dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Shah, Tariq | |
dc.creator | De Andrade, Antonio Aparecido | |
dc.date | 2014-05-20T14:02:50Z | |
dc.date | 2016-10-25T17:09:21Z | |
dc.date | 2014-05-20T14:02:50Z | |
dc.date | 2016-10-25T17:09:21Z | |
dc.date | 2012-08-01 | |
dc.date.accessioned | 2017-04-05T21:28:33Z | |
dc.date.available | 2017-04-05T21:28:33Z | |
dc.identifier | Journal of Algebra and Its Applications. Singapore: World Scientific Publ Co Pte Ltd, v. 11, n. 4, p. 19, 2012. | |
dc.identifier | 0219-4988 | |
dc.identifier | http://hdl.handle.net/11449/22138 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/22138 | |
dc.identifier | 10.1142/S0219498812500788 | |
dc.identifier | WOS:000307044900016 | |
dc.identifier | http://dx.doi.org/10.1142/S0219498812500788 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/867596 | |
dc.description | It is very well known that algebraic structures have valuable applications in the theory of error-correcting codes. Blake [Codes over certain rings, Inform. and Control 20 (1972) 396-404] has constructed cyclic codes over Z(m) and in [Codes over integer residue rings, Inform. and Control 29 (1975), 295-300] derived parity check-matrices for these codes. In [Linear codes over finite rings, Tend. Math. Appl. Comput. 6(2) (2005) 207-217]. Andrade and Palazzo present a construction technique of cyclic, BCH, alternant, Goppa and Srivastava codes over a local finite ring B. However, in [Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and [Constructions of codes through semigroup ring B[X; 1/2(2) Z(0)] and encoding, Comput. Math. Appl. 62 (2011) 1645-1654], Shah et al. extend this technique of constructing linear codes over a finite local ring B via monoid rings B[X; 1/p(k) Z(0)], where p = 2 and k = 1, 2, respectively, instead of the polynomial ring B[X]. In this paper, we construct these codes through the monoid ring B[X; 1/kp Z(0)], where p = 2 and k = 1, 2, 3. Moreover, we also strengthen and generalize the results of [Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and [Constructions of codes through semigroup ring B[X; 1/2(2) Z(0)]] and [Encoding, Comput. Math. Appl. 62 (2011) 1645-1654] to the case of k = 3. | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.language | eng | |
dc.publisher | World Scientific Publ Co Pte Ltd | |
dc.relation | Journal of Algebra and Its Applications | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Semigroup ring | |
dc.subject | Cyclic code | |
dc.subject | BCH code | |
dc.subject | Alternant code | |
dc.subject | Goppa code | |
dc.subject | Srivastava code | |
dc.title | CYCLIC CODES THROUGH B[X], B[X; 1/kp Z(0)] and B[X; 1/p(k) Z(0)]: A COMPARISON | |
dc.type | Otro | |