dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Parthasarathy, P. R. | |
dc.creator | Ranga, Alagacone Sri | |
dc.date | 2014-05-20T14:01:48Z | |
dc.date | 2016-10-25T17:08:46Z | |
dc.date | 2014-05-20T14:01:48Z | |
dc.date | 2016-10-25T17:08:46Z | |
dc.date | 2011-01-01 | |
dc.date.accessioned | 2017-04-05T21:26:09Z | |
dc.date.available | 2017-04-05T21:26:09Z | |
dc.identifier | Stochastic Analysis and Applications. Philadelphia: Taylor & Francis Inc, v. 29, n. 2, p. 185-196, 2011. | |
dc.identifier | 0736-2994 | |
dc.identifier | http://hdl.handle.net/11449/21813 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/21813 | |
dc.identifier | 10.1080/07362994.2011.532038 | |
dc.identifier | WOS:000287704800002 | |
dc.identifier | http://dx.doi.org/10.1080/07362994.2011.532038 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/867319 | |
dc.description | Associated with an ordered sequence of an even number 2N of positive real numbers is a birth and death process (BDP) on {0, 1, 2,..., N} having these real numbers as its birth and death rates. We generate another birth and death process from this BDP on {0, 1, 2,..., 2N}. This can be further iterated. We illustrate with an example from tan(kz). In BDP, the decay parameter, viz., the largest non-zero eigenvalue is important in the study of convergence to stationarity. In this article, the smallest eigenvalue is found to be useful. | |
dc.language | eng | |
dc.publisher | Taylor & Francis Inc | |
dc.relation | Stochastic Analysis and Applications | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Birth and death process | |
dc.subject | Continued fractions | |
dc.subject | Orthogonal polynomials | |
dc.subject | Tridiagonal matrices | |
dc.title | Generating Birth and Death Processes | |
dc.type | Otro | |