dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorParthasarathy, P. R.
dc.creatorRanga, Alagacone Sri
dc.date2014-05-20T14:01:48Z
dc.date2016-10-25T17:08:46Z
dc.date2014-05-20T14:01:48Z
dc.date2016-10-25T17:08:46Z
dc.date2011-01-01
dc.date.accessioned2017-04-05T21:26:09Z
dc.date.available2017-04-05T21:26:09Z
dc.identifierStochastic Analysis and Applications. Philadelphia: Taylor & Francis Inc, v. 29, n. 2, p. 185-196, 2011.
dc.identifier0736-2994
dc.identifierhttp://hdl.handle.net/11449/21813
dc.identifierhttp://acervodigital.unesp.br/handle/11449/21813
dc.identifier10.1080/07362994.2011.532038
dc.identifierWOS:000287704800002
dc.identifierhttp://dx.doi.org/10.1080/07362994.2011.532038
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/867319
dc.descriptionAssociated with an ordered sequence of an even number 2N of positive real numbers is a birth and death process (BDP) on {0, 1, 2,..., N} having these real numbers as its birth and death rates. We generate another birth and death process from this BDP on {0, 1, 2,..., 2N}. This can be further iterated. We illustrate with an example from tan(kz). In BDP, the decay parameter, viz., the largest non-zero eigenvalue is important in the study of convergence to stationarity. In this article, the smallest eigenvalue is found to be useful.
dc.languageeng
dc.publisherTaylor & Francis Inc
dc.relationStochastic Analysis and Applications
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBirth and death process
dc.subjectContinued fractions
dc.subjectOrthogonal polynomials
dc.subjectTridiagonal matrices
dc.titleGenerating Birth and Death Processes
dc.typeOtro


Este ítem pertenece a la siguiente institución