Otro
On a symmetry in strong distributions
Registro en:
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 105, n. 1-2, p. 187-198, 1999.
0377-0427
10.1016/S0377-0427(99)00046-1
WOS:000080681500014
WOS000080681500014.pdf
Autor
Bracciali, Cleonice Fátima
McCabe, J. H.
Ranga, A. S.
Resumen
A strong Stieltjes distribution d psi(t) is called symmetric if it satisfies the propertyt(omega) d psi(beta(2)/t) = -(beta(2)/t)(omega) d psi(t), for t is an element of (a, b) subset of or equal to (0, infinity), 2 omega is an element of Z, and beta > 0.In this article some consequences of symmetry on the moments, the orthogonal L-polynomials and the quadrature formulae associated with the distribution are given. (C) 1999 Elsevier B.V. B.V. All rights reserved.