dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorShah, Tariq
dc.creatorDe Andrade, Antonio Aparecido
dc.date2014-05-20T14:02:50Z
dc.date2016-10-25T17:09:21Z
dc.date2014-05-20T14:02:50Z
dc.date2016-10-25T17:09:21Z
dc.date2012-08-01
dc.date.accessioned2017-04-05T21:28:33Z
dc.date.available2017-04-05T21:28:33Z
dc.identifierJournal of Algebra and Its Applications. Singapore: World Scientific Publ Co Pte Ltd, v. 11, n. 4, p. 19, 2012.
dc.identifier0219-4988
dc.identifierhttp://hdl.handle.net/11449/22138
dc.identifierhttp://acervodigital.unesp.br/handle/11449/22138
dc.identifier10.1142/S0219498812500788
dc.identifierWOS:000307044900016
dc.identifierhttp://dx.doi.org/10.1142/S0219498812500788
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/867596
dc.descriptionIt is very well known that algebraic structures have valuable applications in the theory of error-correcting codes. Blake [Codes over certain rings, Inform. and Control 20 (1972) 396-404] has constructed cyclic codes over Z(m) and in [Codes over integer residue rings, Inform. and Control 29 (1975), 295-300] derived parity check-matrices for these codes. In [Linear codes over finite rings, Tend. Math. Appl. Comput. 6(2) (2005) 207-217]. Andrade and Palazzo present a construction technique of cyclic, BCH, alternant, Goppa and Srivastava codes over a local finite ring B. However, in [Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and [Constructions of codes through semigroup ring B[X; 1/2(2) Z(0)] and encoding, Comput. Math. Appl. 62 (2011) 1645-1654], Shah et al. extend this technique of constructing linear codes over a finite local ring B via monoid rings B[X; 1/p(k) Z(0)], where p = 2 and k = 1, 2, respectively, instead of the polynomial ring B[X]. In this paper, we construct these codes through the monoid ring B[X; 1/kp Z(0)], where p = 2 and k = 1, 2, 3. Moreover, we also strengthen and generalize the results of [Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and [Constructions of codes through semigroup ring B[X; 1/2(2) Z(0)]] and [Encoding, Comput. Math. Appl. 62 (2011) 1645-1654] to the case of k = 3.
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationJournal of Algebra and Its Applications
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSemigroup ring
dc.subjectCyclic code
dc.subjectBCH code
dc.subjectAlternant code
dc.subjectGoppa code
dc.subjectSrivastava code
dc.titleCYCLIC CODES THROUGH B[X], B[X; 1/kp Z(0)] and B[X; 1/p(k) Z(0)]: A COMPARISON
dc.typeOtro


Este ítem pertenece a la siguiente institución