dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorLlibre, Jaume
dc.creatorMessias, Marcelo
dc.creatorDa Silva, Paulo Ricardo
dc.date2014-05-20T14:02:55Z
dc.date2016-10-25T17:09:24Z
dc.date2014-05-20T14:02:55Z
dc.date2016-10-25T17:09:24Z
dc.date2012-06-01
dc.date.accessioned2017-04-05T21:28:48Z
dc.date.available2017-04-05T21:28:48Z
dc.identifierInternational Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 22, n. 6, p. 17, 2012.
dc.identifier0218-1274
dc.identifierhttp://hdl.handle.net/11449/22166
dc.identifierhttp://acervodigital.unesp.br/handle/11449/22166
dc.identifier10.1142/S0218127412501544
dc.identifierWOS:000306505900031
dc.identifierhttp://dx.doi.org/10.1142/S0218127412501544
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/867624
dc.descriptionIn this paper, we perform a global analysis of the dynamics of the Chen system(x) over dot = a(y - x), (y) over dot = (c - a)x - xz + cy, (z) over dot = xy - bz,where (x, y, z) is an element of R-3 and (a, b, c) is an element of R-3. We give the complete description of its dynamics on the sphere at infinity. For six sets of the parameter values, the system has invariant algebraic surfaces. In these cases, we provide the global phase portrait of the Chen system and give a complete description of the alpha- and omega-limit sets of its orbits in the Poincare ball, including its boundary S-2, i.e. in the compactification of R-3 with the sphere S-2 of infinity. Moreover, combining the analytical results obtained with an accurate numerical analysis, we prove the existence of a family with infinitely many heteroclinic orbits contained on invariant cylinders when the Chen system has a line of singularities and a first integral, which indicates the complicated dynamical behavior of the Chen system solutions even in the absence of chaotic dynamics.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationInternational Journal of Bifurcation and Chaos
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectChen system
dc.subjectintegrability
dc.subjectPoincare compactification
dc.subjectdynamics at infinity
dc.subjectheteroclinic orbits
dc.subjectsingularly degenerate heteroclinic cycles
dc.subjectinvariant manifolds
dc.titleGLOBAL DYNAMICS IN THE POINCARE BALL of THE CHEN SYSTEM HAVING INVARIANT ALGEBRAIC SURFACES
dc.typeOtro


Este ítem pertenece a la siguiente institución