.relation | Ministerio de Minas y Energía. (2022). Transformación Minera. Ministerio de Minas y Energía: https://www.minenergia.gov.co/es/misional/transformaci%C3%B3nminera/#:~:text=La%20miner%C3%ADa%20es%20una%20actividad,m%C3%A1s%20a ntiguas%20de%20la%20humanidad | |
dc.relation | Mitchell, C.J., Evans, E.J., Styles, M.T. (1997) A review of gold particle-size and recovery methods. Nottingham, UK, British Geological Survey, https://core.ac.uk/download/pdf/58474.pdf | |
dc.relation | Organización Mundial Salud (OMS). (25 de septiembre de 2015). Objetivos de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible | |
dc.relation | Organización Mundial Salud (OMS). (2016). Mitigación de los efectos del arsénico presente en aguas subterráneas. https://apps.who.int/gb/ebwha/pdf_files/EB118/B118_14-sp.pdf | |
dc.relation | Organización Mundial Salud (OMS). (2018, February 15). Arsénico. https://www.who.int/es/news-room/fact-sheets/detail/arsenic | |
dc.relation | Osovetsky, B. (2017). Natural Nanogold. Serie Springer Mineralogy. Springer Cham. https://doi.org/10.1007/978-3-319-59159-9 | |
dc.relation | Parinyachet, S., y Leepowpanth, Q. (2015). A study of residual cyanides and potential stabilities in tailings storage facility of gold mining operation. Applied Environmental Research. 37(1), 11–18. https:// doi.org/10.14456/aer.2015.5 | |
dc.relation | Pinto, S., Pinzón, E., Meléndez, A., Mendez-Sanchez, S., y Miranda, D. (2020). Electrode cleaning and reproducibility of electrical impedance measurements of HeLa cells on aqueous solution. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(170). 257–268. doi: http://dx.doi.org/10.18257/ raccefyn.919 | |
dc.relation | Puetz, J., Aegerter, M. A. y Mennig, M. (2004). Dip Coating Technique. Sol-gel technologies for glass producers and users. Springer: pp 37−48. | |
dc.relation | Radisic, A., Vereecken, P., Searson, P., Ross, M. (2006). The morphology and nucleation kinetics of copper islands during electrodeposition. Suface science. 600(9). 1817-1826. doi:10.1016/j.susc.2006.02.02510.1016/j.susc.2006.02.025 | |
dc.relation | Rangel, E; Montañez, L., Luévanos, M & Balagurusamy, N. (2015). Impacto del arsénico en el ambiente y su transformación. Terra Latinoamericana. 33(2). 103-118. https://www.scielo.org.mx/pdf/tl/v33n2/2395-8030-tl-33-02-00103.pdf | |
dc.relation | Reyes, J. (2021). Cuantificación electroquímica de arsénico en agua mediante uso de un electrodo de oro modificado con nanopartículas metálicas [Tesis de pregrado, Universidad Nacional Mayor de San Marcos]. Repositorio. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/17355 | |
dc.relation | Rodríguez, C., y Warden, A. J. (1993). Overview of some colombian gold deposits and their development potential. Mineralium Deposita, 28(1), 47‒57. https://link.springer.com/article/10.1007/BF00199009 | |
dc.relation | Sadana, R. S. (1983). Determination of arsenic in the presence of copper by differential pulse cathodic stripping voltaammetry ad a hanging mercury drop electrode. Analytical Chemistry. 55(2). 304-307. doi:10.1021/ac00253a028 | |
dc.relation | Sampanpanish, P. (2018). Arsenic, manganese, and cyanide removal in a tailing storage facility for a gold mine using phytoremediation. Remediation. 28: 83–89. https://doi.org/10.1002/rem.21563 | |
dc.relation | Stuardo, V, A. (2020). Diferenciación y determinació de especies orgánica (DMA y MMA) e inorgánicas de arsénico en algas Porphyra columbina y Durvillaea antárctica por HG-AAS para biomonitorización ambiental [Tesis de maestría, Universidad de Chile]. Repositorio. https://repositorio.uchile.cl/handle/2250/181551 | |
dc.relation | Unites States Environmental Protection Agency (USEPA). (15 de Noviembre de 2022). Chemical Contaminant Rules | USEPA. Retrieved May 9, 2022, from US Environmental Protection Agency: https://www.epa.gov/dwreginfo/chemical-contaminant-rules | |
dc.relation | Universidad Tecnológica Nacional. (2016). Jornadas de Taller de distribución, determinación y remoción de Arsénico en aguas. Editorial. EdUTecNe. | |
dc.relation | Vásconez, M., Manciati, C., Lenys, F., & Espinoza Montero, P. J. (2019, Enero). Validación de un método para la determinación de arsénico en muestras de agua mediante voltamperometría de redisolución anódica. Revista Técnica de la Facultad de Ingeniería de la Universidad del Zulia, 12(1), 26-34. https://www.redalyc.org/articulo.oa?id=605766254005 | |
dc.relation | Vazquez, J; Arenas, G. Vázquez, A.M. Meléndez, y I. González. (2007) The effect of the Cu2+/Cu+ step on copper electrocrystallization in acid noncomplexing electrolytes. J. Electrochem. Soc. 154 D473–D481. DOI: 10.1149/1.2755873 | |
dc.relation | Volkov, A. V., y Sidorov A. A. (2017). Invisible gold. Herald of the Russian Academy of Sciences. 87(1) 40‒48. https://link.springer.com/article/10.1134/S1019331617010051 | |
dc.relation | Wang, J. (2006). Analytical electrochemistry. 3a ed. Jhon Wiley. | |
dc.relation | Wongsasuluk P, Tun AZ, Chotpantarat S, y Siriwong W. (2021). Related health risk assessment of exposure to arsenic and some heavy metals in gold mines in Banmauk Township, Myanmar. Sci. Rep. 11(1):22843. doi: 10.1038/s41598-021-02171-9. | |
dc.relation | Zumbado Fernández, H. (2021). Análisis instrumental de los alimentos (Editorial Universitaria (Cuba) ed.). Editorial Universitaria | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Establecimiento de los parámetros de una técnica electroanalítica que permita cuantificar la concentración de arsénico(III) en aguas asociadas con la actividad minera | |
dc.type | bachelor thesis | |